multi-featured function generator

diagnostic serial data latch

frequency synthesis up to 2 GHz
ICOM HAS ALL YOUR BASES COVERED

ICOM has your winning line-up for fixed, portable, and mobile operations on today's hottest amateur bands. Slide into the winner's circle with ICOM's deluxe "75" series transceivers, with a team committed to excellence from VHF to UHF communications. Each compact all-mode unit delivers maximum performance, reliability, and ease of operation. It's a championship line-up!

All "75" series transceivers are an FMer's dream rig with 99 tunable memories, four scan modes, odd offsets, packet compatibility, scanning mic and DDS system for data input. SSB/OSCAR delights include dual VFOs, PBT, crystal-resonant IF notch, noise blanker, and semi/full CW break-in. The glamorous "75" units provide ultimate mobilizing flexibility.

SUPER SCANNING
Monitor all of today's action with four scanning modes: spectrum, programmable, mode, and memory. Scans 99 memories in five seconds!

2 METERS. ICOM's 25-watt IC-275A VHF leader receives 138.0-174.0MHz including the public service, marine, and weather bands, and transmits 140.1-150.0MHz. Includes AC supply. The IC-275H is 12-volt DC-powered, produces 100 watts output, and will operate with external AC supply. Two of ICOM's heavy hitters!

220MHz. The 25-watt output IC-375A receives 216.0-236.0MHz, transmits 220.0-225.0MHz, and includes AC supply. A genuine masterpiece!

440MHz. Enjoy top-notch 430.0-450.0MHz operation with the 25-watt IC-475A featuring AC supply, or go high power using the 75-watt, AC/DC-powered IC-475H super rig.

6 METERS/10 METERS. Join the fun of sunspot cycle 22 openings with the superb 10-watt IC-575A. It receives 26-56MHz, transmits 28-29.7MHz, and 50-54MHz, and includes AC supply. The IC-575A, a true superstar!

ICOM HAS ALL YOUR BASES COVERED! Meet the unbeatable line-up of ICOM equipment at your local ICOM dealer.
THE ALL NEW PRIVATE PATCH IV BY CSI HAS MORE COMMUNICATIONS POWER THAN EVER BEFORE

- Initiate phone calls from your HT or mobile
- Receive incoming phone calls

NEW! Telephone initiated control...
- Operate your base station with complete control from any telephone
- Change frequencies from the controlling telephone
- Selectively call mobiles using regenerated DTMF from any telephone
- Eavesdrop the channel from any telephone
- Use as a wire remote using ordinary dial up lines and a speaker phone as a control head.

The new telephone initiated control capabilities are awesome. Imagine having full use and full control of your base station radio operating straight simplex or through any repeater from any telephone! From your desk at the office, from a pay phone, from a hotel room, etc. You can even change the operating channel from the touchpad!

Our digital VOX processor flips your conversation back and forth fully automatically. There are no buttons to press as in phone remote devices. And you are in full control 100% of the time!

The new digital dialtone detector will automatically disconnect Private Patch IV if you forget to send # (to remotely disconnect) before hanging up. This powerful feature will prevent embarrassing lock-ups.

The importance of telephone initiated control for emergency or disaster communications cannot be overstated. Private Patch IV gives you full use of the radio system from any telephone. And of course you have full use of the telephone system from any mobile or HT!

To get the complete story on the powerful new Private Patch IV contact your dealer or CSI to receive your free four page brochure.

Private Patch IV will be your most important investment in communications.

<table>
<thead>
<tr>
<th>CONNECT SYSTEMS INC.</th>
</tr>
</thead>
<tbody>
<tr>
<td>23731 Madison St.</td>
</tr>
<tr>
<td>Torrance CA 90505</td>
</tr>
<tr>
<td>Phone: (213) 373-6803</td>
</tr>
</tbody>
</table>

AMATEUR ELECTRONIC SUPPLY
- Milwaukee WI
- Wichita KS
- Orlando FL
- Clearwater FL
- Las Vegas NV
- BARRY ELECTRONICS CORP.
- New York NY
- EG&E, Inc.
- Woodbridge VA
- ERICKSON COMMUNICATIONS
- Chicago IL
- HAM RADIO OUTLET
- Anaheim CA
- Burlington CA
- Oakland CA
- Phoenix AZ
- San Diego CA
- Van Nuys CA
- Atlanta GA

HENRY RADIO
- Los Angeles CA
- INTERNATIONAL RADIO SYSTEMS
- Miami FL
- JUNS ELECTRONICS
- Culver City CA
- MADISON ELECTRONICS SUPPLY
- Houston TX
- MIAMI RADIO CENTER CORP.
- Miami FL
- MIKES ELECTRONICS
- Ft. Lauderdale, Miami FL
- N&G DISTRIBUTING CORP.
- Miami FL

OMNI ELECTRONICS
- Laredo TX
- PACER ENGINEERING
- Tucson AZ
- THE HAM STATION
- Evansville IN
- WESTCOM
- San Marcos CA
- CANADA:
- CARTEL ELECTRONIC DISTRIBUTORS
- Surrey B.C.
- COM-WEST RADIO SYSTEMS, LTD.
- Vancouver B.C.
“DX-citing!”

Kenwood’s advanced digital know-how brings you the world’s most advanced Amateur Radio equipment. The TS-440S is Kenwood’s new high performance HF transceiver with general coverage receiver.

- **Superior receiver dynamic range**
 Kenwood DynaMix™ high sensitivity direct conversion receiver ensures true 102 dB receiver dynamic range. (500 Hz bandwidth on 20 m)
- **100% duty cycle transmitter**
 Super efficient cooling permits continuous operation for periods exceeding one hour. IF shift, tuneable notch filter, noise blanker.
- **General coverage receiver**
 Tunes from RF input power is rated at 200 W PEP on all-mode squelch. RF attenuator. 100 kHz-30 MHz. EASILY MODIFIED for SSB. 200 W DC on CW, AFSK, FM, and 110 W DC AM. (The PS-50 power supply is needed for continuous duty.)
- **All modes built-in**
 USB, LSB, CW, AM, FM, and AFSK. Mode selection is verified in Morse Code.
- **Built-in automatic antenna tuner**
 (optional) Covers 80-10 meters.
- **VS-1 voice synthesizer**
 (optional)
- **Adjustable dial torque**
- **100 memory channels**
- **Frequency and mode may be stored in 10 groups of 10 channels each. Split frequencies may be stored in 10 channels for repeater operation.**
- **TU-8 CTCSS unit (optional)**
- **Superb interference reduction**
 IF shift, tuneable notch filter, noise blanker, all-mode squelch, RF attenuator, RIT/XIT, and optional filters fight QRM.
- **MC-43S UP/DOWN mic. included**
- **Computer interface port**
- **5 IF filter functions**
- **Dual SSB IF filtering**
 A built-in SSB filter is standard. When an optional SSB filter (YK-88S or YK-88SN) is installed, dual filtering is provided.
- **VOX, full or semi break-in CW**
- **AMTOR compatible**

Optional accessories:
- AT-440 internal auto. antenna tuner (80 m-10 m)
- AT-250 external auto. tuner (160 m-10 m)
- AT-130 compact mobile antenna tuner (160 m-10 m)
- IF-232IC-10 level translator and modem IC kit
- PS-50 heavy duty power supply + PS-430/PS-30 DC power supply + SP-430 external speaker + MB-430 mobile mounting bracket
- YK-88C/88CN 500 Hz/770 Hz CW filters
- YK-88SN/88SN 2.4 kHz/1.8 kHz SSB filters
- MC-60A/80/85 desk microphones
- MC-55 (8P) mobile microphone
- HS-5/6/7 headphones
- SP-40/50B mobile speakers
- MA-5VP-1 HF 5 band mobile helical antenna and bumper mount
- TL-922A 2 kw PEP linear amplifier
- SM-220 station monitor
- VS-1 voice synthesizer
- SW-100A/200A/2000 SWR/power meters
- TU-8 CTCSS tone unit
- PG-25 extra DC cable.

Kenwood takes you from HF to OSCAR!

KENWOOD
KENWOOD U.S.A. CORPORATION
2201 E. Dominguez St., Long Beach, CA 90810
P.O. Box 22745, Long Beach, CA 90801-5745
contents

9 multi-featured function generator
Rod Robbins, WA7IRY

23 more optional notes on the TS-930S
Marv Gonsior, W6FR

28 ham radio techniques:
DX is getting better and better!
Here’s why!
Bill Orr, W6SAI

33 frequency synthesis up to 2 GHz
Douglas R. Schmieskors, Jr., WA6DYW

41 amateur packet radio networking and protocols: part 3
Jonathan L. Mayo, KR3T

47 practically speaking:
using the digital frequency counter:
some pitfalls
Joe Carr, K4IPV

56 a diagnostic serial data latch
Brian J. Mork, KASNF

67 VHF/UHF world: microwave components and terminology: part 2
Joe Reisert, W1JR

83 Elmer’s notebook:
antenna tuner
Tom McMullen, W1SL

98 advertisers index
6 comments
80 DX forecaster
96 flea market
90 ham mart
92 new products
4 publisher’s log
98 reader service
4 reflections
If you take a careful look at our masthead this month you will see that we are in the middle of several changes that deserve a bit of explanation.

You will find that Rich Rosen, K2RR, has left to pursue other activities in the industry. This will give him an opportunity to capitalize on many of the wonderful skills that he has shared with us over the past five years. He has done a superb job at Ham Radio, and he will be missed. However, his new activities offer important opportunities, so we thank him very much for his contributions here and wish him the best of luck as he goes ahead with the next step in his career. He may also have a bit of extra time to get on the air so all of you 75-meter DX’ers had better watch out.

Much of the responsibility of upholding the high standards of the magazine will now fall on the shoulders of Marty Durham, NBIH, who has joined us as technical editor. He brings a variety of rf experience at two defense electronic companies along with a love of contesting and Amateur tinkering and experimentation.

A second well-qualified person who has agreed to help us out is Bob Wilson, WA1TKH, who will be a consulting editor. After he retired from a successful career with a large Boston-area electronics company, Bob and his wife Kit, WA1WQM, co-owned and operated Radiokit for a number of years. As you may know, this firm supplies parts and kits to Amateurs. This experience makes Bob uniquely qualified to advise us as we try to please all of you who like the smell of hot solder.

Finally, to round out another important part of our organization, Henry Gallup has joined us as advertising sales manager. He will be working with Rally Dennis to see that your magazine stays thick and healthy. More ads mean more pages of good articles; so let’s all wish him good luck!

Another major change on our masthead is the promotion of Terry Northup to Managing Editor of Ham Radio Magazine. In the few short months Terry has been with us she has proven herself as a most worthy candidate for her new job. She has done a superb job of picking up the many scattered pieces that must go together each month to put out a publication like ours and has done all of this in a most professional way. She has a number of great ideas for the months ahead, and I feel sure that you will find Ham Radio more readable than ever as the magazine responds to her touch.

To round things out, I will reassume the Editor-in-Chief’s chair, an assignment that should be an easy one considering all the excellent help I’ll be getting from Terry, Marty, and Bob along with our topnotch staff including Sue Shorrock, Beth McCormack, and Peggy Tenney.

Skip Tenney, W1NLB

REFLECTIONS

500 manuscripts later

Cedar Rapids presents many different images for a number of people not least of which is the Collins (Radio) division of Rockwell. To me it represents a beginning. In July, 1982, at the National convention held in Iowa, I joined the staff of Ham Radio magazine as technical editor. Having worked in the publishing industry before (rf design, Microwaves), being an active radio amateur, and an electronics engineer I looked forward to the opportunity of combining my technical skills with that of an avocation that I so dearly enjoyed. I was not to be disappointed.

I really consider myself fortunate. An editor sits in a unique position. I have been privy to so many of your ideas, aspirations, plans. I’ve seen some great manuscripts, and some that required a little more work. During the past five and a half years we’ve published some material that, because of the combined practical and theoretical talents of the authors, is unique and just doesn’t exist elsewhere — not in the professional journals, nor any of the consumer magazines.

We’ve received your letters, most of which I’ve tried to answer — from short notes on the back of a QSL card to major treatises. Ah, then the phone calls. How many hundreds of hours have we spent on the landline together, starting with a germ of an idea only to see it flourish into a full blown concept, and eventually a manuscript, though not necessarily on the same subject. I believe, and probably always will, that some of the most fertile, creative minds belong to our group, the radio Amateurs.

For these opportunities I thank you.

Ham Radio now has a new technical editor and Terry Northup, as Skip just mentioned, has been made managing editor. Continue supporting Ham Radio magazine. Keep sending in those quality manuscripts, keep calling in your suggestions. You have an excellent opportunity as always to help shape the future of this magazine as well as Ham Radio in general.

Rich Rosen, K2RR
#1 Rated HF!

TS-940S

Competition class HF transceiver

TS-940S—the standard of performance by which all other transceivers are judged. Pushing the state-of-the-art in HF transceiver design and construction, no one has been able to match the TS-940S in performance, value and reliability. The product reviews glow with superlatives, and the field-proven performance shows that the TS-940S is "The Number One Rated HF Transceiver!"

- 100% duty cycle transmitter
- Kenwood specifies transmit duty cycle time. The TS-940S is guaranteed to operate at full power output for periods exceeding one hour. (14.250 MHz, CW 110 watts.) Perfect for RTTY, SSTV, and other long-duration modes.
- First with a full one-year limited warranty.
- Extremely stable phase-locked loop (PLL) VFO. Reference frequency accuracy is measured in parts per million!

Optional accessories:
- AF-940 full range (160-10m) automatic antenna tuner
- SP-940 external speaker with audio filtering
- YG-455C-1 (500 kHz), YG-455C-1 (500 Hz) CW filters, YK-88A (1 kHz) AM filter
- VS-1 voice synthesizer
- SO-1 temperature compensated crystal oscillator
- MC-435 UP/DOWN hand mic.
- MC-60A, MC-60, MC-85 deluxe base station mics.
- PC-1A phone patch
- TL-922A linear amplifier
- SM-220 station monitor
- BS-6 pan display
- SW-200A and SW-2000 SWR and power meters
- IF-232C/10B computer interface

- Complete all band, all mode transceiver with general coverage receiver. Receiver covers 150 kHz-30 MHz. All modes built-in: AM, FM, CW, FSK, LSB, USB.
- Superb, human engineered front panel layout for the DX-minded or contesting ham. Large fluorescent tube main display with dimmer, direct keyboard input of frequency, flywheel type main tuning knob with optical encoder mechanism all combine to make the TS-940S a joy to operate.
- One-touch frequency check (T-F SET) during split operations.
- Unique LCD sub display indicates VFO, graphic indication of VBT and SSB Slope tuning, and time.
- Simple one step mode changing with CW announcement.
- Other vital operating functions. Selectable semi or full break-in CW (GSK). NITX/TX, all mode squelch, RF attenuator, filter select switch, selectable AGC.
- CW variable pitch control, speech processor, and RF power output control, programmable band scan or 40 channel memory scan.

KENWOOD

KENWOOD U.S.A. CORPORATION
2201 E. Dominguez St., Long Beach, CA 90810
P.O. Box 22745, Long Beach, CA 90801-5745
Dean LeMon, KROV sure is! Dean got active in Amateur Radio when he was 16 years old and earned his Extra Class license in less than four years! "It's a fascinating hobby and a great way to meet all kinds of new people from all over the world."

Dean has cerebral palsy and got started in Amateur Radio with help from the Courage HANDI-HAM System. The HANDI-HAM System is an international organization of able-bodied and disabled hams who help people with physical disabilities expand their world through Amateur Radio. The System matches students with one to one helpers, provides instruction material and support, and loans radio equipment.

Isn't it time you got radioACTIVE with the Courage HANDI-HAM System?

Call or write the Courage HANDI-HAM System W0ZSW at Courage Center, 3915 Golden Valley Road, Golden Valley, Minnesota 55422, phone (612) 588-0811.

stamps help some hams
Dear HR:

We are collecting postage stamps to help finance equipment for disabled Radio Hams throughout the world. Stamps from any country and in any quantity would be very much appreciated. These could include new or old stamps removed from or still on their envelopes.

The project has been running for over a year and has been a tremendous success, with local school children helping with the sorting. All stamps should be sent to my address.

John Allsopp, G4YDM
30 Manor Park, Concord Village, District 11, Washington, Tyne Wear. NE372BT, England

international telegraph speed contest
Dear HR:

The Blackhawk Chapter of the Morse Telegraph Club has been considering an International Telegraph Speed contest. We would like to run this in conjunction with our Annual Galesburg Railroad Days celebration, generally held on the second weekend of June.

We would like to pattern the contest after criteria used in the 1915 era, awarding medals (probably of pewter or bronze) copied from the original Carnegie Medallion. The contest could apply to both sending and receiving. No bugs would be allowed. There could be separate contests for International and American Morse codes. We would need to charge an entry fee to cover some of the costs — probably $15 to $25.

How much interest is there in such a contest? Because of limited manpower and financial resources, the contest will probably require a special committee under the arm of the international board of the Morse Telegraph Club and/or associated organizations. The Galesburg site provides a fairly central location for both United States and Canadian members and is accessible by rail, bus, and air. We can't think of anything that would be more visible to the public and gain more notice from the media than such an event. Please send your correspondence to me.

Jim Woods, RR4, Box 22 Galesburg, Illinois 61401.

renewed friendship
Dear HR:

Yesterday I went to the dentist office and was reminded of two old friends. When I went to pick up a magazine I observed ham radio among those to choose from. Not only that, but I saw the address label of someone I haven't seen in too many years! I subscribed to ham radio for several years until the cost of all the radio magazines got beyond me and I cancelled my subscriptions. I was glad to see this copy and had plenty of time to read it. Thanks to Garson Katona for leaving his ham radio in the dentist office. Needless to say, I thought he had a good idea so I left the magazine for the next person.

Thanks and 73. Still good reading.

Paul Woolverton, W2AEI Trenton, New Jersey 08611
The Kenwood TM-721A re-defines the original Kenwood “Dual Bander” concept. The wide range of innovative features includes a dual channel watch function, selectable full duplex operation, 30 memory channels, extended frequency coverage, large multi-color dual digital LCD displays, programmable scanning, and more with 45 watts of output on VHF and 35 watts on UHF. TM-721A—Truly the finest full-featured FM Dual Band mobile transceiver!

- Extended receiver range (138,000-173,995 MHz) on 2 meters; 70 cm coverage is 438,000-449.995 MHz. (Specifications guaranteed on Amateur bands only. Two meter transmit range is 144-148 MHz. Modifiable for MARS/CAP. Permits required.)
- 30 multi-function memory channels. 14 memory channels and one call channel for each band store frequency, repeater offset, CTCSS, and reverse. Channels “A” and “B” establish upper and lower limits for programmable band scan. Channels “C” and “D” store transmit and receive frequencies independently for “odd splits.”

Optional Accessories:
- RC-10 Multi-function handset/remote controller
- PS-430 Power supply
- TSU-6 CTCSS decode unit
- SW-100B Compact SWR/power/volt meter
- SW-200B Deluxe SWR/power meter
- SWT-1 2m antenna tuner
- SWT-2 70 cm antenna tuner
- SP-40 Compact mobile speaker
- SP-50B Deluxe mobile speaker
- PG-2N DC cable
- PG-3B DC line noise filter
- MC-60A, MC-80, MC-85 Base station mics.
- MA-4000 Dual band mobile antenna (mount not supplied)
- MB-11 Mobile bracket
- MC-43S UP/DWN hand mic.
- MC-48B 16-key DTMF hand mic.
- Dual antenna ports.
- Full duplex operation.
- Programmable memory and band scanning, with memory channel lock-out and priority watch function.
- Each function key has a unique tone for positive feedback.
- Illuminated front panel controls and keys.
- Dimmer control.
- 16 key DTMF mic. included.
- Handset/remote control option (RC-10).
- Frequency (dial) lock.
- Supplied accessories: 16-key DTMF hand mic., mounting bracket, DC cable.

Complete service manuals are available for all Kenwood transceivers and most accessories. Specifications, features and prices are subject to change without notice or obligation.
MFJ multi-mode data controller

MFJ shatters the 6 mode barrier and the price barrier with the MFJ-1278 and gives you... Packet, RTTY, ASCII, CW, WEFAX, SSTV and Contest Memory Keyer... 7 digital modes... for an affordable $249.95.

Amateur radio's newest multi-mode data controller--the MFJ-1278--lets you join the fun on Packet, RTTY, ASCII, CW, Weather FAX, SSTV and gives you a full featured Contest Memory Keyer mode... you get 7 modes... for an affordable $249.95.

You'll find it the most user friendly of all multi-modes. It's menu driven for ease of use and command driven for speed.

A high resolution 20 LED tuning indicator lets you tune in signals fast in any mode. All you have to do is to center a single LED and you're precisely tuned in to within 10 Hz.--and it shows you which way to tune.

All you need to join the fun is an MFJ-1278, your rig and any computer with a serial port and terminal program.

You can use the MFJ Starter Pack to get on the air instantly. It includes computer interfacing cable, terminal software and friendly instructions... everything you need to get on the air fast.

Order MFJ-1282 (disk)/MFJ-1283 (tape) for the C-64/128 and VIC-20 or MFJ-1284 for the IBM or compatible, $19.95 each.

Packet

Packet gives you the fastest and most reliable error-free communications of any amateur digital mode.

With MFJ's super clone of the industry standard--the TAPR TNC-2--you get genuine TAPR software/hardware plus more--not a "work-alike" imitation.

Extensive tests published in Packet Radio Magazine ("HF Modem Comparison"") prove the TAPR designed modem used in the MFJ-1278 gives better copy with proper DCD operation under all tested conditions than the other modems tested.

Hardware DCD gives you more QSOs because you get reliable carrier detection under busy, noisy or weak conditions.

A hardware HDLC gives you full duplex operation for satellite work or for use as a full duplex digipeater. And, it makes possible speeds in excess of 56K baud with a suitable external modem.

Good news for SYSOPs! New software lets the MFJ-1278 perform flawlessly as a WORLI/WA7MBL bulletin board TNC.

Baudot RTTY

You can copy all shifts and all standard speeds including 170, 425 and 800 Hz shifts and speeds from 45 to 300 baud. You can copy not only amateur RTTY but also press, weather and other exciting traffic.

A high performance modem lets you copy both mark and space for greatly improved copy under adverse conditions. It even tracks slightly drifting signals.

You can transmit both narrow and wide shifts. The wide shift is a standard 850 Hz shift with mark/space tones of 2125/2975 Hz. This lets you generate MARS and standard VHF FM RTTY.

You get both the American Western Union and the international CCITT character sets, Autostart for unattended reception and selectable "Diddle".

A receive Normal/Reverse software switch eliminates retuning and Unshift-On-Space reduces errors under poor receiving conditions.

ASCII

You can transmit and receive 7 bit ASCII using the same shifts and speeds as in the RTTY mode and using the same high performance modem. You also get Autostart and selectable "Diddle".

CW

You get a Super Morse Keyboard mode that lets you send CW effortlessly from 5 to 99 WPM, including all prosigns--it's tailored for mobile transmitters.

A huge type ahead buffer lets you send smooth CW even if you "hunt and peck".

You can store entire QSOs in the message memories, if you wanted to! You can link and repeat any messages for automatic CQs and beaconing. Memories also work in RTTY and ASCII modes.

A tone Modulated CW mode turns your VHF FM rig into a CW transceiver for a new fun mode. It's perfect for transmitting code practice over VHF FM.

An AFSK CW mode lets you ID in CW.

The CW receive mode lets you copy from 49 to 99 WPM. Even with sloppy keys you'll be surprised at the copy you'll get with its powerful built-in software.

You also get a random code generator that'll help you copy CW faster.

Weather FAX

You'll be fascinated as you watch WEFAX signals blossom into full fledged weather maps on your printer.

Other interesting FAX pictures can also be printed--such as some news photographs from wire services.

Any Epson graphics compatible printer will print a wealth of interesting pictures and maps.

Automatic scan and stop lets you set it and leave it for no hassle printing.

You can save FAX pictures and WEFAX maps to disk if your terminal program lets you save ASCII files to disk.

Pictures and maps can be printed to screen in real time or from disk on IBM and compatibles with the MFJ-1284 Starter Pack.

You can transmit FAX pictures right off disk and have fun exchanging and collecting them.

Slow Scan TV

The MFJ-1278 introduces you to the exciting world of slow scan TV.

You'll not only enjoy receiving pictures from thousands of SSTVers all over the world but you can send your own pictures.

You can print slow scan TV pictures on any Epson graphics compatible printer. If you have an IBM PC or compatible you can print to screen in near real time or from disk with the MFJ-1284 Starter Pack.

You can transmit slow scan pictures right off disk--there's no need to set up lights and a camera for a casual contact.

You can save slow scan pictures on disk from over-the-air QSOs if your terminal program lets you save ASCII files.

The MFJ-1278 transmits and receives 8.5, 12.24, and 36 second black and white format SSTV pictures using two levels.

Contest Memory Keyer

Nothing beats the quick response of a memory keyer during a heated contest.

You'll score valuable contest points by completing QSOs so fast you'll leave your competition behind. And you can snatch rare DX by slipping in so quickly you can't even everyone by surprise.

You get the STANBLY operation with dot-dash memories, self-completing dots and dashes and jam-proof spacing.

Message memories let you store contest RST, QTH, call, rig info--everything you used to repeat over and over. You have precious time and work more QSOs.

You get automatic incrementing serial numbering. In a contest it can make the difference between winning and losing.

A weight control lets you penetrate QRMs with a distinctive signal or lets your transmitter send perfect sounding CW.

More Features

Turn on your MFJ-1278 and it sets itself to match your computer baud rate. Select your operating mode and the correct modem is automatically selected.

Plus... printer, threshold control for varying band conditions, tune-up command, lithium battery backup, RS-232 and TTL level serial ports, watch dog timer, FSK and AFSK output. Level control, speaker jack for both radio ports, test and calibration software, Z-80 at 4.9 MHz, 32K EPROM, and socketed ICs, FCC approved. 9x11x9/s 12. VDC or 110VAC.

Get yours today and join the fun crowd!

For your nearest dealer or to order call toll free 800-647-1800

One Year Unconditional Guarantee

MFJ... making quality affordable
multi-featured
function generator

Test bench instrument features versatility and low cost

Any Amateur who enjoys experimenting knows the frustration of not having the test equipment needed to troubleshoot a problem. I had gradually accumulated most of it, but was still missing an audio function generator. I hadn’t planned to build one, but a brief scan of equipment catalogs quickly changed my mind: the equipment had a higher degree of sophistication than I needed and was also expensive.

Function generator projects have been around for years and it’s sometimes difficult to find one whose technology falls somewhere between bare basics and high complexity. My requirements for a function generator included: dc offset capability, external frequency measurement, at least one very low frequency range, separate simultaneous outputs, low output impedance, and continuously variable waveshaping. This project is an attempt to fill a niche sometimes neglected in Amateur circles — a simple, versatile, and easily reproduced function generator for someone who needs more than just a simple signal source, but not lab-standard features or performance.

It isn’t necessary or even desirable to duplicate this instrument exactly, since each builder may have different operational needs. The circuit is simple enough for anyone with a little experience in junkbox improvisation to reproduce a working model. The total cost, even with all parts purchased new, is about $35.

features

I chose the XR-2206 monolithic function generator IC as a basic building block; I’d used it before and knew its performance was predictable. I claim no originality for any of the individual circuits presented here — only for the way they’re used in my own application. The basic circuit is adapted from the 1985 Radio Shack Semiconductor Reference Guide, which is similar to EXAR’s data sheets (fig.1).

The prototype evolved into its final version over several months. The final design features include:

- Three separate, simultaneous outputs for sine/triangle, square wave, and constant amplitude pulse (for driving a frequency counter, or oscilloscope triggering).
- Usable frequency range from 1 Hz to 100 kHz.
- DC offset, with a momentary spot button to temporarily disable the ac portion of the output signal, so the dc component can be viewed alone on an oscilloscope display or volt-ohm-milliammeter for easy dc offset adjustment.
- Variable amplitude from ≈ 100 millivolts peak-to-peak to ≈ 15 volts peak-to-peak, with switchable attenuation. (The attenuation ratio is about 10:1.)
- Coarse and fine frequency adjustment controls.
- Stable, relatively clean waveforms (although probably not lab standard).
- Continuously variable waveshaping between sine and triangle waves.
- Fairly low output impedance, with almost 5 watts average output power (into 8 ohms).
- Virtually indestructible output circuitry.
- Low cost, easily obtainable components.
- Simple, easy to reproduce circuit.

dc offset

My first addition to the original circuit was dc offset capability. The logical starting point was at the RA-RB voltage divider network between U1, pins 3 and 4 (point 1 in fig. 1). The voltage at point 1 creates a dc component at the noninverting input, causing a dc component to appear in the output signal at point 2, roughly equal to half the total supply voltage.

In the original XR-2206 circuit, this component in the output provides the required bias for the base of an external amplifier transistor and eliminates the need for a base biasing network. Replacing the RA-RB divider network with a potentiometer of the same total resistance made the dc offset of QA’s output theoretically equal to the dc voltage present at the wiper of the pot (minus the base-to-emitter voltage drop). Variable dc offset occurred as the pot was adjusted.

This worked until I tried some routine gain adjustments. A resulting problem was that the resistance of the gain control pot, RC, comprised a small but definite portion of one leg in the voltage divider system.

By Rod Robbins, WA7IRY, 22435 Bents Road, Aurora, Oregon 97002
and whenever the gain was varied, the divider ratio changed slightly, in turn changing the dc offset. This unexpected “feature” meant that the dc offset had to be zeroed each time the gain was changed.

The solution was simple. DC offset can also be achieved in an external base-biasing circuit of output amplifier O₃ (see fig. 2). I modified the circuit with a dc blocking capacitor in the IC’s output to cut off the small, but annoying, interaction between gain and offset adjustments. I used a surplus 30-k, 10-turn pot as a voltage divider in O₃’s base circuit resulting in a variable base bias voltage as the pot was adjusted (R₆ in fig. 2). The emitter voltage automatically follows the base voltage, minus the base-to-emitter drop.

While the 10-turn pot provides smooth, high-resolution adjustment, even at high oscilloscope magnification, a standard pot will work. Use one with the smoothest movement and widest adjustment sweep range you can find. Note the circuit now has two dc offset adjustments: a set-and-forget trimpot for initially setting the offset in the original IC circuit, and an oper-
ational control in the output amplifier circuit. (More on this later.)

frequency adjustment

It’s easier and more accurate to read frequency on a counter or oscilloscope. Achieving accuracy and/or linearity on an analog dial face is tough, even for commercial devices.

I added another simultaneous output, J₂, producing pulse output for driving a frequency counter or oscilloscope. Even if a counter isn’t available, the pulse output frequency can be approximated on an oscilloscope more accurately than on any homebrewed dial face. You can get smooth, high-resolution frequency adjustment by using a pair of good quality pots; one 500 k for coarse adjustment, and one 30-k unit (multiturn if available) for fine adjustments. I used another surplus 10-turn pot of the same type as the dc offset pot. Dial face markings and time-consuming calibration weren’t necessary.

frequency ranges

Frequency ranges are provided by four mechanically switched capacitors. Most homebrew function generator designs I’ve seen use four or five frequency range capacitors, with values in exact decade steps, to provide (theoretically) a decade step function between ranges. This seldom works in practice, because of variables like component tolerance and stray capacitances in the wiring, switches, and connections.

My design uses external frequency measurement, so I decided that convenience rather than a strict mathematical relationship would determine the bandwidths and range overlaps. Capacitor values determined by experiments allowed me to set up my unit to provide wide, overlapping coverage of portions of the audio spectrum that I needed most. The values are shown in table 1.

The range overlaps have no obvious mathematical relationship, nor is the bandspread linear, but this doesn’t matter as the frequency is read on external instruments rather than a dial face.

I needed only four ranges, so two positions on the six-position rotary switch are unused. The builder can use as many or as few positions as he wants, as well as different value capacitors to make the ranges.

switchable attenuation

At this point, the lowest amplitude available from the unmodified circuit was about 800 millivolts peak-to-peak. Because I wanted the option of using the device at lower signal levels, I installed a voltage divider, R₇ and R₈ (fig. 2), in the IC output circuit, just ahead of the blocking capacitor. I experimented to find values that provided about a 10:1 attenuation ratio. They don’t mathematically “compute” to this ratio because the input impedance of the emitter follower is involved in the calculation, so it’s not really a simple voltage divider relationship. Start out with my attenuation values and change them if you want a different ratio.

When S₃ is set at position 2, most of the output voltage is dropped across R₇, allowing only the portion of the output signal’s amplitude across R₈ to be presented to Q₃ input. When the switch is in position 1, the entire signal amplitude is dropped across both R₇ and R₈ and presented to Q₃. This provides clean, well-defined signals down to about 100 millivolts peak-to-peak, not bad for a homebrew device.

waveshaping adjustment

The waveshaping control is a ganged switch potentiometer combination (R₅-S₄) allowing the waveshape to be varied from a distorted sine wave to a sharp triangle wave as the resistance of R₅ increases. At the end of the pot rotation, S₅ opens, placing an infinitely high resistance across IC pins 13 and 14, giving the triangle waveform maximum sharpness.

output amplifiers

This unit uses separate emitter-follower amplifiers for both square and sine/triangle wave outputs, providing adequate power for driving low-impedance loads. Note that according to the Jameco catalog the 2N3772 transistors are rated for a collector current of 30 amps. This seemed like a case of overkill, since the power supply is current limited to 1.5 amps per side. But, while thumbing through parts catalogs for suitable output transistors, I couldn’t get past the fact that these monsters are only 89 cents each in single-lot quantities, so I chose the 2N3772. You can use the 2N3055 or similar NPN devices. This type of power transistor is not really necessary but makes the output amplifiers virtually indestructible, at least from the current available from the function generator.

power supply

I used a split-polarity power supply to enable dc coupling capability. An exact duplication of my power supply isn’t necessary — many generic designs have been published. I happened to have an outboard non-

<table>
<thead>
<tr>
<th>Table 1. Frequency-range capacitors C₁-C₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency range (hertz)</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>1-400</td>
</tr>
<tr>
<td>30-5000</td>
</tr>
<tr>
<td>200-10K</td>
</tr>
<tr>
<td>8K-100K</td>
</tr>
</tbody>
</table>
| *C₁ actually consists of two 0.1-μF capacitors in parallel.
fig. 3. Block diagram of a generic split-polarity power supply, using a centertapped transformer.

center tapped transformer, so I used the circuit shown in fig. 2. A centertapped junkbox transformer with adequate output voltage would also work. (See the example in fig. 3.)

There are a few important considerations whatever power supply design you use. The positive and negative voltages must have enough difference between them to provide adequate voltage swing in the output signal. In my unit, the maximum output amplitude was about 65 percent of the available supply voltage. Don't exceed the XR-2206's maximum rating of 26 volts.

In my design I used 7805- and 7905-series 5-volt positive and negative fixed regulators. I tailored the exact voltage for each side by inserting 1N4148 diodes in the ground return lines, in series with the zener diodes. By hand selecting diodes in the protoboard version of the circuit, I achieved the voltages shown (a total of 25.4 volts between the positive and negative sides). This was measured on a good-quality digital VOM, and was as close as I dared to approach the 26-volt maximum.

Note that I used fixed regulators only because I had them. Adjustable regulators, like the LM317 and LM337 series, can also be used for simple and precise voltage settings.

Another consideration is that the positive voltage should be a few volts higher than the negative. Initially, I made the positive voltage about 0.7 volt higher, to compensate for the base-to-emitter drop in the output amplifier. This made the sine/triangle wave output signal nearly symmetrical as the amplitude reached the clipping level. Because the maximum square-wave output was only +6.5 volts, I readjusted the positive voltage to about 3.4 volts higher than the negative. To gain a higher square-wave output, I had to sacrifice a few volts of sine/triangle wave output. This compromise really isn't necessary if you don't need the higher square-wave output.

construction

As you can see in photos A and B, I used simple, straightforward construction methods and a lot of junkbox parts. Most of the circuit is built on an 3-3/8 by 2-7/8 inch Radio Shack "universal pc board" that has solder-ringed holes, two bus lines, and a ground- ing strip. Parts placement or layout isn't critical. The frequency ranges of the function generator are low enough that stray capacitances and inductances from the board, IC socket, or wiring don't seem to cause any problems.

I built the unit inside a 7-3/4 by 4-3/8 by 2-3/8 inch Radio Shack experimenter box, using the widest plastic side of the box for the faceplate and controls. The removable metal lid became the bottom, was drilled for mounting the two power transistors, and serves as a heat sink. (See photo C.) It was not used as an electrical ground plane as such. All chassis ground points on the schematic return to a single tie point on one of the terminal strips. This technique works well in this kind of circuit for eliminating ground loops, oscillation, and instability.

I extended the four bottom rubber feet slightly by inserting small squares of double-faced tape on the bottoms before mounting them to the metal lid. The ac power transformer was used outboard because there wasn't room inside the cabinet (see in
Varian EIMAC continues to commit its development of reliable tubes for HAM radio.

The new, rugged 3CX800A7 power triode provides 2 kW PEP input for voice service or 1 kW cw rating up to 30 MHz. Two tubes will meet the new, higher power ratings authorized by the FCC.

Designed for today's low profile, compact linear amplifiers, the 3CX800A7 powerhouse is only 2½ inches (6.35 cm) high. Cooling requirements are modest and a matching socket, air chimney and anode clamp are available.

A data sheet and more information is available from Varian EIMAC. Or the nearest Electron Device Group sales office. Call or write today.

Varian EIMAC
301 Industrial Way
San Carlos, California 94070
Telephone: 415-592-1221
This wasn’t a problem in my case because the transformer was designed to be freestanding. I simply removed the cover, took out the unneeded rectifier components, and installed a fuse holder. The transformer’s output plugs into the back of the function generator through a mini phone plug and jack.

The layout of the faceplate and output jacks allows enough room between controls for convenient operation without bumping or moving the other settings. I used RCA phono-type output jacks installed on the back of the unit. Photo D shows the finished product complete with outboard transformer and a set of homebrew test leads.

getting the parts

None of the parts for this project are unusual or hard to come by. In the prototype, I tried different pots ranging from 15 k to 50 k for both the dc offset and fine frequency adjustments, with no noticeable difference in results. They don’t need to be multiturn types, although they make adjustment smooth and precise.

Whatever you can’t find in the junkbox or on flea market tables, you can get at Radio Shack or from the suppliers listed in table 2.

testing and alignment

After the unit is assembled, check the wiring connections against the schematic and inspect for solder bridges and tiny wire strand fragments. When you’re sure the wiring is correct, leave the XR-2206 out of its socket, turn on the power, and watch closely. If everything seems right (it’s normal for the power resistors, R9 and R10, to be quite warm but not smoldering), turn the power off and insert the 2206. Preset the following controls:
1. Frequency range switch S1 to second or third range.
2. Gain (amplitude) control R1 to midrange.
3. XR-2206 dc-offset trimpot R2 to midrange.
4. Frequency adjustment pots R3 and R4 to midrange.
5. Main dc offset pot R6 to midrange.
6. Waveshape adjustment pot R5 to midrange.
7. Square-wave gain pot R11 to midrange.
8. Attenuation switch S3 to OFF (Position 1).

Connect an oscilloscope to the sine/triangle wave output, and turn on the power. Hold the dc offset spot button in, and adjust main dc-offset pot R6 to verify that the dc level varies to the expected positive and negative levels. Remember, it’s normal for the positive limit to be a few volts higher than the negative. If this checks out, center R6 to 0 volts, and release the spot button.

At this point, a signal of some type should appear on the oscilloscope. The exact shape or frequency isn’t important; simply adjust the frequency ranges on the oscilloscope and/or function generator to display two or three complete cycles of whatever waveform you see, and reduce the gain to just below the clipping level.

Slowly increase the gain until the waveform clips slightly, on either the positive or negative peak. Adjust IC dc-offset trimpot R2 until the waveform drops below the clipping level. Repeat these two steps until the waveform is centered between the positive and negative clipping points. The trimpot is set properly when the waveform clips on both positive and negative peaks at the same time, just as gain reaches the clipping point. Note that this is a set-and-forget control; dc-offset adjustments during normal operation will be done with R6.

Now adjust the waveshape control, the R5-S2 combination, through its entire range, and verify that the
Matching Pair

TS-711A/811A VHF/UHF all-mode base stations

The TS-711A 2 meter and the TS-811A 70 centimeter all mode transceivers are the perfect rigs for your VHF and UHF operations. Both rigs feature Kenwood's new Digital Code Squelch (DCS) signaling system. Together, they form the perfect “matching pair” for satellite operation.

- Highly stable dual digital VFOs. The 10 Hz step, dual digital VFOs offer excellent stability through the use of a TCXO (Temperature Compensated Crystal Oscillator).
- Large fluorescent multi-function display. Shows frequency, RIT shift, VFO A/B, SPLIT, ALERT, repeater offset, digital code, and memory channel.
- 40 multi-function memories. Stores frequency, mode, repeater offset, and CTCSS tone. Memories are backed up with a built-in lithium battery.

- Automatic mode selection. You may select the mode manually using the front panel mode keys. Manual mode selection is verified in International Morse Code.
- All-mode squelch.
- High performance noise blanker.
- Speech processor. For maximum efficiency on SSB and FM.
- IF shift.
- “Quick-Step” tuning. Vary the tuning characteristics from “conventional VFO feel” to a stepping action.
- Built-in AC power supply. Operation on 12 volts DC is also possible.
- Semi break-in CW, with side tone.
- VS-1 voice synthesizer (optional) More TS-711A/811A information is available from authorized Kenwood dealers.

- Versatile scanning functions. Programmable band and memory scan (with channel lock-out). “Center-stop” tuning on FM. An “alert” function lets you listen for activity on your priority channel while listening on another frequency. A Kenwood exclusive!
- RF power output control. Continuously adjustable from 2 to 25 watts.

Optional accessories.
- IF-10A computer interface
- IF-232C level translator
- CD-10 call sign display
- SP-430 external speaker
- VS-1 voice synthesizer
- TU-5 CTCSS tone unit
- MB-430 mobile mount
- MC-60A, MC-80, MC-85 deluxe desk top microphones
- MC-46B 16-key DTMF, MC-43S UP/DOWN mobile hand microphones
- SW-200A/B SWR/power meters: SW-200A 1.8-150 MHz SW-200B 140-450 MHz
- SWT-1 2-m antenna tuner
- SWT-2 70-cm antenna tuner
- PG-2U DC power cable

KENWOOD
KENWOOD U.S.A. CORPORATION
2201 E. Dominguez St., Long Beach, CA 90810
PO. Box 22745, Long Beach, CA 90801-5745

Complete service manuals are available for all Kenwood transceivers and most accessories. Specifications and prices are subject to change without notice or obligation.
Join the Packet Racket!

We'll See You in Dayton April 29, 30 and May 1
at our usual location — Booths 259 to 263

DISCOUNTS FOR AMATEURS

EGE VIRGINIA
14803 Build America Drive, Bldg. B
Woodbridge, Virginia 22191
Information: (703) 643-1063
Service Dept: (703) 494-8750
Fax: (703) 494-3679
Store Hours: M-F 10-6
Sat 10-4
Order Hours: M-F 9-7
Sat 10-4

EGE NEW ENGLAND
8 Stiles Road
Salem, New Hampshire 03079
New England (NH Included)
Toll Free: 800-444-0047
Info & Service: (603) 898-3750
Store Hours: M-Th 10-5
Fr 12-6 Sat 10-4

LACOMBE DISTRIBUTORS
Our associate store in Louisiana.
Davis & Jackson Road, P.O. Box 293
Lacombe, Louisiana 70445
Info & Service: (504) 882-5355

Terms: No personal checks accepted.
Prices do not include shipping. UPS COD fee $3.25 per package. Prices are subject to change without notice or obligation. Products are not sent for evaluation. Authorized returns are subject to a 15% restocking and handling fee and credit will be issued for use on your next purchase. EGE supports the manufacturers’ warranties. To get a copy of a warranty prior to purchase, call your customer service at 703-643-1163 and it will be furnished at no cost.

Antennas
Amateur HF Bands
Cushcraft, Butternut, KLM, Mosley, Hy-Gain, B&W, Van Gorden, Hustler, Larsen, Antenna Specialists, Centurion, Smiley
Antennas in Stock
for Mobiles, Base Stations, and Handhelds
Everything from mini rubber dックス to huge monobanders
ASK FOR PACKAGE DEALS ON ANTENNAS AND ACCESSORIES
Also... Antennas for Scanners, CBs, Marine, Commercial, and Short Wave Listening

Towers
UNARCO-ROHN
HY-GAIN
HY-GAIN
UNARCO-ROHN
HY-GAIN
HY-GA
waveform varies from a “fat” sine wave to a sharp triangle wave, and all points in between. When the control’s rotation reaches the point of opening \(S_2 \), the waveform should be a very sharp triangle. If the waveform changes abruptly from a sine wave to a triangle, then the leads to \(R_5 \) are reversed.

Switch the attenuation in and out at various amplitudes with \(S_3 \), and verify that the signal is attenuated to about one-tenth its normal strength. (Change the value of \(R_6 \) for the attenuation you want.)

Connect the oscilloscope to the square-wave output. Vary the square-wave gain control, \(R_{11} \) and make sure the output is adjustable from 0 volts to between 60 and 70 percent of \(V^+ \). The waveform should have sharp rise times and should not go negative. My unit produced clear, crisp waveforms until the frequency reached well over 50 kHz, the positive-going edges began to curve, and the duty cycle widened. (Some of this may have been capacitance in the oscilloscope probes and cables.)

Finally, connect the oscilloscope to the frequency counter output. You should see a pulse waveform, with a fairly constant amplitude regardless of any other control settings. If a counter is available, connect it temporarily to the sine/triangle or square-wave output and increase the gain until the counter displays a steady count. Then check the displayed frequency against an approximation from the pulse output measured on the oscilloscope.

This completes the alignment and testing procedure. Connect the frequency counter to counter output \(J_3 \).

performance

The completed function generator works well for a relatively simple homebrew device. Its output is more than adequate for almost any type of testing or experimentation a ham is likely to do. The specifications for my model are shown in Table 3. When operating into an 8-ohm load, the undistorted output is about 2.2 volts peak-to-peak, with the dc offset set at 0. By moving the offset to about +4.5 volts, I was able to get almost 6 volts peak-to-peak of undistorted sine wave — plenty of power to make an earsplitting test of any speaker.

The frequency stability was one of the best results. I let the generator run overnight, connected to the frequency counter. The next morning, the frequency had changed exactly 3 Hz — and some of that could have been drift in the counter! The waveforms are very stable, relatively clean, and can be adjusted to almost perfect sine or triangle waves with the waveshaping control. Photos E, F, and G show the actual triangle, sine and square waveforms, respectively. Only when the frequency approaches 75 kHz do the waveforms begin to show distortion that can’t be compensated by waveshaping (a possible defect in the oscilloscope probes).

suggestions for use

The function generator provides a clean, stable audio signal source for most Amateur-level testing operations. Figure 4 shows a few suggestions for sample circuit connections.

In example A, assuming the device being tested needs a high-impedance source, simply insert a resistor in series with the function generator’s output. Because the generator’s output impedance is low compared to most high-impedance circuits, the resistor value can be the same as the tested circuit’s impedance. This value will probably be high enough to

Table 3. Performance data maximum output voltage swings (before clipping).

<table>
<thead>
<tr>
<th>loads (ohms)</th>
<th>sine (volts)</th>
<th>triangle (volts)</th>
<th>square (volts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50k</td>
<td>15.0</td>
<td>11.0</td>
<td>10.2</td>
</tr>
<tr>
<td>500</td>
<td>13.8</td>
<td>10.8</td>
<td>10.1</td>
</tr>
<tr>
<td>50</td>
<td>8.4</td>
<td>8.4</td>
<td>8.9</td>
</tr>
<tr>
<td>8</td>
<td>2.1</td>
<td>2.0</td>
<td>5.2</td>
</tr>
</tbody>
</table>
Join AMSAT...Today

Amateur Radio Satellite OSCAR 10 provides:

• A New Worldwide DX Ham Band open 10 hours a day.

• Rag Chew With Rare DX Stations in an uncrowded, gentlemanly fashion.

• Popular Modes In Use: SSB, CW, RTTY, SSTV, Packet

• Full Operating Privileges open to Technician Class licensee or higher.

Other AMSAT Membership Benefits:

Newsletter Subscription:
Dependable technical articles, satellite news, orbital elements, product reviews, DX news, and more.

Satellite Tracking Software
Available for most popular PCs.

QSL Bureau, AMSAT Nets, Area Coordinator Support, Forum Talks

Construction of Future Satellites For Your Enjoyment!

AMSAT Membership is $24 a year, $26 outside North America. VISA and MC accepted.

AMSAT
P.O. Box 27
Washington, DC 20044
301 589-6062

fig. 4. Suggested circuit connections. (See text for details.) Example A shows using a series resistor to simulate a high-impedance signal source. Example B demonstrates the use of a dc blocking capacitor, to either protect the device under test from inadvertent dc output from the function generator, or to protect the function generator from high dc voltages present in the device under test, such as those found in tube-type equipment. Example C shows the use of current-limiting resistors, to prevent excessive current sinking or sourcing when the square-wave output is used for driving digital devices, as in a clock. Note that an LED can be used to visually monitor the clock speed if it’s lower than 10-15 Hz. This also requires a limiting resistor, as shown.

hide, or swamp out, the function generator’s impedance. The series resistor enables the function generator to simulate a high-impedance signal source. When the dc offset is zeroed, the function generator outputs only ac. However, it’s always possible to bump the dc-offset knob, inserting a dc component into the signal. If the circuit you’re testing could be damaged by dc, use the blocking capacitor shown in example B. Conversely, if the device to be tested has dc voltages high enough to damage the function generator, use the blocking capacitor to protect it. Be sure the voltage rating of the capacitor is high enough.

Example C shows the square-wave output used with digital devices. The main reason I designed one of the frequency ranges to be as low as 1 Hz was so I could use the generator as a slow speed clock for digital prototyping. It’s fun to connect a shift register or digital counting circuit of some type, using LEDs to visually monitor the outputs. With a slow speed clock, you can actually watch the device operate. Just make sure the output voltage doesn’t exceed the maximum vol-
NEW FOR '88!

B3038 — 2 METER AMPLIFIER
30W IN - 380W OUT!

FEATURES

- Low noise (0.5dB) Ga As FET pre-amp provides 20 dB of clean gain
- Only 4 power devices
- Copper/aluminum heat sink* for maximum heat dissipation
- Compact power (only 13½"×5½")
- Automatic internal or external relay keying

SPECIFICATIONS

- Frequency range 144 MHz to 148 MHz
- Receive pre-amp . . . 20 dB gain with 0.5 db noise figure
- RF power in . . . 200 mW to 30 Watts
- DC power . . . 13.6 watts 40 amps
- RF power out . . . 380 Watts nom.
 (30 in — 380 out)
- Size 13½"×5½"
- Modes . . . SSB, FM and CW
- Weight . . . 8.5 lbs.

* Copper-Embedded Aluminum Heat Sinks

Copper is 2.5 times more conductive than aluminum and ensures rapid and even heat dissipation throughout the heat sink. By bringing heat away from the transistors, greater life can be expected. The extra margin of safety means you don't have to worry about shut-down during long-winded FM conversations or RTTY/Packet operation.

Mirage/KLM now features copper/aluminum heat sinks as standard on repeater amplifiers and as an option on other power amplifiers. Beat the heat with our newest addition. Ask for improved heat sink amplifiers!
photo E, F, and G. Oscilloscope displays of the triangle, sine, and square-wave outputs, respectively. The photos were taken at a frequency of about 1 kHz, with amplitudes of about 12 volts peak-to-peak, into a 10-k load. The variable timebase was adjusted to display several cycles for the photos, so the horizontal scale divisions don’t correspond to the indicated frequency.

tages required by the chips under test. For example, more than about 5.1 volts will often damage TTLs.

To make the square-wave output positive only, Q2’s emitter resistor is connected to ground, rather than the negative side of the power supply. This means the amplifier output resistance, as seen by the circuit being tested, is only about 100 ohms and problems such as excessive current sinking or sourcing from the external circuit could arise. If this happens, use a series current-limiting resistor in the output.

conclusion

For a minimum amount of time, money, and junk-box parts, you can construct an inexpensive, versatile test instrument with some of the features found in commercial-grade units. This building-block project uses established, proven circuitry, no exotic parts or techniques, and can be easily assembled by anyone with a little experience. The circuit’s performance is tolerant of changes in the prototyping stages, so the builder can improvise, modify, and use materials already on hand.

Anyone who undertakes a project like this can’t help learning more about electronics, regardless of his intentions. I now find myself spending more time experimenting because I no longer waste time throwing together a quick and dirty signal source for testing circuits. It was well worth the effort.

I’ll try to help with any problems, and am always interested in hearing about new experimenting techniques, gadgets, and gizmos. Just be sure to include a SASE with any correspondence if you’d like a reply.

references

PROJECT PARTS ARE AS CLOSE AS YOUR NEIGHBORHOOD SHACK®

"Hotline" Service!

![Coax/Rotor Cable](image)

In Demand by Hams!

1. New High-Shield RG 8/AU Coax, 95% shielding. Velocity factor: 66%. Loss per 100 ft. at 100 MHz: 2.5 dB. Try it! #278-1323 . Per Ft. 36¢

2. 5-Conductor Rotor Cable, 100-Ft. roll. #15-1201 . 11.95

Antenna Coax Tools and Wire

1. Coax Cutter. Preserves impedance. 278-244 . 4.95

2. Coax Cable Stripper. For most popular-size coax. 278-240, 11.95

3. Heavy-Duty SW Antenna Wire, 65 feet. #278-1359 . 4.99

Comfort ‘Phones

Engineered For SWL and “Com” Use

Copy CW with total concentration! A featherweight headset, efficient ferrite magnets and high-compliance diaphragms let you burn the midnight oil in luxury. With 6-ft. cord, ¼” plug, and ¼” phone plug adapter. #20-210 . 9.95

Quiet Cooling

Copy CW with total concentration! A featherweight headset, efficient ferrite magnets and high-compliance diaphragms let you burn the midnight oil in luxury. With 6-ft. cord, ¼” plug, and ¼” phone plug adapter. #20-210 . 9.95

Computer Links

Solder-type “D” submini. 25 position connectors/hood.

1. Male. #276-1547 . 1.99

2. Female. #276-1548 . 2.99

3. Shielded Hood. Preserves EMI/RFI protection when used with shielded cable. #276-1536 . 1.99

Power Parts

6-Ft. Grounded AC Cord, CEE type. #278-1227 . 3.99

1. 100 µH RF Choke. #273-102 . 99¢

2. Varistor. #278-588 . 1.99

3. 3-Wire, AC-Outlet Tester. #25-101 . 5.95

Scientific Calc

Handy Folding Support for Convenient Viewing

Loaded with advanced features! This 88-function mathematician handles complex numbers and accepts 15 levels of parentheses. Makes ticket-upgrade math a snap. Auto-shutoff conserves batteries. $65-989

Transistor Tester

Works In Or Out of Circuit

Tests PNP’s, NPN’s, silicon and germanium types. Makes fast go/no-go tests of small-signal and power transistors, and matches similar transistors. Front-panel pin socket leads for in-circuit tests. #22-025

Noise-Canceling Mike

With Preamp

26.95

Tests PNP’s, NPN’s, silicon and germanium types. Makes fast go/no-go tests of small-signal and power transistors, and matches similar transistors. Front-panel pin socket leads for in-circuit tests. #22-025

Over 1000 items in stock! Binding Posts, Books, Breadboards, Buzzers, Capacitors, Chokes, Clips, Connectors, Fuses, Hardware, ICs, Jacks, Knobs, Lamps, Multimeters, PC Boards, Plugs, Rectifiers, Resistors, Switches, Tools, Transformers, Wire, Zeners, More!

Prices apply at participating Radio Shack stores and dealers.

Radio Shack
The Technology Store

A DIVISION OF TANDY CORPORATION

Reader Service CHECK—OFF Page 98
The HF4B "Butterfly"™
A Compact Beam
for 20-15-12-10 Meters

Butternut
Verticals

Butternut's HF verticals use highest-Q tuning circuits (not lossy traps!) to outperform all multiband designs of comparable size!

Model HF6V
• 40, 20, 15, and 10 meters automatic bandswitching
• Addon kit for 17 and 12 meters available now
• 26 ft tall

Model HF2V
• Designed for the low-band DXer
• Automatic bandswitching on 80 and 40 meters
• Addon units for 160 and 30 or 20 meters
• 30 feet tall may be top loaded for additional bandwidth

For more information see your dealer or write for a free brochure.

SPECIALIZED COMMUNICATIONS
FOR TODAY'S RADIO AMATEUR!

Our 20th Year!

Since 1967, covering all modes of Amateur Radio "specialty" communications; Fast Scan TV, SSTV, FAX, Packet Radio, Computers, RTTY, AMTOR, Satellites, TYRO, Microwave, Lasers and more! 10 issues per year. Back issues available, SASE brings TRS80C, C64, IBM software catalog. U.S. subscribers $20/year. Foreign slightly higher. Add $2.00 for Index Issue.

SPEC-COM Communications & Publishing Group
P.O. Box H
Lowden, Iowa
52255-0408

NEW EDITION
The 1988 ARRL Handbook For The Radio Amateur carries on the tradition of the previous editions by presenting 1200 pages of comprehensive information for the radio amateur, engineer, technician and student. Clothbound only $21 in the U.S., $23 in Canada and elsewhere.

THE 1988 ARRL HANDBOOK FOR THE RADIO AMATEUR

THE AMERICAN RADIO RELAY LEAGUE
225 MAIN STREET
NEWINGTON, CT 06111

MOVING?
KEEP HAM RADIO COMING...
If possible let us know four to six weeks before you move and we will make sure your HAM RADIO Magazine arrives on schedule. Just remove the mailing label from this magazine and affix below. Then complete your new address (or any other corrections) in the space provided and we'll take care of the rest.

ham radio
Magazine
Greenville, NH 03048

Thanks for helping us to serve you better.

This publication is available in microform from University Microfilms International.

This publication is available in microform from University Microfilms International.

Call toll-free 800-521-3044, in Michigan, Alaska and Hawaii call collect 313-761-4700. Or mail inquiry to University Microfilms International, 300 North Zeeb Road, Ann Arbor, MI 48106.

THE AMERICAN RADIO RELAY LEAGUE
225 MAIN STREET
NEWINGTON, CT 06111

Please send information about these titles:

Name:
Company/Institution:

Address:
City, State, Zip:

Call toll-free 800-521-3044. In Michigan, Alaska and Hawaii call collect 313-761-4700. Or mail inquiry to University Microfilms International, 300 North Zeeb Road, Ann Arbor, MI 48106.
Improving an already fine transceiver

more operational notes on the TS-930S

I was gratified to hear from users of the Kenwood TS-930S who read my earlier article1 that many operators are interested in improving their SSB transmitted spectral purity, that is, the reduction of Intermodulation Distortion (IMD)*. As a result, I began investigating the radio's characteristics under varying conditions and came up with several modifications.

SSB linearity

The TS-930S obeys the same principles for linearity (reduced output power and biasing for the most linear region of the devices involved) as other high fidelity, linear systems. Kenwood's Factory Service Bulletin number 867 dated March 29, 1983 notes that the quiescent collector current I_{CQ} of both the drivers and output transistors, MRF-485s and MRF-422s, was increased from 75 mA and 0.5A to 85 mA and 1.0A, respectively. This change made an immediate, audible improvement in the SSB speech quality because the devices were moved closer to their Class A and Class AB1 regions. Biasing the MRF-422s still closer to their Class AB1 region affords even more improvement, most noticeable in the higher order products because bi-polar devices generate more of these products than thermionic devices. Therefore it is necessary to raise the I_{CQ} of the MRF-422s in the power amplifier to a value greater than 1.0A and measure the results with a two-tone generator and spectrum analyzer. By adjusting the bias level potentiometer, VR1, located in the rf shield compartment. The increased device dissipation is easily handled in both the TS-930S and TS-940S because these transistors are operating well below their thermal power dissipation limits. The adjustment is read on the radio's multimeter, and data resulting from changes in the operating parameters is provided in table 1. Note that the I_{CQ} of the MRF-485 drivers was not changed; they are already operating well into their most linear region (Class A). Motorola's maximum and typical 3rd order IMs are -36 and -41 dB for the MRF485 and -36 and -39 dB for the MRF422, respectively. Data was taken at 150 watts PEP per device at 30 MHz with an I_{CQ} of only 150 mA! Frequency, device matching, and impedance matching affect the results. The TS-930S measurements are intended as guidelines for the reader to improve his transmitter's linearity.

For some contest operators, it is remotely possible that under extreme temperature and humidity conditions a small, quiet, external Whisper™ fan could be used to simultaneously cool the rf and power supply heat sinks. It is also easy to return the power amplifier quiescent collector current to 1.0A for those periods. The test measurement setup is shown in fig. 1.

All the elements are self-explanatory with the exception of the TS-144/U, a two-tone rf generator whose function here is to calibrate and verify the performance of the TS-13791U. It was designed as a complementary piece of test equipment to the analyzer.

In my application in class AB1, the drive requirement is a modest 30 watts PEP. Those using the popular 8877 in Class AB2 should be able to closely duplicate this performance. It should be noted that the TS-930S will easily meet its TX IMD 3rd order performance specifications of less than -31 dB.

A point worth remembering is that quality transistors and tubes, like those supplied by Motorola and Eimac, are specified as exhibiting odd-order IMD products being down so many dB from desired (two) equal tone output signals. This is in accordance with a military standard specification number 1311B-2204B.

*IMD is best defined as "the measured distortion of a linear amplifier as expressed in power in decibels below the amplifier's peak power or below that of one of two tones employed to produce the complex test signal."

By Marv Gonsior, W6FR, 418 Adobe Place, Fullerton, California 92635
Table 1. TS-930S TX IMD data: \(I_{\text{CQ}}\) versus \(P_0\)

<table>
<thead>
<tr>
<th>(I_{\text{CQ}})</th>
<th>1.0A</th>
<th>1.75A</th>
<th>2.5A</th>
<th>1.0A</th>
<th>2.5A</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.E.P. Watts Output</td>
<td>100</td>
<td>50</td>
<td>100</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Distortion Product (dB)</td>
<td>34</td>
<td>39</td>
<td>38</td>
<td>34</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>36</td>
<td>39</td>
<td>35</td>
<td>34</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td>47</td>
<td>44</td>
<td>40</td>
<td>29</td>
</tr>
<tr>
<td>7</td>
<td>43</td>
<td>47</td>
<td>44</td>
<td>46</td>
<td>29</td>
</tr>
<tr>
<td>9</td>
<td>47</td>
<td>53</td>
<td>54</td>
<td>54</td>
<td>43</td>
</tr>
<tr>
<td>11</td>
<td>52</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>45</td>
</tr>
<tr>
<td>13</td>
<td>53</td>
<td>57</td>
<td>59</td>
<td>60</td>
<td>48</td>
</tr>
</tbody>
</table>

Notes:
1. ALC indicated only at the 100-watt level.
2. All distortion product levels are expressed in –dB and referenced to the PEP (see text).
3. Indicates greater than 60 dB.
4. 6 dB average processing and ALC as in (1) above, customary operation by many users.
5. The ultimate linearity employing 0 ALC and compression, with optimum power level.

Amateur radio equipment and many commercial equipment suppliers have chosen a less conservative JEIA/EIA standard which makes the same test, but references the PEP, providing a -6 dB paper improvement in the numbers. Because many Amateurs are accustomed to the latter method, it is used here. Therefore, the tests are the same but the numbers are different. Collins, to my knowledge, specified the IMD in all SSB equipment (both exciters and amplifiers) by the military method of referencing one tone of a pair. A discussion on this subject written by Granberg makes informative reading. Rusgrove’s article on the subject of spectrum analysis is also recommended reading for the serious operator.

don’t overlook the amplifier linearity response

We tend to think in terms of exciter IMD performance specifications while missing the fact that it is the overall system which governs final signal quality. In other words, the final amplifier must be more linear to preclude degradation of the driving signal. Good engineering practice dictates that the final amplifier should be 10 dB better than the exciter alone. It is generally accepted that a 3 dB better differential (amplifier with respect to exciter) will result in a 3 dB degradation of the exciter’s performance. Therefore, great care must be exercised in the selection and operation of the final amplifier for optimum linearity in a system. Orr published an article on IMD in linear amplifiers with a wealth of information on vacuum tube applications.
ASTRON POWER SUPPLIES
- HEAVY DUTY • HIGH QUALITY • RUGGED • RELIABLE

SPECIAL FEATURES
- SOLID STATE ELECTRONICALLY REGULATED
- FOLD-BACK CURRENT LIMITING Protects Power Supply from excessive current & continuous shorted output
- CROWBAR OVER VOLTAGE PROTECTION on all Models except RS-3A, RS-4A, RS-5A.
- MAINTAIN REGULATION & LOW RIPPLE at low line input Voltage
- HEAVY DUTY HEAT SINK • CHASSIS MOUNT FUSE
- THREE CONDUCTOR POWER CORD
- ONE YEAR WARRANTY • MADE IN U.S.A.

PERFORMANCE SPECIFICATIONS
- INPUT VOLTAGE: 105-125 VAC
- OUTPUT VOLTAGE: 13.8 VDC ± 0.05 volts
- RIPPLE Less than 5mv peak to peak (full load & low line)
- Also available with 220 VAC input voltage

RM SERIES

19" x 5½ RACK MOUNT POWER SUPPLIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN) H x W x D</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM-12A</td>
<td>9</td>
<td>12</td>
<td>5 1/2 x 19 x 3 5/16</td>
<td>16</td>
</tr>
<tr>
<td>RM-35A</td>
<td>25</td>
<td>35</td>
<td>5 1/2 x 19 x 3 5/16</td>
<td>38</td>
</tr>
<tr>
<td>RM-50A</td>
<td>37</td>
<td>50</td>
<td>5 1/2 x 19 x 3 5/16</td>
<td>50</td>
</tr>
</tbody>
</table>

- Separate Volt and Amp Meters
 - RM-12M 9 12 5 1/2 x 19 x 3 5/16 16
 - RM-35M 25 35 5 1/2 x 19 x 3 5/16 38
 - RM-50M 37 50 5 1/2 x 19 x 3 5/16 50

RS-A SERIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN) H x W x D</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-3A</td>
<td>2.5</td>
<td>3</td>
<td>3 1/4 x 3 5/16 x 9 3/16</td>
<td>4</td>
</tr>
<tr>
<td>RS-4A</td>
<td>3</td>
<td>4</td>
<td>3 1/4 x 3 5/16 x 9 3/16</td>
<td>5</td>
</tr>
<tr>
<td>RS-5A</td>
<td>4</td>
<td>5</td>
<td>3 1/4 x 3 5/16 x 9 3/16</td>
<td>7</td>
</tr>
<tr>
<td>RS-7A</td>
<td>5</td>
<td>7</td>
<td>3 1/4 x 3 5/16 x 9 3/16</td>
<td>9</td>
</tr>
<tr>
<td>RS-7B</td>
<td>5</td>
<td>7</td>
<td>4 1/2 x 3 5/16 x 9 3/16</td>
<td>10</td>
</tr>
<tr>
<td>RS-10A</td>
<td>7.5</td>
<td>10</td>
<td>4 1/2 x 3 5/16 x 9 3/16</td>
<td>11</td>
</tr>
<tr>
<td>RS-12A</td>
<td>9</td>
<td>12</td>
<td>4 1/2 x 3 5/16 x 9 3/16</td>
<td>13</td>
</tr>
<tr>
<td>RS-12B</td>
<td>9</td>
<td>12</td>
<td>4 1/2 x 3 5/16 x 9 3/16</td>
<td>13</td>
</tr>
<tr>
<td>RS-20A</td>
<td>16</td>
<td>20</td>
<td>5 1/2 x 3 5/16 x 9 3/16</td>
<td>18</td>
</tr>
<tr>
<td>RS-35A</td>
<td>25</td>
<td>35</td>
<td>5 1/2 x 3 5/16 x 9 3/16</td>
<td>27</td>
</tr>
<tr>
<td>RS-50A</td>
<td>37</td>
<td>50</td>
<td>6 x 3 5/16 x 9 3/16</td>
<td>46</td>
</tr>
</tbody>
</table>

RS-M SERIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN) H x W x D</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-12M</td>
<td>9</td>
<td>12</td>
<td>4 1/4 x 8 x 9</td>
<td>13</td>
</tr>
</tbody>
</table>

- Separate Volt and Amp meters
 - RS-20M 16 20 5 1/2 x 3 5/16 x 9 3/16 18
 - RS-35M 25 35 5 1/2 x 3 5/16 x 9 3/16 27
 - RS-50M 37 50 6 x 3 5/16 x 9 3/16 46

VS-M AND VRM-M SERIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN) H x W x D</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VS-12M</td>
<td>9</td>
<td>12</td>
<td>13.8VDC 10 3/4 x 5/8</td>
<td>13</td>
</tr>
<tr>
<td>VS-20M</td>
<td>16</td>
<td>20</td>
<td>10VDC 12 x 5/8</td>
<td>20</td>
</tr>
<tr>
<td>VS-35M</td>
<td>25</td>
<td>35</td>
<td>5VDC 14 3/4 x 5/8</td>
<td>29</td>
</tr>
<tr>
<td>VS-50M</td>
<td>37</td>
<td>50</td>
<td>@13.8VDC 20 x 5/8</td>
<td>46</td>
</tr>
</tbody>
</table>

- Separate Volt and Amp Meters • Output Voltage adjustable from 2-15 volts • Current limit adjustable from 1.5 amps to Full Load
 - VS-35M 25 15 13.8VDC 10 3/4 x 5/8 38
 - VRM-35M 25 15 20 5/8 x 10 3/8 x 5/8 38

RS-S SERIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN) H x W x D</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-7S</td>
<td>5</td>
<td>7</td>
<td>4 x 7/16 x 10 3/4</td>
<td>10</td>
</tr>
<tr>
<td>RS-10S</td>
<td>7.5</td>
<td>10</td>
<td>4 x 7/16 x 10 3/4</td>
<td>12</td>
</tr>
<tr>
<td>RS-12S</td>
<td>9</td>
<td>12</td>
<td>4 x 7/16 x 10 3/4</td>
<td>13</td>
</tr>
<tr>
<td>RS-20S</td>
<td>16</td>
<td>20</td>
<td>5 x 7/16 x 10 3/4</td>
<td>18</td>
</tr>
</tbody>
</table>

- Built in speaker

NOTE: ICS—Intermittent Communication Service (50% Duty Cycle 5min. on 5 min. off)
On this subject, a few caveats are in order. Don’t load a linear under single-tone conditions, as optimum power output and linearity will be found only under a complex waveform such as a voice and a two-tone will be only an approximation. Do operate the filament of thoriated tungsten tubes at slightly under the manufacturer’s specified voltage for longest tube life and greatest linearity using step start. Measure the filament voltage at the tube socket under load with an accurate voltmeter. It follows that tubes which are being operated under manufacturer’s specified parameters will generally last longer and be cleaner than those that are not. There is a strong case for rf negative feedback, though as always, there is a price (which in this case may be in terms of dollars and additional drive required).

rx single signal reception

Many of us have found that the alignment of the SSB carrier oscillators in the TS-930S and the TS-940S seems slightly high on the slope of the sideband filter. So, when tuning through zero beat of a CW carrier in the sideband mode, the unwanted opposite sideband will be audible. Test for this by enabling the 100-kHz marker signal, tune all the way through it in either the USB or LSB mode, and listen for any carrier on the unwanted side. The remedy (which improves SSB selectivity) is to move the carrier oscillator(s) a little bit further down the slope of the filter while listening until the unwanted sideband disappears. Adjustment(s) for this are TC4 (USB) and TC5 (LSB) located on the Signal Board. (See the service manual for further details and parts locations.) In my radio the two optimum frequencies are 8831.631 and 8828.390 respectively with the slope tuning wide open, as measured on pin 2 of connector 24 using an HP5381A counter. Periodic re-nulling of the balanced modulator is recommended, especially after any carrier oscillator adjustment.

receiver reciprocal mixing

This well-known phenomenon is common to all receivers incorporating PLL frequency synthesis; the subject has been covered comprehensively by Rohde. Kenwood and others have made improvements in this area for the TS-940S with additional filtering in the PLL circuit. A constructive improvement for the TS-930S was provided by W4CG, and as a result of his work the author simplified that filter into a simple low-pass. It consists of one disc capacitor providing the desired high frequency roll-off and resulting in a 6 dB improvement in the self-generated receiver noise, under conditions stemming from very high level received signals. The filter installation circuit is shown in fig. 2. The test procedure is shown in Table 2. As in all circuit designs, remember that the buildup of component tolerances and alignment will be different in each radio. In my TS-930S the installation was effective using a measured 0.022 disc capacitor. Because this type of capacitor generally has wide manufacturing tolerances in addition to those inherently in the radio, the capacitor should be measured accurately before installation.

The following test will indicate if the capacitor is correct. With the mod in place, put the transmitter in the QSK mode with a 100-kHz split and keyed at about 45 w.p.m. If the capacitor is too large, a noticeable delay will be found in the PLL seeking to first acquire the alternate frequency, or a slight chirp will be noticed on the leading edge of the CW signal indicating that the loop time is marginally slow. If this is the case, reduce the value of C1 accordingly. A primary concern, with respect to loop filters like this, is that the loop’s acquisition time will always degrade with any filtering, and consequently the exact value is a trade-

<table>
<thead>
<tr>
<th>Table 2. Reciprocal mixing filter test procedure and installation.</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Enable the 100-kHz marker (14.200 MHz).</td>
</tr>
<tr>
<td>• Inject a signal at 14.175 MHz (using any available “clean” generator) and increase its output until the 14.2-MHz marker level at the audio output decreases by 3 dB.</td>
</tr>
<tr>
<td>• Turn off the marker generator and notice that reciprocal mixing noise is audible at that frequency and beyond.</td>
</tr>
<tr>
<td>• Plug in capacitor C1 and a 6 dB reduction in this noise should occur. (The amount of attenuation is measured at the headphone terminal of the receiver using a Triplett model 630A meter operating in the output, dB scale.) This procedure simulates a strong, close-in signal which is capable of causing the receiver to generate the reciprocal mixing noise. The filter, unfortunately, has no measurable effect on the transmitted signal.</td>
</tr>
</tbody>
</table>

![fig. 2. Filter installation reduces receiver non-reciprocal mixing and loop bandwidth.](image-url)
off. In one extreme, the loop time will be so slow that it will fail to function. On-the-air testing of this filter has demonstrated that it will be successful only to the extent that the large signal which generates this type of noise is free of noise sidebands; otherwise, it will be in your passband and nothing will cure it. However, the results of this mod under clean signal conditions have been verified in four other radios.

automatic antenna tuner

As users of this versatile option have learned, it is a valuable investment from the standpoint of resale and performance because it provides a very effective match from the transmitter to the outside — quite essential in broadband solid-state equipment. The other benefits in using this unit may not be recognized. Second harmonic suppression is increased by a measured 6 dB in my case when it is operating in the “’T’” match mode occurring from 3 to 14 MHz. Above that, it operates in the “’Pi’” configuration which should yield additional attenuation. It prevents automatic shutdown due to a high VSWR, which not only reduces the power output but increases the distortion products since the power amplifier is no longer operating in its most linear mode. The tuner will not provide the desirable “flywheel” effect for a Class B GG amplifier since the exciter is generally too electrically remote from the cathode circuit.

tx audio ac modulation

There are two recognized sources of minor ac modulation of the audio in the TS-930S SSB transmit mode. Both are sometimes elusive but curable. The first is simple magnetic coupling between the dynamic microphone element and the power transformer. To see if this is a problem, move the microphone around the radio (especially on the left side near the power transformer) and listen to the monitor for the results. To eliminate the problem, relocate the microphone and use the lowest impedance possible; to eliminate it, change to a nonmagnetic element. The second problem was more elusive and difficult to isolate; W6UYW tracked it down after we spent many hours of searching. It too is audible in the monitor, especially with the microphone disconnected, and must be fixed from the inside. Its source (in serial numbers in the 3.1 to 4.0M range) is a small green rf choke called L3 on page 40 of the Owner’s Manual. It is 150 µH in value installed by Kenwood to eliminate some rf feedback problems being experienced at low frequencies. Unfortunately, this choke is a solenoid type and susceptible to inductive coupling from adjacent cabling. The amount of modulation varies in each unit, depending on its orientation. By reorienting the choke, the modulation can be reduced but not eliminated. For a complete cure, place a drop of solder short it out, or replace it with a ferrite toroidal core or a bead. Find L3 by removing the bottom cover and locating a small pc board directly behind the microphone connector. This choke is not shown on all schematic diagrams. In some cases it is orange or black in color and presents no problem, as it is apparently a closed core, self-shielded design. (The usual warranty caveat applies.)

I hope this information will be useful to operators who wish to improve their transmitted SSB audio quality, and that some of the fixes described will lead to better performance from this fine equipment.

acknowledgments

I wish to thank W4CG, K5CX, W6UYW, and W0IAK for their contributions.

references

DX is getting better and better! Here's why!

DX is better this year than last, and even that was pretty good. Why this sudden improvement in conditions? Some say it's because the sunspot count is rising. Nonsense! What does the sun have to do with DX, anyway? A lot of DX comes through at night when the sun is sleeping. A study of events in the DX world provides several simple answers to this question.

First of all, the earth is shrinking. Remember Columbus? He took nearly a month to reach the New World. The Blue Ribbon liners crossed the Atlantic in a little over three days in the late "thirties". Now, you can cross the Atlantic in a little over three hours in supersonic transport! Have you ever wondered why gas mileage is getting better and better? Cars travel less distance to get to the same places, that's why. It's obvious that the earth is getting smaller every day.

Second, the ionosphere is leaving. Since radio waves pass through the ionosphere, there must be a lot of friction up there to slow things down. Scientists recently discovered a hole in the ionosphere over the Antarctic — it's leaking into space! Once it's all gone, DX conditions will be fantastic!

Third, Chicken Little said, "The sky is falling!" Obviously if the sky is falling, what's left of the ionosphere is closer to the earth. That makes for less friction and it's easier for radio waves to bounce around between DX stations.

Finally, packaging experts have done their job. While the shipping carton the radio comes in gets bigger and bulkier, the radio inside has shrunk. Just like potato chips. The bag is bigger, but there are fewer chips in the bag. The same thing can be said for candy bars and radio equipment. Today's radios are so small that the electrons can zip around in less time! Thus an S9 signal (all signals are S9 to begin with) is still S9 by the time it wends its way through all those ICs and finally reaches your eardrums!

So that's the way it is. And I don't want to hear any more foolishness from George Jacobs, W3ASK, nattering about sunspots and the ionosphere. You now have the straight information, and don't forget who told you!

good news for "low-fers"

What's a good antenna for 80 and 160 meter DX? How about a quarter-wave vertical, working against a buried counterpoise consisting of 120 radial wires, each a quarter wave long? A lot of low-far DXers use an antenna of this type with good results. But laying several thousand feet of buried radial wires has discouraged a lot of hams who dream of owning an effective low-band vertical antenna.

Broadcasters, too, have had second thoughts about this type of antenna, a standard broadcast installation since the mid-twenties. It represented a lot of money literally placed in the ground!

Experiments conducted by Arch Doty, Jr., K8FCU; John Frey, W3ESU; and Harry Mills, K4HU, and described in the 1983 bulletin of the Radio Club of America showed that the traditional ground radial system (composed of a number of buried or surface wires) could be equaled or bettered by the use of an elevated ground screen about 6 feet above ground. The screen has 50 or more radials connected at their tips to form a spokeed wheel about 0.4 wavelength in diameter. This could be an effective substitute for the buried radials, but it is difficult to install and quite expensive.

The next step in this ongoing investigation took place at the recent broadcast symposium of the Institute of Electrical and Electronic Engineers (IEEE). An evaluation of the performance of four elevated radial elements compared with 120 buried ones was presented by investigators from Ohio State University, Cap Cities ABC, Lawrence Livermore Labs, and the Naval Postgraduate School.

The report concluded that as few as four radials above the ground would provide superior performance over 120 buried radials and that power gain at low angles would be enhanced.

The experiment was conducted at 1 MHz with an antenna height and radial length of one quarter wavelength. Tests showed that skywave radiation was attenuated and power gain at low
angles was enhanced. The same procedure was employed at 3 MHz with "very similar results".

The test model antenna had radials elevated 50 inches above ground, and increasing radial length did not appreciably improve performance. Improvement when going from 4 to 120 radials "was not worth the effort of installing".1

The studies generally concluded that performance improvement was good for radiation angles of up to about 20 degrees, but above that the buried radials began to have better power gain. Since most 80 and 160 meter DX operation seems to be at angles of 20 degrees or lower, the above-ground radial installation seems to offer a distinct advantage for the low-fer DXers.

an inexpensive console for crowded quarters

Operating from a small apartment, motor home, or condominium has its problems. One of the most pressing ones is where to put the ham station! Operating a ham rig from a folding card table isn't much fun.

I recently received a catalog from a large mail-order house, and while browsing through it noticed several "Microwave Oven Carts". These were sturdy constructed, oak-finished carts with a top shelf for the microwave and a shelf underneath for utensils and dishes. Below that was a drawer atop a storage area behind double doors. The carts have casters for easy movement and models are available with different shelf configurations.

The smallest one, called a "Utility Cart", has two shelves and a storage space, while larger carts have more shelves. They look nice enough to be considered furniture and all are modestly priced. You could place a transceiver on the lowest shelf and an antenna rotor and SWR meter on the top. A hundred ideas flashed through my mind as I looked at the carts.

Interested? Most large mail order stores supply these. The ones I saw are from BEST Products Corporation.

quad antenna construction

Now that 10 meters is coming back to life, there is renewed interest in the Quad antenna. You hear a lot of them on the band these days.

It's not hard to build a Quad, but it is difficult to construct one that will stay up in bad weather. They are foppish affairs at best, and you must put a lot of thought into the physical arrangement of the antenna if you don't want it to come crashing down in the next storm.

Lloyd Hanson, W9YCB, has some interesting ideas on Quad construction. He says the best Quad arms are made of "Calcutta bamboo" with PVC heat-shrink tubing slid over the bamboo between the joints. The end of the arm is also sealed with a short piece of heat shrink. An acceptable alternative for the Quad arm is a fiberglass drapery pole. Lloyd has found a lot of these at garage sales.

The poles should not be drilled for the Quad wires after they've been protected with heat-shrink tubing. Instead, cut a piece of PVC lengthwise to fit the pole. Cut a slot in the tubing to hold the wire and glue it to the Quad arm with PVC cement. Two wire tie-
TINY-2 PACKET CONTROLLER $119.95

USES TNC-2 EPROMS INCLUDING NET/ROM. FIRMWARE VERSION 1.1.5 PROVIDED
32K RAM AND 32K EPROM STANDARD
SUPPORTS BOTH RS-232 AND TTL COMPUTERS, 300-19,200 BAUDS
EXTRUDED ALUMINUM CABINET WITH OVEN-BAKED WRINKLE FINISH. ONLY 5" X 7"
WATCHDOG TIMER, MODEM DISCONNECT HEADER, 12V DC OPERATION.

FROM ONLY $3495

THE BEST VALUE IN A VHF/HF TNC
PAC-COMM TNC-220 $149.95
WITH TUNING INDICATOR $179.95
NOW WITH 32K RAM STANDARD, FIRMWARE VERSION 1.1.5
SELECT EITHER HF OR VHF RADIOS FROM THE KEYBOARD.
SUPPORTS RS-232 AND TTL COMPUTERS
IN KIT FORM - $129.95
INTERNAL TUNING INDICATOR -- $44.95

WRITE OR CALL FOR OUR NEW CATALOG OF PACKET EQUIPMENT, SOFTWARE AND ACCESSORIES.

TECHNICAL INFORMATION
7:30 AM - 11 PM EASTERN
(813) 874-2980
TELEX: 650-288-1520 MCI
FAX: (813) 872-0096

SAY YOU SAW IT IN

NET-KALL NK-1 DTMF ALERT DECODER
From Only $34.95

- Momentary or latched output
- Multiple Group-Call response
- High stability xtal controlled SSI-202
- Ideal for an economical alert system

MoTron Electronics Call Toll-Free
695 W. 21st Ave 1-800-338-9058
Eugene, OR 97405 or (503) 687-2118

KENNEDY ASSOCIATES
Stocking all major lines. San Antonio's Ham Store. Great Prices—Great Service. Factory authorized sales and service.
Hours: M-F 10-6; SAT 9-3

KENWOOD YAESU ICOM
Amateur Radio Division
5707A Mobud
San Antonio, TX 78238
Telephone: 512-680-6110

SYNTHESIZED SIGNAL GENERATOR
MODEL SG-100F $429.95 delivered

- Covers 100 MHz to 199.999 MHz in 1 kHz steps with thumbwheel dial
- Accuracy +/- 1 part per 10 million at all frequencies
- Internal FM adjustable from 0 to 100 kHz at a 1 kHz rate
- External FM input accepts tones or voice
- Spurs and noise at least 60 dB below carrier
- Output adjustable from 5-500 mV at 50 Ohms
- Operates on 12 Vdc @ 1/2 Amp
Available for immediate delivery • $429.95 delivered • Add-on accessories available to extend freq range, add infinite resolution, AM, and a precision 120 dB attenuator
- Call or write for details • Phone in your order for fast COD shipment.

VANGUARD LABS
196-23 Jamaica Ave., Hollis, NY 11423
Phone: (718) 468-2720 Mon. thru Thu.
and described in the September, 1987 issue of *Electronics and Wireless World* published in England. The design functions from 3 to 30 MHz with an SWR of 2.5:1 or less over that range (fig. 3).

The antenna consists of two coil-loaded dipoles fed in parallel. A 32-μH loading coil is placed in each dipole half, as shown in the illustration. The angle between the dipoles is not specified.

The feedpoint impedance is about 500 ohms, so the antenna could be fed with a 50-ohm line and a 10:1 balun.

It would be interesting to try this unique antenna in an inverted-V arrangement and run an SWR curve across the operating range. Any takers?

antennas for the 24.9-MHz band

Need a quick design for a beam antenna for this band? Simply take an applicable 6-meter beam (50 MHz) and multiply all important dimensions by 2!

references

Ham radio
P.C. ELECTRONICS 2522 S. PAXSON LN. ARCADIA CA 91006 (818) 447-4565
TOM W6ORG MARYANN WB6YSS
Compuserve 72405,1207

SEE US AT DAYTON

SPRING INTO ATV SALE

NOW YOU CAN GET INTO THIS EXCITING MODE WITH OUR ALL IN ONE BOX TC70-1 70CM ATV TRANSCEIVER AT THE 1988 SPRING SALE REDUCED PRICE FROM $299 TO ONLY $269 DELIVERED

WHAT ELSE DOES IT TAKE TO GET ON ATV?

Any Tech class or higher amateur can get on ATV. If you have a camera you used with a VCR or SSTV & a TV set, your cost will just be the TC70 and antenna system. If you are working the AMSAT satellites you can use the same 70cm antennas on ATV.

DX with TC70-1s and KLM 440-27 antennas line of sight and snow free is about 22 miles, 7 miles with the 440-6 normally used for portable uses like parades, races, search & rescue, damage assessment, etc. For greater DX or punching thru obstacles: 15 watt p.e.p. Mirage D15N or 50 watt p.e.p. D24N or D1010N-ATV.

The TC70-1 has full bandwidth for color, sound, like broadcast. You can show the shack, home video tapes, computer programs, repeat SSTV, weather radar, or even Space Shuttle video if you have a home satellite receiver. See the ARRL Handbook chapt. 20 & 7 for more info & Repeater Directory for local ATV repeaters.

PURCHASE AN AMP WITH THE TC70-1 & SAVE!

50 WATT WITH D24N-ATV...$469

All prices include UPS surface shipping in cont. USA

COMPLETE ATV STATION

TC70-1...$269 (until June 1)
ATV Transceiver

Mirage D15N...$119
(optional) 15 watts RF out.

Mirage D24N...$219
(optional) 50 watts RF out.

KLM 440-27 14dbd $107
KLM 440-10X 11dbd $65
KLM 440-6X 8.9dbd $51

HAMS! CALL (818) 447-4565 NOW OR WRITE FOR YOUR SPRING SALE CATALOG OF ATV PRODUCTS
frequency synthesis up to 2 GHz

Try these ideas for the 23- and 13-cm bands

Digital frequency synthesis in the Gigahertz and higher range offers output frequency stability equal to that of the reference crystal and better than that available from dielectric resonator oscillators (DROs). This article describes a simple, low-cost synthesizer built around a Plessey PLL programmable frequency synthesizer IC. The circuit provides a frequency source for use in a variety of applications including a local oscillator and the input for a frequency multiplier. My hope is that the basic circuit will encourage experimentation with more sophisticated frequency loading methods such as from microprocessors or computers.

Circuit description

The heart of the circuit shown in fig. 1 is the SP5051/DG synthesizer. With a 4.0-MHz reference crystal, the SP5051 synthesizes frequencies between 64 MHz and 2.048 GHz, with a 125-kHz minimum step size. The reference crystal frequency is divided by 64 and then by 16 to provide a 3.90625-kHz reference frequency. The VCO output is applied to a divide-by-32 prescaler with a minimum sensitivity of 100 mV at 2 GHz. The prescaler output is applied to the programmable multi-modulus divide-by-M counter. When the lock is locked, the M counter provides an output which is frequency- and phase-locked to the 3.90625 reference frequency. The pin configuration of the SP5051 is shown in fig. 2 and a block diagram is shown in fig. 3.

The divide ratio is specified using 16-bit serial data entry, where 14 bits drive the programmable M counter and the two most significant bits specify the control select outputs. Data bits are loaded into the storage register on the low-to-high data clock transition only when the chip select input is also high. Chip select should be timed to go high during the low period of the data clock to prevent false data loading. Figure 4 shows data format and timing requirements. In the circuit shown in fig. 1, LEDs are tied to the control outputs to demonstrate their state; in actual practice, these outputs might be used to select alternate band VCOs or to control LNA polarity. Table 1 shows control select data versus the control output states.

Because the SP5051 is a 5-volt device, an external NPN transistor is driven by the charge pump output, providing the 0- to 30-volt swing necessary to drive the variable capacitance diode in the VCO. During data entry, the charge pump output is disabled by the chip select signal, thereby preventing the generation of spurious output frequencies. The output of the M counter may be monitored at pin 12 at ECL voltage levels if a 6.8-kΩ resistor is connected between pin 12 and ground.

As in the entire SP5000 family of synthesizers, the SP5051 uses mixed ECL and I2L technologies on the same substrate. Separation of the +5 volt and ground supplies reduces the interaction between circuit sections, but it requires that all supply pins be connected and that both +5 VDC lines be decoupled with quality capacitors near the device itself.

The VCO

While there are several excellent commercial VCOs available in the desired 1.5- to 2-GHz range (including the Avantek VTO 8150, for example), prices in the $100 area preclude their use in low-cost applications. The design shown in fig. 1 was developed using BB405 TV tuning diodes (2 pF at 25 volts, 16 pF at 1 volt) and a standard Siemens BFR34A transistor. The cost of both components is just a few dollars.

By Douglas R. Schmieskors, Jr., WA6DYW, 4633 Old Ironsides Drive, Suite 250, Santa Clara, California 95054
In fixed frequency oscillators, the resonant circuits and decoupling capacitors would be made by using sections of transmission line, but the frequency variation required in this VCO requires the use of conventional components. The series inductance of most capacitors at 2 GHz becomes a major portion of the resonator circuit, and unless care is used in the layout, decoupling is degraded.

The tuning voltage from the 2N3904 is applied through a 47-k resistor to the variable capacitance diodes. These diodes form a series-resonant circuit with the 0.250-inch wire link and the various lead inductances. The 390-pF capacitor provides dc isolation from the collector decoupling, while the 330-ohm resistor also provides some feedback to help stabilize the bias. The 22-k resistor laid directly across the transistor from base to collector sets the bias at about 15 mA, while the emitter is soldered directly to ground to prevent emitter decoupling problems.

Output is coupled from the collector using a 27-ohm

Table 1. Control select decoding

<table>
<thead>
<tr>
<th>Control select data</th>
<th>Control outputs pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>215 214</td>
<td>6 7 8</td>
</tr>
<tr>
<td>0 0</td>
<td>H H H</td>
</tr>
<tr>
<td>0 1</td>
<td>H L H</td>
</tr>
<tr>
<td>1 0</td>
<td>L H H</td>
</tr>
<tr>
<td>1 1</td>
<td>H H L</td>
</tr>
</tbody>
</table>

Fig. 2. Pin connections — top view.
They said I couldn't work DX with just 100 watts. Especially with a radio that has less than 1000 switches on the front panel.

But the truth is, I'm working lots of DX, more than some of these blockbuster types, thanks to my Yaesu FT-747GX.

You see, my no-nonsense FT-747GX was designed with me in mind, so I can hop around the band fast to nail those DX stations. While the other guys are warming up their amplifiers, I'm working the new country!

My FT-747GX has a super receiver, with a directly-driven mixer for great overload protection. And, Yaesu included the CW filter in the purchase price (I used the money I saved on postage for the QSL cards!).

And my FT-747GX is loaded with other features. The receiver works from 100 kHz straight through to 30 MHz, and it's a fantastic shortwave broadcast receiver. I can use all twenty memories for that alone! Plus it's got dual VFOs. A noise blanker. Split frequency operation for the pile-ups. And scanning up the band helps me check out openings as they happen.

I just put in the optional crystal oven, and next month I'm going to pick up the FM board. I can't wait to tell my buddies I worked England on a repeater!

And with the money I saved when I bought my FT-747GX, I got a second ten-meter antenna for satellite work on the high end of the band. I use my personal computer to tell me what satellites are going by, and the computer even sets the frequencies on the radio for me.

Now my friends are getting FT-747GX rigs, too. I knew they'd figure out my secret weapon sooner or later. But now I'm setting the pace!

Thanks, Yaesu. You've made a rig that makes sense.

Yaesu USA 17210 Edwards Road, Cerritos CA 90701 (213) 404-2700. Repair Service: (213) 404-4884. Parts: (213) 404-4847. Prices and specifications subject to change without notice.

"They laughed when they saw my radio. Then they saw my logbook."
fig. 3. SP5050/1 block diagram.

DRSI
DIGITAL RADIO SYSTEMS, INC.

The next era in Packet Radio is just over the Horizon
resistor and another 390-pF capacitor, while a 33-ohm and a second 27-ohm resistor act as an attenuator prior to the synthesizer input. A coupling link is used to tap off some of the output for connection to a spectrum analyzer or counter.

Standard G10 fiberglass circuit board was used, but board capacitance prevented mounting the resonance-determining components on the board. Teflon™ board would undoubtedly make the oscillator more stable and easier to assemble. Layout with the fiberglass board is critical, and component lead lengths are kept as short as possible by mounting above the board surface.

operation

In most applications, the SP5051 would be supplied with frequency data by a microprocessor, but because a simple, stand-alone frequency source was desired, an extremely simple and unsophisticated circuit was designed to allow data entry from dip switches. The
The data clock for the SP5051 is taken from the Q4 output of the CD4060 14-stage counter-oscillator. The 74150 16:1 multiplexer is sequenced by the Q5-Q8 counter outputs and data from the multiplexer output is applied to the SP5051 data input. The Q9 output of the 4060 provides chip select to the SP5051. Closing the push-button switch causes the word programmed by the dip switches to be entered into the SP5051.

different reference frequencies

The SP5051 is specified to operate with a reference crystal frequency of 2 to 7 MHz. With 200 mV input to the prescaler, the SP5051 has been found to operate to more than 2.5 GHz. To determine a new reference crystal frequency, \(f_R \)

\[
f_R = \frac{f_{\text{MAX}}}{312}
\]

and

\[
f_{\text{STEP}} = \frac{f_{\text{MAX}}}{2048} \times 125
\]

where \(f_{\text{STEP}} \) equals the new minimum step size in kHz and \(f_{\text{MAX}} \) equals the desired maximum frequency in MHz. Thus, the maximum operating frequency or the minimum step size may be varied within the reference crystal and maximum input frequency ranges of the device.

Another version of the SP5000 family, the SP5060/DG, offers a fixed frequency output of 1.024 GHz based on a 4.0-MHz reference crystal. No data, enable, or clock inputs are required. It can be seen from the formulas above that about 1.8 GHz maximum can be obtained with the SP5060 and a 7-MHz crystal. Other versions of the SP5000 family offer higher input sensitivity, fixed frequency outputs for up-conversion to standard TV channel frequencies, and smaller step sizes.

A very generalized idea for adding microprocessor control, LED frequency display, and remote control to an SP5051-based tuning system is shown in fig. 5. The processor drives the LED segments directly, and buffer transistors are used to enable the LED anodes. The desired operating frequency is entered into the processor from either the local or remote keyboard, and the look-up table then provides the correct serial word to the synthesizer.
RF POWER AMPLIFIERS

• Lowest NF GaAs FET Preamp
• Finest Quality Military Construction
• Off-The-Shelf Dealer Delivery

For the past five years, Amateurs worldwide have sought quality amplifier products from TE Systems. Renowned for the incorporation of high quality, low-noise GaAs FET preamplifiers in RF power amplifiers, TE Systems offers our fine line of products through select national distributors.

All amplifiers are linear (all-mode), automatic T/R switching with adjustable delay and usable with drive levels as low as ½ Watt. We incorporate thermal shutdown protection and have remote control capability. All units are designed to ICAS ratings and meet FCC part 97 regulations. Approx. size is 2.8 x 5.8 x 10.5” and weight is 5 lbs.

Consult your local dealer or send directly for further product information.

TE SYSTEMS
P.O. Box 25845
Los Angeles, CA 90025
(213) 478-0591

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Model</th>
<th>Freq. MHz</th>
<th>Power Input</th>
<th>Power Output</th>
<th>NF-dB Gain-dB</th>
<th>DC +Vdc Power A</th>
<th>RF Conn.</th>
</tr>
</thead>
<tbody>
<tr>
<td>050G</td>
<td>50-54</td>
<td>170</td>
<td>6</td>
<td>15</td>
<td>13.6</td>
<td>28</td>
</tr>
<tr>
<td>051G</td>
<td>50-54</td>
<td>170</td>
<td>6</td>
<td>15</td>
<td>13.6</td>
<td>25</td>
</tr>
<tr>
<td>140G</td>
<td>144-148</td>
<td>160</td>
<td>6</td>
<td>15</td>
<td>13.6</td>
<td>25</td>
</tr>
<tr>
<td>141G</td>
<td>144-148</td>
<td>160</td>
<td>6</td>
<td>15</td>
<td>13.6</td>
<td>25</td>
</tr>
<tr>
<td>210G</td>
<td>220-225</td>
<td>130</td>
<td>7</td>
<td>12</td>
<td>13.6</td>
<td>21</td>
</tr>
<tr>
<td>212G</td>
<td>220-225</td>
<td>130</td>
<td>7</td>
<td>12</td>
<td>13.6</td>
<td>16</td>
</tr>
<tr>
<td>441G</td>
<td>440-450</td>
<td>100</td>
<td>1.1</td>
<td>12</td>
<td>13.6</td>
<td>19</td>
</tr>
<tr>
<td>442G</td>
<td>440-450</td>
<td>100</td>
<td>1.1</td>
<td>12</td>
<td>13.6</td>
<td>19</td>
</tr>
</tbody>
</table>

Models also available without GaAs FET preamp (delete G suffix on model #). All units cover full amateur band – specify 10 MHz bandwidth for 420-450 MHz amplifiers.

Amplifier capabilities: 100-200 MHz, 225-400 MHz, 1-2 GHz, Military (28W), Commercial, etc. also available – consult factory.

SPECIAL PURCHASE FROM THE PUBLISHER ALLOWS US TO SLASH THE PRICES AMATEURS; RADIO ON THESE BOOKS

SOFTWARE FOR AMATEUR RADIO

by Joe Kasser, G3ZCZ
Packed with practical computer applications and tested and debugged programs that can be simply adapted to almost any microcomputer. Includes BASIC programming concepts as well as how to interface your computer to your radio, digital communications and more. 1984, 264 pages.

BUY ALL 3 SPECIAL $44.85 VALUE AT RETAIL

T-SPB $10.95
SAVE $33.90 WOW WHAT A DEAL!!

Please enclose $3.50 shipping and handling

Mini-Computer's 700 Series Light-Duty Tower

This self-supporting tower series has 136 models to choose from, ranging from 10' to 160' in height, and a variety of pipe mounts, anchor bolts, and accessories to help support your antennas.

Send for your free catalog and price list.

HAM RADIO MAGAZINE BOOKSTORE
GREENVILLE, NH 03048
603-878-1441

AMICROFLECT
5575 25th St. SE • P.O. Box 12985
Salem, OR 97309-0985
(503) 365-2677 • FAX (503) 365-4615
TX 510-599-0107
Alpha Delta Model DELTA-4
Lightning Surge Protected
4-Position
RF Coax Switch

Superior
RF switching and equipment
protection for amateur,
military and government
communications stations.

- Exclusive center "off" (ground) posi-
tion internally disconnects and grounds
all antenna circuits for maximum protec-
tion when operator is away from the
station — an Alpha Delta first!
- Incorporates the famous replaceable Arc-
Plug* cartridge for continuous protection
of the active antenna circuit. Unused
antenna circuits are automatically
grounded — an Alpha Delta first!
- The Model DELTA-4 Switch features a
custom designed cast housing with
constant impedance micro-strip cavity
construction for outstanding performance
through UHF. No lossy wafer switches
are used.
- Positive detent ball bearing switch drive
tells you which position you're in . . .
without guessing . . . without looking.
- DELTA-4 handles full legal power.
- Designed and produced in the U.S.A. by
Alpha Delta.

Model DELTA-4 (UHF connectors, 500 MHz) $69.95
Model DELTA-4/N (N-type connectors, 1.3 GHz) $89.95

Available from your local Alpha Delta Dealer or direct. Add
$4.00 shipping and handling (U.S.A. only). Exports quoted.

See Data Sheet for surge limitations.

ALPHA DELTA COMMUNICATIONS, INC.
P.O. Box 571, Centerville, OH 45459 • (513) 435-4772

You need batteries?
We've got batteries!
Call us for free catalog

E.H. YOST & CO.
EVERETT H. YOST K9XK
7344 TETIVA RD
SAUK CITY, WI 53583
ASK FOR FREE CATALOG
(608) 643-3194

BATTERIES
Nickel-Cadmium, Alkaline, Lithium, Etc.
INDUSTRIAL QUALITY
Packet radio protocols past and present

This is the last in a three-part series on the inner workings of Amateur packet radio. Part 1 introduced networking and protocols and included a discussion on the OSI/RM (Open Systems Interconnection Reference Model). Part 2 explored the first two layers of the OSI/RM and their applications to Amateur packet radio and examined the AX.25 level 2 packet radio protocol.

Part 3 concludes our look at the second OSI/RM layer with a discussion of other data link layer packet protocols. Also covered are the remaining OSI/RM layers. Special attention is paid to the network layer as current packet radio protocol development centers around networking.

data link layer

The V-1 protocol, commonly known as the VADCG protocol, was developed in 1979 by Doug Lockhart, VE7APU. That summer, Doug was working on a protocol for the VADCG (Vancouver Amateur Digital Communications Group) TNC (Terminal Node Controller) for use with a master station and multiple TNCs. The TNCs would connect to the station node where they would be assigned numeric addresses, and all communications between users would take place through this node.

A packet group in Hamilton, Ontario was working on developing TNCs and wanted a protocol that allowed the TNCs to be connected to each other directly rather than by way of a station node. Doug was asked if he could provide such a protocol which would free them to experiment with the TNCs and eliminate the need to set up a station node first.

Doug modified the protocol he was using by eliminating dynamic addressing and other facilities employed by the station node. The end result was a simple protocol allowing TNCs to connect directly to each other — a kind of kludge to meet a specific request. This temporary experimental protocol (called the VADCG-1 or V-1 protocol) gained popularity and eventually came to the United States when it was distributed with VADCG TNC kits. Doug has since completed a second VADCG protocol.

Though it was never Doug's intention, the V-1 protocol achieved popularity in the United States and became a packet radio standard because it was the only one around that actually worked.

The VADCG protocol used in the United States was not identical to the one Doug developed for the Hamilton packet operators. The protocol, as it was first used in Canada, allowed for up to 254 numeric addresses and each station would have one assigned beforehand. When Hank Magnuski, KA6M, put the United States' first all-digital simplex packet repeater (now called a digipeater) up in California on December 10, 1980, he used a modified version of the VADCG protocol. A portion of the address space was used to support digipeater control, thus reducing the total number of user addresses from 254 to 32.

The modified version of VADCG protocol used in California became the standard in the United States. Doug was approached several times about making the protocol an international standard, but he consistently resisted this as he saw VADCG as a temporary "testing" protocol too limited for widespread use. These limitations would later cause packet groups in the United States to develop alternate data link level protocols such as AX.25.

By Jonathan L. Mayo, KR3T, 3908 Short Hill Drive, Allentown, Pennsylvania 18104
Wide Dynamic Range and Low Distortion – The Key to Superior HF Data Communications

- Dynamic Range > 75 dB
- 400 to 4000 Hz
- BW Matched to Baud Rate
- BER < 1 X 10^-5 for S/N = 0 dB
- 10 to 1200 Baud
- Linear Phase Filters

Real HF radio teleprinter signals exhibit heavy fading and distortion, requirements that cannot be measured by standard constant amplitude BER and distortion test procedures. In designing the ST-8000, HAL has gone the extra step beyond traditional test and design. Our noise floor is at -65 dBm, not at -30 dBm as on other units, an extra 35 dB gain margin to handle fading. Filters in the ST-8000 are all of linear-phase design to give minimum pulse distortion, not sharp-skirted filters with high phase distortion. All signal processing is done at the input tone frequency; heterodyning is NOT used. This avoids distortion due to frequency conversion or introduced by abnormally high or low filter Q's. Bandwidths of the input, Mark/Space channels, and post-detection filters are all computed and set for the baud rate you select, from 10 to 1200 baud. Other standard features of the ST-8000 include:

- 8 Programmable Memories
- Set frequencies in 1 Hz steps
- Adjustable Print Squelch
- Phase-continuous TX Tones
- Split or Transceive TX/RX
- CRT Tuning Indicator
- RS-232C, MIL-188C, or TTL Data
- 8, 600, or 10K Audio Input
- Signal Regeneration
- Variable Threshold Diversity
- RS-232 Remote Control I/O
- 100-130/200-250 VAC, 44-440 Hz
- AM or FM Signal Processing
- 32 steps of M/S filter BW
- Mark or Space-Only Detection
- Digital Multipath Correction
- FDX or HDX with Echo
- Spectra-Tune and X-Y Display
- Transmitter PTT Relay
- 8 or 600 Ohm Audio Output
- Code and Speed Conversion
- Signal Amplitude Squelch
- Receive Clock Recovery
- 3.5" High Rack Mounting

Write or call for complete ST-8000 specifications.

HAL Communications Corp.
Government Products Division
Post Office Box 365
Urbana, Illinois 61801
(217) 367-7373 TWX 910-245-0784

Tell 'em you saw it in HAM RADIO!
"Give your repeater something to celebrate!"

The new RC-96 controller for your repeater will make its day. And yours.

For you, remote programming will let you easily make changes to your repeater from anywhere without a trip to the hill. Change codes, autodial numbers, ID messages and more, with reliable storage in EEPROM memory.

Your users will love the outstanding patch and autodialer, with room for 200 phone numbers. The talking 5-meter will let them check their signal strength into the repeater. Plus support for pocket pagers, linking to other repeaters, and a bulletin board.

Your technical crew will appreciate the built-in keypad and indicators. And the ease of hookup through shielded DIN cables. With pots and DIP switches easily accessible at the rear of the unit. They'll be impressed by the gas discharge tube across the phone line and transient suppressors on each I/O signal to keep lightning from taking your system down.

And most important, your repeater will have a new sense of pride in being able to serve you better. You'll even hear it in its voice!

Something for everyone. A real party animal! The RC-96 Repeater Controller—the newest choice from ACC.

2356 Walsh Avenue, Santa Clara, California 95051 (408) 727-3330
The protocol had only two commands: connect and disconnect. To connect with another station, the user would type his callsign and a CTRL-X. A connect request frame would be sent containing the other station's call, the user's call, and the user's VADCG numeric address. The other station would respond with an acknowledgement including this numeric address and all information frames would then be sent with only the VADCG addresses. To disconnect, the user would type a CTRL-Y and a disconnect request would be sent. Once the disconnect request was acknowledged, the connection was terminated.

The VADCG protocol is still in limited use in Canada and Australia. It is similar to HDLC (High-level Data Link Control) in that numeric addresses are used. Because it is no longer widely used and of limited benefit to most packet operators, a detailed explanation of this protocol is not provided.

second VADCG protocol “V-2”

Doug Lockhart has continued developing link level protocols because, for various technical reasons, he does not feel that AX.25 is a viable link level protocol for the large scale development of packet radio. His second VADCG protocol, V-2, offers many improvements.

V-2 allows both full and half-duplex links. Multiple links are maintained along with some multiple protocol support. The number of numeric addresses has been significantly increased, and addresses need no initial coordination.

When the second protocol's specifications were published, TAPR (Tucson Amateur Packet Radio) compared them with the AX.25 protocol and found some notable variations but not enough to require changes in the current link level protocol. Some differences are: reduced address space, differentiation between user names (callsigns) and node addresses (numeric identifier), and no “network level” functions. V-2 is similar to SLDC, HDLC, AX.25, and V-1. It is designed to be implemented along with upper level protocols to establish a complete network.

other level 2 protocols

Several data link layer protocols have been used in Amateur packet radio. Two Canadian groups besides the VADCG developed viable packet systems with protocols and TAPR had its own data link layer protocol prior to the adoption of AX.25.

The Montreal group was using a combination COP/BOP (Character Oriented Protocol/Bit Oriented Protocol) with ASCII characters as frame delimiters. This system was operational in 1978 running at 4800 baud AFSK on 220 MHz.

The second Canadian group, based in Ottawa, used a polling protocol and was the first to develop the concept of a digipeater. Their system was running at 9600 baud FSK in 1980.

TAPR had a data link level protocol up and running shortly after their startup. Known as TAPR/DA (TAPR/Dynamic Addressing), this protocol was being implemented before the 1982 AMSAT/AMRAD protocol conference and was one of those considered. It was passed over in favor of AX.25.

networking

Current work in the United States is directed at level 3 network layer protocols. There are several systems under development today and most are based in level 3 of X.25.

The RATS (Radio Amateur Telecommunications Society) group in New Jersey is experimenting with one system; another is being developed by the FADCA (Florida Amateur Digital Communications Association) group. Right now these systems simply acknowledge packets being repeated through them (replace the end to end ACK of AX.25 with a point to point ACK), but they should soon contain routing tables that will automatically select the best route for a packet to reach its destination, transparently to the user.

Another more recent networking system is NET/ROM developed by Ron Raikes, WABDED, and Mike Busch, W6IXU. This protocol simply replaces the ROM (Read Only Memory) chip in any TNC-2 compatible TNC (Terminal Node Controller) and makes it a network node. Users can connect to other NET/ROM nodes as well as conventional stations with the benefit of point to point ACKs through the NET/ROM nodes. It also maintains routing tables to other NET/ROM nodes, so it is not necessary to specify a path between nodes.

TAPR’s latest project is a Network Node Controller (NNC) — a combination hardware and software device designed to serve as a network node in an Amateur packet network. It is actually a small but powerful computer system complete with microprocessor, memory, and external storage. There are four HDLC ports with flexible characteristics.

For instance, two ports might be configured for Bell 202 use on VHF, a third for 9600 baud on UHF, and a fourth for Bell 103 on hf. Thus a user may connect to the NNC on one port and route his packets out one of the others (this may be handled automatically by the NNC’s software). The NNC will acknowledge frames as they are received (a point to point acknowledgment).

network layer sublevels

The network layer (level 3) is usually divided into two distinct sublevels: 3A and 3B. Level 3A is controlled by the INTRAnet protocol and 3B by the
INTERnet protocol. INTRANet deals with communications around a single network node and user stations while INTERnet takes care of communication between network nodes.

Communications between individual users and their network node (INTRANet) will probably be through virtual circuits. A virtual circuit is a method of connecting stations using an abbreviated address field once a connection is established. The stations must be connected before communications can begin, and the addressing information contained in each transmission is decreased after the connection is made. The lack of complete addressing information forces each packet to take the same path through the network.

INTERnet communications are still under debate—they may be virtual circuits or datagrams. A datagram is a method of connecting two stations in which each packet sent over the network contains complete addressing information. Their advantage is that they may be dynamically routed through the network (i.e., the path of the connection may change) because they contain complete addressing information. The advantage of virtual circuits is that once the connection is established, the amount of packet space consumed by the address field can be significantly reduced.

Virtual circuits require more reliable, intelligent network nodes to "remember" the path of the connection. Datagrams may reach their destination despite failure of one or more network nodes by being dynamically routed around the nonfunctional ones. Once network nodes are fully implemented, a user from one area of the country can access a node and connect to any other station that the network reaches (similar to the telephone system).

transport and session layers

OSI/RM Levels 4 and 5 have also been under development for use in Amateur packet radio. A popular contender for the level 4 transport layer is TCP (Transmission Control Protocol). TCP is generally regarded as a complex protocol for dealing with inadequate or unreliable lower layer protocols. TCP also handles the session layer (level 5). Phil Karn, KA9Q, has developed a TCP implementation for packet radio use that can be run on microcomputer systems.

presentation layer

The presentation layer (level 6) is also getting some attention. The NAPLPS (North American Presentation Layer Protocol Syntax) graphics protocol provides a means for graphics transmission via packet radio. Other possibilities are FTP (File Transfer Protocol) and SMTP (Simple Mail Transfer Program).

application layer

The application layer is the seventh and final OSI/RM level. At this time, there are no true application layer protocols or systems operating or being developed for Amateur packet radio.

conclusion

To recap, we have finished our discussion of the OSI/RM applications to Amateur packet radio. Keep in mind that the OSI/RM provides an excellent frame of reference for designing a network, but is not cast in stone. Future Amateur packet radio operations might handle high-level protocols differently, but for now appear to be proceeding according to the OSI/RM.

This three part series has covered most aspects of Amateur packet radio networking and protocols. Although some of the concepts may be confusing, in-depth knowledge of networking and protocols is not a prerequisite to operating and enjoying packet radio.

If you have any questions or comments, write to me at the address listed or leave a message on CompuServe; my User ID is 72276.2276.

using the digital frequency counter: some pitfalls

The digital frequency counter has replaced earlier methods for measuring transmitter frequency. When used correctly, the counter gives nonambiguous readings at the press of a microphone button. Previous methods required operating dials, and, often as not extensive interpolation between dial points using subharmonics of the actual frequency meter reading. As might be expected, accuracy suffered on higher frequencies. When digital counters first made their appearance in the late 1950s and early 1960s they were extremely expensive. The first digital frequency counter that I can recall was a Motorola unit designed for use by their franchised communications shops. Priced at $4,800 the counter would operate only to 500 MHz.

The modern digital frequency counter is based on modern large scale integration (LSI) monolithic chips which make them much cheaper than earlier versions. On my home workbench there is a 600-MHz counter with specifications that make it legal for use in checking Citizen’s Band transmitter frequencies (0.005 percent for CB transmitters). The price? At retail I paid $129 and saw it for $30 less (brand new) at hamfests just last year. Expect to pay a bit more for a model with a temperature compensated crystal oscillator (TCXO) in the timebase, but I have seen a 600-MHz TCXO counter for less than $400. Like many electronic products, the performance is about the same as it was 20 years ago, but the price tag is significantly less. Consequently, the digital frequency counter is well within the means of many Amateurs, and should be a part of their workbench test equipment.

Another feature of the little DFC on my bench is its size and weight. Older versions of these instruments were heavy and large. The Motorola was state of the art in its day, but that was another era. It was “portable”, but I can attest to the fact that “portable” didn’t include carrying it up many flights of stairs to a rooftop repeater site! The 600-MHz counter I now use fits inside a winter coat pocket with space left over. At least three companies sell handheld counters sufficient for most Amateur radio applications.

One problem with digital frequency counters is that erroneous readings can result if they are used improperly. After describing some of the counter’s specifications, we will take a look at possible situations where even the best instruments will yield bad readings.

This article assumes you are familiar with the basics of digital counter circuits. A future column will look at various digital counter circuits and schemes, but for now we will deal with the instrument as a “black box”, instead of looking at the internal circuitry. We will, however, examine the block diagram of the digital frequency counter.

fig. 1. Block diagram of a digital frequency counter.
DTMF/steel keys! sealed gold contacts!

- COLOR: All keyboards come in BLACK.
- SPECIFY BROWN, WHITE, GREEN, BLUE, OR RED.
- Output level adj: Adjust to your wiring needs.
- Output range 0 to wide: Connect to VDC.
- Temperature range -20° to 160°.
- Waterproof, dustproof, shockproof, and tamper-proof.

CALL OR WRITE

P-7Y 12 KEY VERT. **$5.50**
P-7H 12 KEY HORIZ. **$5.50** FOR FREE CATALOG
P-8V 16 KEY VERT. **$5.75**

For the best buys in town call: 212-925-7000
Los Precios Mas Bajos en Nueva York.
digital frequency counters

Figure 1 shows the block diagram of a typical digital frequency counter. Remember that the definition of frequency is events per unit of time (EPUT). There are five main sections to the counter: Input Section (consisting of the input amplifier and trigger circuit), Main Gate, Decimal Counting Assembly, Timebase, and Control Section.

The Input Section acquires the signal and shapes it as needed by the digital circuits. This signal is anything from a simple sine wave to a highly complex waveform with high harmonic content. The input amplifier is designed to boost the level to a point where it can drive the trigger circuit, which shapes the signal into a single binary pulse for each cycle. The counter circuits are binary digital circuits, and will not operate properly when a sine wave or most other waveforms are applied. The trigger circuit is absolutely necessary to the proper functioning of the counter, and it is here that some of the problems occur.

In some UHF and up counters, the input section also contains a frequency divider to reduce the input signal frequency by a preset amount to a range that is compatible with the counter circuits. These stages are common in 1.3-GHz counters. Some dividers are an easy to use 10:1, while others are 2:1 or 5:1 (requiring some mental calculations).

The Decimal Counting Assembly (DCA) is the actual counter. Consisting of binary counters connected in divide-by-10 (decimal) configuration, and decoders/numerical displays, the counter increments one count for every input “event”. The number of decades (digits) sets the counter’s resolution.

The Control Section keeps the circuit operating properly. It resets the DCA to zero, and synchronizes the operation of the gating circuit.

The Timebase Section sets the “per unit of time” portion of the equation. This circuit produces a periodic output pulse to the Main Gate flip-flop, which in turn controls the Main Gate. The gate allows pulses into the decimal counter assembly for only a specified period, T. No other section of the frequency counter bears more responsibility for accurate operation under normal conditions than the timebase. Timebase quality is the main difference between lower priced counters and premium “commercial” or “professional” counters.

The timebase section is made up of a crystal-controlled oscillator operated at some frequency (1 MHz, 4 MHz, 10 MHz, etc.) higher than the output pulse rate required. The output of the crystal oscillator is frequency divided down to 10 Hz (0.1-second timebase) or 1 Hz (1-second timebase). When these frequencies are used to control the gate, pulses are allowed into the DCA for either 100 milliseconds or 1 second; the displayed reading is therefore events per 100 milliseconds, or events per second. In general, the frequency of the input signal is:

\[\text{Frequency} = \frac{\text{Counts on DCA}}{\text{Time (sec)}} \]

trigger circuits

The input signal is rarely a clean square wave at the level required for proper operation of the counter’s digital circuits. The signals may be too low in amplitude, or too noisy. The input signal is passed through at least two signal processing stages: an amplifier and a trigger circuit. The amplifier increases the signal from a low level to the 500 to 1000 millivolts typically required to operate the trigger circuits.

The trigger is used to produce a square wave or pulse wave output from a sinusoidal or irregular waveform input signal. The usual trigger stage is the Schmitt trigger. This type of circuit has a built-in hysteresis that is used to shape the waveform. Figure 2 shows normal operation of the Schmitt trigger on a sinusoidal waveform (operation is similar on non-sine waves). The output of the trigger circuit snaps HIGH when the input signal crosses a preset UPPER LIMIT threshold in a positive going direction, and remains HIGH until the input signal drops below the lower limit threshold in a negative going direction. The direction of signal change is an important part of the definition for this circuit’s operation.

The hysteresis window shown in Figure 2 is a critical parameter for correct counter operation, and is equal to \(V_U - V_L \). Incorrect setting of this window can cause erratic or erroneous counter operation. It is a fundamental rule that the input signal must cross both hysteresis limits before a “count” can occur. Some counters have trigger circuit controls allowing the user to position the window and/or set its width.

Figure 3 shows three conditions in which different settings of the hysteresis window are used. In fig. 3A we see a correctly adjusted trigger — both limits are crossed by the input signal, so counting occurs. But in fig. 3B the same signal has a dc offset component, the window remains the same, and no counting occurs. This situation occurs especially in low-cost counters that don’t allow adjustment of the trigger controls. Finally, we have fig. 3C in which the trigger control is set to position the hysteresis window below the signal, again resulting in no counting.
Gordon West's
21 DAY NOVICE
$19.95

CODE TAPES • 112 PAGE BOOK • HANDS CHART
ALL FCC FORMS • SAMPLE TESTS • PLUS MORE!
• 570 in equipment certificates from ICOM, KENNWOOD, & VAREL.
• Ham radio equipment “Wish Books”.
• AARL membership forms. PLUS ADDITIONAL ITEMS
• Hotline for student questions.
• Course completion certificate.

Alpha Delta
Model DELTA-4
Lightning Surge Protected 4-Position RF Coax Switch
• Exclusive center “off” (ground) position.
• Uses ceramic Arc-Plug® protector.
• Micro-strip circuitry—no wafer switch.
Model DELTA-4
(UHF Connectors) $69.95
Model DELTA-4/N
(N-type Connectors) $89.95

FREE SHIPMENT MOST ITEMS UPS SURFACE

All Major Brands in Stock Now!
CALL TOLL FREE (800) 854-6046

Tell 'em you saw it in HAM RADIO!
VOU CAN OPERATE SIX BANDS WITH ONE CONTROLLER
1. HF ALL BAND TRANSCEIVER
 GREAT PRICE!
2. HF SUPERIOR GRADE TRANSCEIVER
 SALE! CALL FOR PRICE
3. A Models 25W, H Models 100 W
 IC-275A/275H, 138-174 MHz
 IC-375A, 220 MHz
 IC-475A/475H, 430-450 MHz
 LOW PRICE!
4. The Latest in ICOM's Long Line of HF Transceivers
 CALL FOR LOW, LOW PRICE
5. NOW! RAPID DELIVERIES
 COAST TO COAST
 FROM STORE NEAREST YOU
 25 MHz-1300 MHz
 IN STOCK FOR IMMEDIATE DELIVERY
6. YOU CAN OPERATE SIX BANDS WITH ONE CONTROLLER!
 2 MTR 25/45W, 440 MHz 10 MTR, 6 MTR, 220 MHz & 1.2 GHz
 10 MEMORIES
 ARE YOU READY FOR 1.2 GHz OPERATION?
7. HAND-HELD VHF/UHF
 IC-02AT IC-03AT IC-04AT
 2 MTR 220 MHz 440 MHz
 IC-2AT IC-3AT IC-4AT
 Stock for Immediate Delivery
 For Stock Closest To You
 CALL TOLL FREE (800) 854-6046

All Major Brands in Stock Now!

Bob Ferrero W6RJ
President
Jim Raftery N6RJ
VP So. Cal Div
Anaheim Mgr.

ANAHEIM, CA 92801
7320 W. La Palma
(714) 761-3033 (213) 660-2040
Between Disneyland & Knotts Berry Farm

ATLANTA, GA 30340
6021 Buford Hwy
(404) 263-0700
Larry, Mgr. WD4AGW
Doraville, 1 mi. north 011-205

BURLINGAME, CA 94010
999 Howard Ave
(415) 342-5767
George, Mgr. W6DGSV
5 miles south on 101 from SF

OAKLAND, CA 94606
2210 Livingston St
(415) 534-5751
Al, Mgr. W6B60
175 5th Ave /175 18th Ave

PHOENIX, AZ 85015
1702 W. Camelback Rd
(602) 342-3515
Bob, Mgr. K7RTH
East of Hwy. 17

SAN DIEGO, CA 92123
5375 Kearny Villa Rd
(619) 560-5450
Tom, Mgr. KM6K
Hevy 163 & Claremont Mesa Blvd

VAN NUYS, CA 91411
6265 Sepulveda Blvd
(818) 988-212
Al, Mgr. K6YRA
San Diego Hwy at Victory Blvd

FREE SHIPMENT Most Items UPS Surface

CALL TOLL FREE (800) 854-6046
Toll free including Hawaii. Phone Hrs. 7:00 am to 5:30 p.m. Pacific Time. California, Arizona and Georgia customers call or visit nearest store.
California, Arizona and Georgia residents please add sales tax. Prices, specifications, descriptions subject to change without notice.

April 1988
Some instruments have a trigger level control allowing the user to adjust the window's position over a continuous range. Some models have a trigger switch that allows selection of three alternatives: Preset (usually centered about 0 baseline), + (window above 0 baseline), and - (window below 0 baseline). A trigger amplitude control makes it possible to change the window's width (i.e., the value of $\left(V_U - V_L\right)$) in fig. 2.

counter errors

Though several types of errors occur during digital frequency counter operation, they tend to fall into two general categories: inherent and signal related errors. Inherent errors are a function of the quality, age, history, and built-in design factors of the individual counter. Little can be done about them if the counter is poorly designed unless you are willing to spend some money. On the other hand, signal related errors are often correctable, or at least ignorable, through the proper manipulation of input sensitivity, trigger level, and amplitude controls.
Two major sources of inherent error in all frequency counters are: timebase error and one-count ambiguity.

The timebase error is expressed in terms of a percentage, or in parts per million. The error from the timebase inaccuracy is directly reflected in all measurements of frequency and period. For example, suppose a 1.00-MHz timebase is off by 30 Hz and is 1,000,030 Hz instead of 1,000,000 Hz. This is an error of 30 parts per million (30 ppm), which in percent is

\[
\frac{1,000,030 - 1,000,000}{1,000,000} \times 100\% = 0.003\%
\]

The measurement error due to timebase inaccuracy is constant regardless of the frequency being measured. That is, there will be a 0.003 percent error at 1 kHz or 10 MHz. For example, a 21.390-MHz (15-meter) signal would be measured with an error of

\[
21.390 \text{ MHz} \times \frac{30 \text{ Hz}}{\text{MHz}} = 641.7 \text{ Hz}
\]

This means that a counter reading 21,390,000 would indicate an actual frequency between (21,390,000 - 641.7) = 21,389,358.3 Hz and (21,390,000 + 641.7) = 21,390,641.7 Hz. If the timebase frequency is 30 Hz high, the reading will be low, and if the timebase frequency is 30 Hz low, the reading will be high.

Total timebase inaccuracy is the calibration error that occurs when the timebase is initially adjusted at the factory (or last properly re-calibrated), plus or minus factors like short and long term, temperature, and line voltage stability.

The initial error is directly related to the quality of the laboratory standard used at the factory or metrology laboratory. Proper standards, depending upon the quality of the counter, might be a WWV or WWVH broadcast (not high quality), a 60-kHz WWVB broadcast, or a cesium or rubidium beam standard traceable to the National Bureau of Standards (NBS).

The short term stability is the timebase oscillator frequency drift per day, while long term stability is the drift rate per month (sometimes called the aging rate). The temperature change is the timebase frequency change over a temperature range, usually specified as 0 to 50 degrees C for commercial and Amateur grade counters. The line voltage change is the frequency change over a ± 10 percent change in applied line voltage.

Temperature variation can be corrected by using an oven controlled crystal oscillator, or a temperature compensated crystal oscillator (TCXO). The latter is popular and practical for the majority of Amateurs. These changes are probably the most common modifications to improve the operation of low-cost counters. The problem of line voltage change is solved by making certain that the line voltage is regulated. It should be noted that some battery operated counters do exhibit this difficulty. The solution is to use a three-terminal IC voltage regulator to set the power supply voltage for the counter, instead of the internal battery pack.

There are four general classes of timebase used in counters: ac line, room temperature crystal oscillator, temperature controlled crystal oscillator, and oven controlled crystal oscillator. The first of these is found in only the least expensive counters, and incorporates the 60-Hz (50 Hz overseas) ac line frequency as the timebase. The problem is that the “60 Hz” is only marginally accurate over the short term. Although the power company maintains that its frequency is very accurate, that claim is valid only when integrated over a 24-hour period. The 60-Hz referenced counters are useless for measuring transmitter frequencies. The room temperature crystal oscillator is used on many, perhaps most, counters that Amateurs buy and offers only marginal accuracy and stability. The TCXO and oven controlled are best suited for accurate measurements. Although the oven was once the favorite, the TCXO type performs well and is inexpensive.

The one-count ambiguity is caused by a lack of synchronization between the input signal and the timebase. In some readings, a single cycle of the input signal may “escape” detection by the decimal counting assembly, so the reading is off by one count in the least significant position. The ± 1 count ambiguity produces an error inversely proportional to the frequency being measured and the gate time:

\[
\text{Error} (%) = \frac{100\%}{fT}
\]

Where:

- \(f \) is the measured frequency in Hertz (Hz)
- \(T \) is the timebase “gate time”, in seconds

EXAMPLE: Find the percentage error due to ± 1 count ambiguity of a 2-MHz signal using a gate time of 1 second.

\[
\text{Error} (%) = \frac{100\%}{2,000,000} = 0.0005\%
\]

The error is ± 1 count no matter what frequency is being measured, so the error decreases for higher frequencies.

The ± 1 count error should not be confused with last digit bobble, seen on some counters, even though the two are related. In this form of error, the least significant digit bounces back and forth between two values because it can’t decide which value is correct. This error is seen on most counters, but is especially noticed on counters displaying only the most significant several digits. For example, my counter has a six-digit display, but measures frequency to 600 MHz. If a frequency is 21.390 MHz the reading might be “21390.0.” But suppose the actual frequency is 21.389502 MHz? In this case, there is an ambiguity that may translate as a bobble between 21390 and 21389.

Signal related errors are problems (mostly in triggering) caused by poor quality or complex waveform signals. For example, don’t even try to measure the frequency of an amplitude modulated or SSBSC signal! Most of these errors result from hysteresis crossing problems, or noise on the signal. Trigger errors occur because the input signal crosses the hysteresis win-
solve this, adjust the trigger control lower on the pulse so the triggering limits are "A" and "B". To solve this, adjust the trigger control lower on the pulse so the triggering limits are "A" and "B" as shown.

Figure 5 shows a sine wave signal with severe harmonic distortion. If the trigger window is at "A" but not at "B", triggering occurs at "A" but not at "B". Trigger control should be adjusted to "B".

and there is no problem. But, if the trigger window is at "A" the counter will double trigger, producing an erroneous count.

In some cases, the sensitivity of the
counter input amplifier is simply too great. In those cases strong signals will drive the input amplifier into distortion and produce some of the problems discussed here. That is why it’s a good idea to use a counter with an input sensitivity control, or conversely, an external attenuator if the counter is too sensitive. I plan to present a series of attenuators and pads useful for rf measurements and other applications in a future column.

The material presented here is based in part on *Elements of Electronic Instrumentation & Measurement* by Joe Carr, K4IPV, published by Prentice-Hall/Reston at $23.95. Although out of print, a limited number of hardback copies are available from the author at $15.00 postpaid. Contact J. Carr, POB 1099, Falls Church, Virginia 22041.

Ham Radio Mail Lists

- **Self-stick 1x3 labels**
- **NEWLY LICENCED HAMS**
- **ALL NEW UPGRADES**
- **UPDATED EACH WEEK**

Total List = 462,728 (ZIP sorted)

Price is 2.5 cents each (4-up Cheshire)

Buckmaster Publishing

Mineral, Virginia 23117

703-894-5777

NEMAL ELECTRONICS

- Complete Computer Cable, CATV Cable, semi-rigid cable, telephone cable, crimping tools, D-sub connectors, heat shrink, cable ties, high voltage connectors.
- Commercial Accounts welcome- Quantity pricing * Same day shipping most orders
- Factory authorized distributor for Alpha, Amphenol, Belden, Kings, Times Fiber

Call NEMAL

- 897-5777

THE BEVERAGE ANTENNA HANDBOOK

by Vic Misek, W1WCR

Recognized around the world as the definitive work on Beverage Antennas. W1WCR has spent countless hours developing new antenna ideas and optimizing the SWA (Steerable wave antenna.) Misek delves deep into the secrets of the single wire Beverage with helpful hints and tips on how to maximize performance based upon wire size, height above ground, overall length and impedance matching. Also includes information on center fed Beverages constructed out of several wire types. *CITY LOT OWNERS* Note: Misek has developed a Beverage for you too! Called the Micro-SWA, it is just 60 ft long. You get excellent directivity and null steering capabilities. Transformer design information for both termination and feedline matching is completely revised. © 1987 80 pages 2nd Edition

Softbound $14.95

Please enclose $3.50 for shipping and handling

Ham Radio BOOKSTORE

Greenville, NH 03048

603-67-1411

NEW

FULLY REVISED

Second Edition

BEVERAGE ANTENNA HANDBOOK

by Vic Misek, W1WCR

Recognized around the world as the definitive work on Beverage Antennas. W1WCR has spent countless hours developing new antenna ideas and optimizing the SWA (Steerable wave antenna.) Misek delves deep into the secrets of the single wire Beverage with helpful hints and tips on how to maximize performance based upon wire size, height above ground, overall length and impedance matching. Also includes information on center fed Beverages constructed out of several wire types. CITY LOT OWNERS Note: Misek has developed a Beverage for you too! Called the Micro-SWA, it is just 60 ft long. You get excellent directivity and null steering capabilities. Transformer design information for both termination and feedline matching is completely revised. © 1987 80 pages 2nd Edition

SOFTBOUND $14.95

Please enclose $3.50 for shipping and handling

Ham Radio BOOKSTORE

Greenville, NH 03048

603-67-1411
Convenient method of characterizing bit streams

I needed a convenient way to diagnose unsuccess-ful communication between two serially linked devices — a computer and printer, for instance. The serial data latch (SDL) I built monitors bit-stream or byte-oriented communication like RS-232.

Before developing the SDL, I used an oscilloscope and forced repetitive transmission of some character by one of the devices to confirm the number of data bits, stop bits, and parity. Watching the voltage levels on the oscilloscope trace to do this was inconvenient. The serial data latch catches one-time character transmissions and makes monitoring the dynamic transmission characteristics of the communication link easier. Combined with a break-out box to watch the more static “handshaking” lines, it is possible to have a complete system for determining the character of serial communication.

Most serial communication between personal computers conforms to the RS-232C standard. The SDL operation is described in terms of monitoring these signals. Any bit stream link may be characterized by modifying output interpretation.

You’ll need knowledge of RS-232 communication to understand the descriptions in this article. Two devices are used for RS-232 data transfer: Data Terminal Equipment (DTE) and Data Communication Equipment (DCE). The names DTE and DCE originated when terminals began to be linked via communication equipment (modems) to large host computers.

In the field of personal computers, such a distinction may be superfluous and distracting, but it is present.

Both DCEs and DTEs use DB-25 connectors with 12 pins on one row and 13 on the next, numbered from 1 to 25. Theoretically, a DCE should always use a female connector while the DTE uses the male plug.

Pins 4-6, 8, and 20 are used as data flow control signals. Articles have been written on how to correctly use these pins, but nonstandard methods abound in personal computer systems. The original standard was designed for 110-baud (bit/second) terminals and modems. With higher speed communications now commonplace, a cleaner method of data flow control (at least in terms of how many wires link the devices) is to embed data flow requests in the data instead of adding hardware. The XON/XOFF protocol is one method used by personal computer programmers.

With this protocol you need to connect only three signal wires (see table 1). To tell if a device is acting as a DTE or DCE, use a voltmeter to measure the voltage on pins 2 and 3, using pin 7 as the reference. One should provide a significant reading; the other will be somewhere near 0 volts. The pin transmitting the data provides the voltage reading. This works whenever the device is on — not just when it is ready to send or receive data.

All data is carried on pins 2 and 3; the DTE transmits on pin 2 and the DCE on pin 3. The functions of the wires connecting the two are named with respect to the DTE: pin 2 is called transmit data (TxD) and pin 3 receive data (RxD), even though each transmits data from its associated device.

By Brian J. Mork, KA9SNF, 215 Paddock Drive East, Savoy, Illinois 61874
Table 1. RS-232 standard dictates that a zero data bit ("space") be indicated by a voltage of 3 to 25 volts. A one data bit ("mark") is indicated by a voltage of −3 to −25 volts (voltages are to be measured into an open circuit load). Typically ±12 volts is used. The quiescent state of a data line (no data being sent) is marking.

pin 2: Voltage controlled by DTE and monitored by DCE ("TxD")

pin 3: Voltage controlled by DCE and monitored by DTE ("RxD")

pin 7: Reference for above two voltages

To transmit, by definition, is to control the voltage on a wire. To receive data, the voltage is monitored. All voltages are relative to pin 7 — the logical circuit ground at both the DCE and DTE. Pin 1 of the DB-25 connector, the frame or chassis ground, should be connected to the inside of the metal cabinet of the computer or peripheral. Many times only three wires are used; the pin 1 connection is neglected. If each device is designed properly and powered with a grounded three-prong AC plug, the level of communication link integrity and personal safety should be acceptable.

Data is transmitted on pins 2 and 3 in a bit serial format (one bit at a time). If ten bits need to be transferred, they are sent one after another at specific intervals in a predetermined order. Each bit of data is asserted for the bit time which is equal to the reciprocal of the bit/second (baud) rate. The SDL records the voltage level on pin 2 or 3 (your choice) relative to pin 7 at different times. The voltage level at these times reflects the zero/one status of the bits of the data being sent and the start and stop bits. The “different times” are defined by a baud rate generator (BRG) which, in this context, is a variable speed clock generating a frequency at 16 times the baud rate.

circuit description

Figure 1 shows a baud rate generator circuit capable of creating a 16x-out signal in the 1.2-to-307.2 kHz range for communication rates of 75 to 19,200 bits per second.

The 4.9152-MHz crystal combined with three inverting gates of U8 provide a TTL (transistor-transistor logic) compatible clock. Counters B, C, and D of U1 divide the signal by 8 and provide a 614.4-kHz symmetric clock at pin 11 of U1.

U2 and U3 are configured as down counters that decrement on the rising edge of the 614.4-kHz signal. At some point, the rising clock edge will cause them to decrement to 0. As a result of the subsequent falling edge, pin 13 of U3 goes low causing the counters to reload with a value set by the DIP (dual in-line package) switches SW0-SW7. As soon as the counters load, pin 13 output rises (the count is no longer zero), causing counter A of U1 to toggle the QA output on pin 12. By changing the DIP settings, a variable frequency symmetrical square wave is available as 16x-out.

The DIP switches can be interpreted as a programmable divisor. Take, for example, a divisor of 1. This is the smallest divisor possible, and provides the fastest 16x-out frequency. On U2 and U3, a divisor of 0 (all DIP switches closed) gives the same results as a divisor of 1, but this mode of operation is not recommended. Dividing the 614.4-kHz signal by 1 provides a 614.4-kHz signal to counter A of U1, which divides...
• Giant 3 day flea market • Exhibits
• License exams • Free bus service
• CW proficiency test • Door prizes

Flea market tickets and grand banquet tickets are limited. Place your reservations early, please.

Flea Market Tickets
A maximum of 3 spaces per person (non-transferable). Tickets (valid all 3 days) will be sold IN ADVANCE ONLY. No spaces sold at gate. Vendors MUST order registration ticket when ordering flea market spaces.

Special Awards
Nominations are requested for 'Radio Amateur of the Year', 'Special Achievement' and 'Technical Achievement' awards. Contact: Hamvention Awards Chairman, Box 964, Dayton, OH 45401.

License Exams
Novice thru Extra exams scheduled Saturday and Sunday by appointment only. Send FCC form 610 (Aug. 1985 or later) - with requested elements indicated at top of form, copy of present license and check for $4.35 (payable to ARRL/WEC) to: Exam Registration, 8830 Windbluff Point, Dayton, OH 45458

Hamvention Video
VHS video presentation about the HAMVENTION is available for loan. Contact Dick Miller, 2853 La Cresta, Beavercreek, OH 45324

1988 Deadlines
Award Nominations: March 15
Lodging: April 2
License Exams: March 26
Advance Registration and banquet:
USA - April 4 Canada - March 31
Flea Market Space:
Orders will not be processed before January 1

Information
General Information: (513) 433-7720
or. Box 110, Dayton, OH 45401
Flea Market Information: (513) 898-8871
Lodging Information: (513) 223-2612
(No Reservations By Phone)

Lodging
Reservations received after Housing Bureau room blocks are filled will be returned along with a list of hotels/motels located in the surrounding areas of Dayton. The reservation will then become the responsibility of the individual.

Hamvention is sponsored by the Dayton Amateur Radio Association Inc.

Dayton Hamvention Reservation Form
Dayton Hamvention - April 29, 30, May 1, 1988
Reservation Deadline - April 2, 1988

Name ____________________________
Address: ____________________________
City ______ State ______ Zip ______
Phone ____________________________

Arrival Date ____________________________
[] Before 6 pm [] After 6 pm

Departure Date ____________________________

Rooms: [] Single [] Double (1 bed, 2 persons)
[] Double Double (2 beds, 2 persons)

Deposit required - Room deposit must be paid directly to the hotel or motel by date shown on the confirmation form sent to you. Use canceled check for confirmation.

Mail to - Lodging, Dayton Hamvention, 1880 Kettering Tower, Dayton, OH 45425-1880

Advance Registration Form
Dayton Hamvention 1988
Reservation Deadline - USA-April 4, Canada-March 31

Name ____________________________
Address: ____________________________
City ______ State ______ Zip ______

Admission ____________________________
(Valid all 3 days)
Grand Banquet ____________________________
Women's Luncheon ____________
(Saturday) ____________________________
(Sunday) ____________________________
Flea Market ____________________________
(Max. 3 spaces) ____________________________
Admission ticket: ____________________________
be ordered with flea market tickets ____________

Total $ ____________________________
$10.00 at door ____________________________
$18.00 at door, if available

Make checks payable and mail S.A.S.E. to -
Dayton Hamvention, Box 2205, Dayton, OH 45401
Have you been trawling the bounding main for a new product? We have just netted it—the TP-38 microprocessor controlled community repeater panel which provides the complete interface between the repeater receiver and transmitter. Scuttle individual tone cards, all 38 EIA standard CTCSS tones are included as well as time and hit accumulators, programmable timers, tone translation, and AC power supply at one low price of $595.00. The TP-38 is packed like a can of sardines with features, as a matter of fact the only additional option is a DTMF module for $59.95. This module allows complete offsite remote control of all TP-38 functions, including adding new customers or deleting poor paying ones, over the repeater receiver channel.

Other features include CMOS circuitry for low power consumption, non-volatile memory to retain programming if power loss occurs, immunity to falsing, programmable security code and much more. The TP-38 is backed by our legendary 1 year warranty and is shipped fresh daily. Why not set passage for the abundant waters of Communications Specialists and cast your nets for a TP-38 or other fine catch.

$595.00 each
$59.95 DTMF module
$149.95 Digital CTCSS module

Now available with Digital CTCSS
the frequency by 2 to provide a symmetric 307.2 kHz-
signal as 16x-out. This is 16 times the fastest baud rate
commonly used with personal computers: 19,200
baud. Divisors for other baud rates can be found in
table 2. For nonstandard baud rates, use the formula:

\[
\text{DIVISOR} = \frac{19200}{\text{baud rate}}
\]

Round the divisor to an integer, convert it to binary
notation\(^4\) and set it on the eight DIP switches. SW0
is the least significant bit (LSB) and SW7 the most
significant bit (MSB).

Single chip programmable clocks are available and
might replace the 3-112 chip baud rate generator
described above. I designed the BRG using ICs I know
are commonly available.

The input section shown in fig. 2 conditions the TTL
or RS-232 data from one of three data sources and
provides normal and inverted data outputs.

The transistor buffers the nominally ±12 volt data
lines, inverts the polarity and converts the signals to
TTL compatible voltage levels. If nothing is connect-
ed to the DB-25 connectors, the transistor outputs
marking status. The schematic calls for an MPS3394,
but most NPN signal transistors will work.

The optional TTL input is twice inverted and wire-
ORed with the transistor output. The double inversion
attempts to preserve most of the noise immunity of
the TTL gates by providing a locally (inside the SDL
box) generated clean signal. Special noise considera-
tions are needed because of the known voltage drop
of the diode between U8e and U8d. Almost any ger-
manium signal diode can be used in this application.
The schematic calls for a 1N34A.

Using a transistor and a diode OR gate sacrifices
simplicity as compared to RS-232 receiver/voltage
converters like the Motorola 1489 and a TTL OR gate.
But, the circuit as shown can accept both TTL and
RS-232 signals with "automatic selection" — plug in
the one you want to use.

The remaining circuitry (fig. 3) provides clocking
logic and latches the data to be displayed on the LEDs.
U5a and U5b act as a flip-flop. When the input data
goes low (a start bit), the flip-flop output is reset low,
releasing U4a to count pulses from 16x-in. U4a is con-
figured as a divide-by-16 counter providing a symmet-
ric QD output equal to the baud rate.

Halfway through the bit time (eight oscillations of
the 16x-in), Q0 goes high, causing U6 and U7 to shift
in new data. After the full bit time, Q0 goes low and
U4b increments by one. Halfway into the next bit time,
QD goes high again and shifts in the next data bit.
This shift-and-count continues until U4b reaches 12
(both Qc and QD outputs go high). U5d causes the
flip-flop to go high, holding U4a in a cleared state.
The data line may continue to change, but no more data
is shifted into the LED shift registers. Opening the reset
switch clears U4b, allowing the next start bit to cause
12 more bits to be latched.

The latched, inverted data is displayed on the LEDs
by using the parallel outputs of the shift registers. If
the data bit was a 1 (inverted data was low
TTL) the
corresponding LED will light. I call for 300-ohm cur-
rent limiting resistors in the schematics, but used
390-ohm resistors because they were available. You
can get a brighter display by lowering the resistor
values to a minimum of about 100 ohms.

The power is supplied by a 1/2 ampere (minimum)
5-volt supply. I used a three terminal fixed-voltage
regulator (7805) based circuit, but you can use any
equivalent power supply. If you choose a 7905, mount
it on a heat sink as it will be sourcing current near ca-
Table 2. DIP switch settings for common baud rates. See the text for calculation of settings for non-standard baud values.

<table>
<thead>
<tr>
<th>Bits/second (baud rate)</th>
<th>DIP switch settings (76543210)</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>11111111 1 (1 = open)</td>
</tr>
<tr>
<td>110</td>
<td>10101111</td>
</tr>
<tr>
<td>300</td>
<td>01000000</td>
</tr>
<tr>
<td>1200</td>
<td>00010000</td>
</tr>
<tr>
<td>2400</td>
<td>00001000</td>
</tr>
<tr>
<td>4800</td>
<td>00000100</td>
</tr>
<tr>
<td>9600</td>
<td>00000010</td>
</tr>
<tr>
<td>19200</td>
<td>00000001</td>
</tr>
</tbody>
</table>

Table 3. Power connections, ground connections, and unused pins for all ICs.

<table>
<thead>
<tr>
<th>type</th>
<th>+5 volts</th>
<th>Ground</th>
<th>Not connected</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>7493</td>
<td>5</td>
<td>10 4,6,7,9,13</td>
</tr>
<tr>
<td>U2</td>
<td>74191</td>
<td>16</td>
<td>8 2,3,6,7,12</td>
</tr>
<tr>
<td>U3</td>
<td>74191</td>
<td>16</td>
<td>8 2,3,6,7,12</td>
</tr>
<tr>
<td>U4</td>
<td>74393</td>
<td>14</td>
<td>7 3,4,5,10,11</td>
</tr>
<tr>
<td>U5</td>
<td>7400</td>
<td>14</td>
<td>7 8,9,10</td>
</tr>
<tr>
<td>U6</td>
<td>74164</td>
<td>14</td>
<td>7 - none</td>
</tr>
<tr>
<td>U7</td>
<td>74164</td>
<td>14</td>
<td>7 10,11,12,13</td>
</tr>
<tr>
<td>U8</td>
<td>7404</td>
<td>14</td>
<td>7 - none</td>
</tr>
</tbody>
</table>

My version of the SDL was built on three perfboards. The largest holds the power supply and clocking logic of fig. 3. The long thin LED display board, the BRG (with the block of dip switches), and all "external" connections branch off this main board. The BRG board also supports the slide switch shown in fig. 2.

operation

The first half of this section describes how to set up the BRG/SDL for use; the second explains how to interpret the information. Normal setup of the SDL involves plugging it in, providing a clock signal, and connecting it to a data source or between two devices (it passes the data unaltered). Block diagrams of different ways to use the BRG/SDL are shown in fig. 4.

The data to be latched may come from one of three places: pin 2 or 3 of the DB-25, or the TTL input. RS-232 connections may be provided to either the male or female connectors (see table 1) if pin 2 or 3 or the DB-25 is used as a data source. Either connector may be used as input and the other is then available as output. With switch SW8 you can monitor either the DTE or DCE transmissions (pin 2 or 3, respectively).

The TTL input won't normally be used, but does
A RACE ON THE EDGE OF TIME
Radar — The Decisive Weapon of WW II
by David E. Fisher

A Race On The Edge Of Time reads like a thriller but is based upon painstaking and comprehensive research by the author. In fact, Fisher argues rather convincingly that radar was the crucial factor that allowed the allies to win the war and that radar has played the same imporant role in our current military and political environment. Filled with fascinating facts and turns of history that could have changed the war's outcome, anecdotes about the personalities involved in the development of radar and other military insights. Also includes radar development post WWII and how it will influence future battles. Illustrated with rare photographs and diagrams.

□ MH-21088 Hardbound $19.95

Please enclose $3.50 shipping and handling.

ham radio BOOKSTORE GREENVILLE, NH 03048 603-678-1441
allow direct connection to the TTL compatible serial outputs of universal asynchronous receiver-transmitters (UARTs) like the 8250 or 8251 (avoiding the hassle of converting to RS-232 signals if they aren’t otherwise available). The TTL input is measured against the SDL common (pin 7 of the DB-25 or equivalently the TTL-gnd input). Quiescent TTL data line state is high or “marking” with the start pulses going to low or “spacing” status.

You should connect either an RS-232 or TTL source. If you connect both, the circuit will not be damaged, but the results on the LED display may not be as described below.

Connect the 16x-out and 16x-in to use the internal BRG (figs. 4A, 4C, and 4F). To use an external clock, leave 16x-out disconnected and connect the clock to 16x-in. Be sure to provide a good voltage reference for the TTL-compatible clock input. If the clock is relative to the same logic ground as pins 2 and 3 (the two grounds are connected inside the peripheral or computer and are available on pin 7) and the DB-25 is connected, you only need one wire. You can often access the 16x clock by taking the cabinet cover off the data source (your computer or other device) and connecting 16x-in to an appropriate integrated circuit pin (pin 9 of an 8251 operating in the 16x mode6 or pin 15 of an 8250, for example). This is shown in fig. 4B. If the clock ground and pin 7 ground aren’t connected via the DB-25 connector, two wires must be carried from the clock source (figs. 4D, 4E, and 4G). In this case, connect the clock reference to the TTL-gnd input (which in turn is still connected to pin 7 of the DB-25 connector inside the SDL). Although this project allows the versatility of external clock sources, the integral BRG is normally used.

You must set the eight-pin dip switch to use the internal BRG. Settings for common baud rates are shown in table 2. A formula for nonstandard baud rates is provided in the circuit description section of this article.

After setting up the clock and data sources, plug in the SDL. No switch is provided — the SDL is always on. The LEDs show random on-and-off status and data input will be ignored. Reset the SDL by pressing the reset button. As soon as the data line goes to spacing status, a start bit is occurring, and 12 consecutive bits will be latched to the display.

When accepting RS-232 data, the LED on the far right should always be off, corresponding to the start bit, which is sensed when the data line goes from marking to space status. If it is on, either the SDL is malfunctioning, the baud rate of the transmitter is too fast, or the BRG is set too slow. This happens because subsequent data bits arrive too rapidly and get latched as the start bit.

Moving from right to left, the next eight LEDs reflect the data sent (assuming 8 data bytes — otherwise the next seven LEDs for 7 bits of data, and so on). Since the LSB is always sent first by RS-232 standard, the bit next to the start bit is the LSB. By referring to an ASCII table, you can determine what data was sent by the computer.

fig. 4. Illustration of several possible methods for using the SDL/BRG. Probably the most common setup is shown in A. See text for more complete setup instructions.
HAN STATION

P.O. Box 4405
220 N. Fulton Ave.
Evansville, IN 47710

Store Hours
MON-FRI: 9AM - 6PM
SAT: 9AM - 3PM
CENTRAL TIME

SEND A SELF-ADDRESSED STAMPED ENVELOPE (SASE) FOR NEW AND USED EQUIPMENT SHEETS

WARRANTY SERVICE CENTER FOR:
ICOM, YAESU, TEN-TEC
FOR SERVICE INFORMATION CALL
(812) 422-0232
MONDAY - FRIDAY
9:00 AM - 12:00 NOON

YAESU

FT-767
- HF/VHF/UHF Base Station
- Plug-in Modules for 6m, 2m, 440 MHz
- Loaded with Features

FT-727R
- Two Affordable Radios in One
- 2m/440 MHz Handheld
- 5W on Both Bands
- Ten Memories
- Multi-Scan Systems
- Battery Saver

ICOM

IC-761
- Top-Of-The-Line High Performance HF Transceiver
- Built-In Power Supply
- Built-In Automatic Antenna Tuner
- SSB, CW, FM, AM, RTTY
- 160-10m General Coverage Receiver

PARAGON

- Full Featured Synthesized HF Transceiver
- General Coverage Receiver
- 100w Output
- SSB, CW, FSK, Optional FM
- 62 Programmable Memories
- Made In USA

ALINCO

ALD-24T
- Dual Band Mobile 140-149.995 MHz/440-450 MHz
- 21 Programmable Memories
- 25 Watts Output on Both Bands
- Loaded with Extra Features

Hy-Gain & Cushcraft

Spring Antenna Specialists
- Verticals,
- Monobanders,
- Tribanders,
- VHF, OSCAR, Yagis

Call For Savings Today!

VHF/UHF AMPS

- High VSWR and Overdrive Protection
- 5 Year Warranty, 6 Months on RF Transistors
- All Units have GaAsFET Receive Pre-amps

Terms:
- Prices Do Not Include Shipping.
- Price and Availability Subject to Change Without Notice
- Most Orders Shipped The Same Day
- COD's Welcome

For Orders and Price Checks Call 800-523-7731

Indiana and Information Call 1-812-422-0231

5-1000 MHZ PREAMPLIFIERS

<table>
<thead>
<tr>
<th>Model</th>
<th>NF G</th>
<th>P(1dB)</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>WLA21m</td>
<td>3dB</td>
<td>13dB</td>
<td>8dBm</td>
</tr>
<tr>
<td>WLA22m</td>
<td>4</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>WLA23m</td>
<td>4</td>
<td>23</td>
<td>12</td>
</tr>
<tr>
<td>WLA24m</td>
<td>3</td>
<td>20</td>
<td>18</td>
</tr>
</tbody>
</table>

430/50MHZ CONVERTER

RCX431 .15µV 20dB 99

QCyer

The Most Used Accessory in Any Station

The QCyer's effortless, lightning-fast frequency selection brings out your best as a Ham. No matter what your Amateur Radio interest—contesting, DXing, ragchewing, or mobile—you'll do it better, faster, and easier with a QCyer Order one today, and start enjoying your rig's full potential.

Order the KV-QCyer for the Kenwood 840, 840S, 840, 741, and 811, the 757 QCyer for the FT-757GX; the 757-II QCyer for the FT-757GXII; the 767 QCyer for the FT-767GX, or the 735 QCyer for the IC-735. (Kenwood rigs need the Kenwood IC-10 or IF-10 interface installed.)

Still only $99.50 plus $2.50 S&H (Visa/MC accepted) from:

Stone Mountain Engineering Company
Box 1573 • Stone Mountain, GA 30086
404-879-0241

WI-COMM ELECTRONICS INC.

P.O. Box 5174, MASSENA, N.Y. 13662
(315) 769-8334

VHF-UHF POWER DIVIDERS

RF power dividers provide the best way to feed in phase 2 and 4 antenna arrays to maximize system gain and at the same time reduce losses to a minimum. Covering 144 thru 1296 MHz, this series of VHF/UHF power dividers are premier RF devices designed for a long service life with low SWR and broad operating bandwidth.

- E-utilized aluminum body with a durable enamel finish in addition to silicone sealing at connector flanges results in a suggested unit for all array installations. Available with N-type connectors only; these units are unconditionally guaranteed for 2 years.

WILAM TECHNOLOGY, Div. of

WI-COMM ELECTRONICS INC.

P.O. Box 5174, MASSENA, N.Y. 13662
(315) 769-8334

April 1988
An unknown transmission rate can be determined if it is a "standard" one (as listed in table 2). To do this, set the BRG for 19,200 baud. Reset the SDL and send a delete character (all data bits are mark status — opposite from the start bit) through the latch. The first data bit LED (the one just left of the start bit) may be on or off. If it is off, the device is transmitting slower than 19,200 baud. Move the DIP switches to the 9600 baud positions. Reset the SDL and send another delete character. Continue decreasing the baud rate until the first data bit LED goes on. This corresponds to the standard baud rate being used by the data source.

To the left of the data bit LEDs is the stop bit display. It will be on. The stop bits (there must always be one or more) serve two functions:

- a time delay to allow the UART to collect bits into a coherent byte and make it available to the peripheral controller,
- to force the data line to a status different than the next start bit.

If there were no stop bits and a character ended with the line in start bit status, you could not tell when the real start bit of the next character was sent. When the next character's start bit immediately follows the stop bit, the stream of characters is moving at its highest speed — see the diagram for sending the word "ON" (ASCII decimal values 79 and 78 or 01001111 and 01001110 in binary) in fig. 5A. The stop bit(s) follow the start bit at different times depending on how many data bits there are. A parity bit, if there were one, would appear between the data and the stop bit and shift the stop bit one more bit time later.

LEDs left of the stop bit are extras and normally match it (are on). If these LEDs are off, another start bit was latched. For example, if the SDL were reset and the word "ON" was sent as in fig. 5A, you would see the LED pattern shown in fig. 5B.

By sending different characters and monitoring the LEDs, you can use the SDL to determine a baud rate and confirm the presence of start, stop, and data bits. Verifying the operation of a communication link is often part of solving a larger problem, and this device allows you to confirm or rule out a problem in this area.

If you build an SDL using my design or your own I'd love to hear from you. If you have any questions, just write. Please include an SASE if you want a reply.

references
6. Intel 8251 data sheet, Microsystem's Component Handbook, Volume II. Pin 9 can be programmed to be accepted as 1x, 16x, or 64x the baud rate.

ham radio

The XP-706-US Multiband Antenna

In the final analysis quality is less expensive

The unique design of the XP-706-US antenna system gives you MONOBAND PERFORMANCE in a Multiband beam. The antenna USES NO TRAPS of loading coils that rob power and limit bandwidth. Sommer Antennas use the FULL surface area of the elements on ALL bands.

Our commitment to use only the finest materials insures that your investment will last for years. Our system uses a Double rectangular boom, CAST aluminum element mounting brackets, all stainless hardware and a high power balun.

Monoband performance on a Multiband beam is yours when you move up to Sommer the last beam you'll have to buy. We believe Sommer is your best antenna value when compared to the construction and performance of other multi and monoband antenna systems.

H.J. Thaller Corp.
P.O. Box 5369
Spartanburg, SC 29304
(803) 576-5566

April 1988 65
NOVEX 701 HANDSET

* Handset w/PPT switch.
* Bracket w/DTMF, speaker & volume controls.
* Upgrade your 'mobile' image!

Specify YAESU, ICOM or KENWOOD.
HSC701Y, 1 or K...$79.95 + $4. UPS

NEW!

LAPEL MIC!

HW-10
* Clip-on lapel Mic/Earphone.
* PTT switch/battery powered.
(battery not included).
Specify ICOM, YAESU, KENWOOD.
Order: HW10I, Y or K.
INTRODUCTORY SPECIAL...$39.95

NEW!

DOCKING BOOSTERS

* GaAs FET preamp.
* Compact solid state
POWER Amplifier in
30 or 50 watt models
* ICOM, KENWOOD or
YAESU from:
$169.95 and up!
CALL FOR DETAILS.
MICROS & Standard
* Turn your HANDHELD into a Mobile Giant!

WP230 or WP250; Y, I, K + $4. UPS

NOVEX 537 SPK MIC

* Finally a speaker/mike
we can all afford!
* Specify YAESU, ICOM or KENWOOD.
DMC537Y, 1 or K...$19.95 + $4. UPS

NEW!

DATONG AUTOMATIC NOTCH FILTER

* Automatically notch out heterodynes, whistles.
* Get rid of 'tuner-uppers' on NET frequencies.
* 1 second is typical lock
time/cover 270 Hz to 3 KHz.
* Auto/Manual operation in
Notch or Peak modes.
ANF...$119.95 + $4. UPS

NEW!

DATONG MULTIMODE AUDIO FILTER

* SSB, SSB & PEAK, SSB & NOTCH, CW & RTTY!
* If you need an audio filter this is it!
FL2...$159.95 + $4. UPS
* The ultimate audio filter: same as
FL2 but with AUTO NOTCH!
FL3...$229.95 + $4. UPS

DATONG DIRECTION FINDER

* Doppler DF system for FM receivers.
* User attaches his own coax, antennas & speaker.
* Normal transceive operation even while DFing!
* 20 - 200 MHz, dependent on users equipment.
RF...$329.95 + $4. U.PS

COMPUTER INTERFACE

AEA PK 232

* Attach to any RS232 compatible
computer for CW,RTTY,ASCII,AMTOR,
PACKET and WEATHER FAX (Epson
MS-80/RX-80 for Facsimile).
* The PK 232 is THE UNIT to buy!
EEB includes the AC Adapter
#515122 with purchase!
PK232...$299.95 + $6. UPS

FREE 1988 CATALOG

SHORTWAVE!

CALL OR WRITE TODAY!

36 Pages over 300 items for the SWLer!

10 miles west of Washington, D.C.
Order Toll Free: 800-368-3270
Technical and VA Orders (703) 938-3350

STORE HOURS (Eastern):
Same as Order Desk Hours
Closed Mondays
Thursday 10 A.M. to 9 P.M.

ELECTRONIC EQUIPMENT BANK
516 Mill Street, N.E.
Vienna, VA 22180

ORDER DESK HOURS (Eastern):
MONDAY-FRIDAY 10 A.M. to 5 P.M.
SATURDAY 10 A.M. to 4 P.M.
Technical and VA orders call (703) 938-3350

HANDHELD SCANNER

220 MHz!
* Covers NOVICE 220 MHz band!
* 16 Memories/Scanning.
* Delay/Lockout/Priority.
* 26-30, 60-80, 113-178, 210-260,
410-520 MHz. NICAd power.
BJ200...$229.95 + $4. UPS

DIPMETER

* 1.5 to 250 MHz.
* 6 plug-in coils.
* Use as OSC for
receiver alignment.
* See the review in
"73" Magazine (nov, 87).
DM-4061...$79.95 + $4. UPS

RF SIGNAL GENERATOR

* 100 KHz - 150 MHz;
450 MHz on harmonics.
* RF output: 100 mV's.
SG-4100...$149.95 + $4.

SWR/RF ANTENNA METER

* Read SWR, RF power
and field strength.
* 10 or 100 watt range.
* 1.7 to 150 MHz.
SWR3P...$19.95 + $4. UPS

Please note we ship world-wide,
shipping charges not included,
and prices and specifications subject
to change without notice.

CALL OR WRITE TODAY!
microwave components and terminology: part 2

Last month we talked about rapid changes in the state of the art (SOA) — some older microwave components are either becoming extinct or moving much higher in frequency. Because their names, usefulness, and modes of operation are often lost during times of transition, the March and April columns are devoted to them.

In March our primary focus was microwave transmission lines and waveguides. This month we will discuss other microwave components and terminology.

couplers

There are many types of couplers used to monitor and couple energy into or out of a transmission line. The simplest are bidirectional and nothing more than voltage dividers using resistors, capacitors, or transformers as shown in figs. 1A, 1B, and 1C, respectively. In each case the value of the component can be adjusted for the desired coupling factor.

Bidirectional couplers are convenient for reducing power and monitoring the signals on a transmission line with little or no insertion loss to the primary source. The main disadvantages are that the output level is often inaccurate and varies with component value choice and VSWR on the main line.

Directional couplers, useful from hf through microwave, consist of two transmission lines loosely coupled together in such a way that a wave traveling in one direction in the main line excites a unidirectional wave in the other line. On the hf and VHF bands, hybrid couplers are fabricated with special transmission line transformers.

The difference in the rf level between the main line and the coupled port is called the coupling factor. It is usually specified in dBS, and easily controlled. Typical coupling factors are between 10 and 40 dBS. The lower the coupling factor, the greater the power loss through the coupler. For instance, a 10-dB hybrid coupler would have an insertion loss of at least 0.45 dBS and a 20-dB coupler only 0.05 dBS.

In an ideal directional coupler, waves propagate in one direction as shown in fig. 2A. Isolation between the output and the uncoupled ports is referred to as “directivity” and expressed in dBS. High values of directivity imply better performance, with an “average” coupler exhibiting 20-25 dBS directivity and a superior unit 30-40 dBS.

At UHF and below, directional coup-
CALL FOR ORDERS
1-800-231-3057
1-713-520-7300 OR 1-713-520-0550
TEXAS ORDERS CALL COLLECT
ALL ITEMS ARE GUARANTEED OR SALES PRICE REFUNDED

New Icom IC 781, Tradex wanted
Kenwood TH-215A, TH-25AT, Trade in your old HT

KENWOOD
TS740 — Call

Kenwood TS140S — Call for trade
New Kenwood TM-221A, 45W, mobile — Call
ICOM 2B4/TTM — Call

Icom 761 — Call
Shure 444D 54.95
HEIL BM10 Boom Mike 69.00
HEIL HMG Desk Mike 59.00
Isopole 144 MHz 44.95
Crashcraft 124 WS-164 MHz 33.00
Buttermilk HF, 80-10 vertical 125.00
Hudller 1-67 119.95
KL KHF World Classic Series Antennas — Call Ken
KL K 1.2-4L, DX 129.00
GE RV 44.00
12-2 meter on glass 49.95
New Larsen LM 4100 CO 5.00
Antec 2M, 5B, Mag. Mount Comp 25.00
Thousands of panel meters 3.95 up Call
8503 90.00
Aerovox 1000 pF 5000 Vdc through caps 1.95
Transformer 120 V Pri 1050 V D V 1A Sec 1 #18 Wire 50.00
100 mfd/450V Axial Cap 2.00
93ISP PL259 Silverplate 1.25
8201 5-F, Male 3.00
GE 6146B 13.95
3002 140.00
GE 12BY7A 7.00
KMU 12.95
6KD6 12.95
GAE PK 232 with new WX FAX 299.00
Kantronics KPC II 149.00
GAE Packet Terminal — Call
Kantronics KMA WX 299.00

USED EQUIPMENT
All equipment used, clean with 90 day warranty and 30 day trial. Some months full warranty and new equipment. Sales price refunded if not satisfied.

Call for latest used gear
(800) 231-3057
Porcelain 502 Guy Insulators (14) 3.39

POLICIES
Minimum order $10.00. Mastercard, VISA or C.O.D. All prices in UH, except as noted. Prices subject to change without notice. Items subject to prior sale. Call anytime to check the status of your order. Texas residents add sales tax. All items full factory warranty plus Madison warranty. Bird and Belden products in stock. Call today.

MADISON SHOPPER
High Performance vhf/uhf preamps

Every preamplifier is precision aligned on Arr's Hewlett Packard HP 8970 AHP346A state-of-the-art noise figure meter. RX only preamplifiers are for receive applications only. Inline preamplifiers are not switched (for use with transceivers) and handle 25 watts transistor power. Mount inline preamplifiers between transceiver and power amplifier for high power applications. Other amateur, commercial and special preamplifiers available in the 1-1000 MHz range. Please include $2 shipping in U.S. and Canada. Connecticut residents add 7-1/2% sales tax. C.O.D. orders add $2. Air mail to foreign countries add 10%. Order your ARR RX only or inline preamplifier today and start hearing like never before!

Advanced Receiver Research
Box 1242 • Burlington, CT 06013 • 203 582-9409

YOU... Make It Happen
ON THE AIR

Train to be a Radio or T.V. Announcer
Amazing secrets revealed
On the job training at Local Stations in your area. Keep your present job, train around your own schedule. No experience required. Tuition fee. CALL THE RADIO CONNECTION for free brochure!!!
Toll Free 1-800-541-0900
Couplers are often made up of coupling loops or short wires placed in the vicinity of a transmission line (see fig. 2B). Coupling is a function of the length (X) and spacing (S) of the probes to the main or inner conductor of the transmission line. Longer coupling lines (up to 0.25 wavelengths) and closer spacings to the main transmission line, X, equate to higher coupling and loss through the main line.

If the coupling line is very short, it takes the form of a magnetic (current) coupling. When it is long, typically 0.1-0.25 wavelength, it is an electric (voltage) coupling. The "monimatch" is a magnetic type of coupler which is usually more frequency sensitive and has only moderate directivity.²³

The quarter wave (fig. 2C)⁴ is the most common directional coupler used in the UHF and microwave region. It has a very constant output over approximately 30 percent bandwidth. Throughout this range the output and directivity of the coupled port are steady. Some construction examples are described in references 4 and 5.

Quarter-wave couplers can also operate at the third harmonic, so a 432-MHz coupler is probably useful at 1296 MHz. Commercial couplers are sometimes designed with multiple coupled sections in tandem, allowing them to work over extended frequency ranges. This kind of directional coupler usually has higher insertion loss and is considerably larger (in length) than narrower bandwidth types. Also note that many couplers are terminated internally and appear outwardly to be only three-terminal devices.

Couplers have many uses: one is to monitor power. Figure 3A shows a coupler used as a wattmeter monitoring the output of a transmitter. Figure 3B shows how a directional coupler can be used to monitor VSWR.⁵

The injection of local oscillator signals into a mixer is another microwave application for directional couplers (see fig. 3C). Couplers can also be used as output levelers for monitoring frequency, and on a system's input for signal or noise injection.

quadrature couplers

The quadrature, or 90 degree, is a special type of coupler often referred to as a 3-dB coupler. Its outputs are equal in amplitude, but 90 degrees out of phase (fig. 2D). When first introduced, quadrature couplers consisted of two very tightly coupled quarter-wavelength lines. In the simplest physical configuration, they were two very tightly coupled transmission lines (usually striplines) sandwiched together and separated by a thin dielectric.⁶

Other UHF and microwave equivalents like the Wireline™, branch-line, and Lange couplers are now popular since they are easier to build.⁷⁸⁹¹⁰ Sage Labs developed Wireline to provide a unique line section that can be conveniently cut to the proper length. It looks like a piece of shielded twin lead with the wires separated only by their enamel coating.

The branch-line coupler is shown in
fig. 2E. It is easy to construct, especially in microstrip. The Lange coupler, fig. 2F, was developed for applications where a small quadrature coupler was required in hybrid circuits.

Quadrature hybrids are popular for generating circular polarization and combining power amplifiers. Other applications and examples are described in references 7 through 10.

hybrids

The hybrid coupler is usually a device with either in phase (0 degree) or out of phase (180 degree) outputs. The “rat race” shown in fig. 2G is a common microwave version often used in balanced mixers.

Another hybrid is the Wilkinson in-phase power divider that provides two in-phase outputs of equal power level in isolation from each other. It is used where dual outputs are required, as in local oscillators and transmitter power division and addition.

circulators and isolators

Circulators and isolators may be among the most interesting microwave components. The basic configuration is called a circulator — a three or more port nonreciprocal device using microwave ferrite material and operating on the principle of Faraday rotation.

The basic coaxial microwave circulator has three 50-ohm ports illustrated in fig. 4A. RF entering port A travels in only one direction (clockwise as shown) to the adjacent port, B, with very low attenuation, typically 0.1-0.2 dB. If there is any mismatch to the device connected at port B, it will be reflected to port C. Any impedance mismatch at port C will cause a reflection back to port A and so forth, always traveling in the same direction.

Circulators are used to provide good impedance termination to a receiver or transmitter. To do this, the third or C port is terminated with a well-matched 50-ohm load (see fig. 4B). In this configuration it referred to as an isolator. The (reverse) isolation of a typical isolator is approximately 20 to 30 dB.

Figure 4C shows a typical receiver application that uses an isolator. Here both the antenna and the receiver always see a good impedance match regardless of the actual device VSWR. Figure 4D shows how to use an isolator in a transmitter application. The advantage is that the antenna VSWR can degrade significantly without affecting transmitter operation.

The arrangement in fig. 4D has another very practical Amateur application. FM repeaters are often located where there are high levels of rf, especially when the antenna is collocated on a tower with other transmitting antennas. Any rf entering the output of a transmitter, especially one with a solid-state final, will cause nonlinearities in the output stage and may result in the generation of spurious outputs that look like other transmitted signals. Though a problem in the early days of fm repeaters, this has been significantly improved using ferrite isolators.

The use of a circulator in a TR (Transmitter/Receiver) configuration is shown in fig. 4E. If there is sufficient isolation between ports, mechanical T/R relays are not required. Even if relays are required, the circulator will increase the isolation and thus the protection of the receiver.

Figure 4F shows the stabilization of free-running transmitters using the principle of injection locking. A stable source (typically a crystal oscillator driving a multiplier) is coupled through a circulator, resulting in a stabilized transmitter.

microwave amplifiers and oscillators

Older types of microwave amplifiers and oscillators abound. Many use vacuum tubes and were developed primarily as components of RADAR systems because the triodes, pentodes, and similar available tubes had long transit times. Newer tubes often used the transit time in achieving their normal operation. Earlier microwave vacuum tube types were the klystron, TWT (traveling wave tube), BWO (backward wave oscillator), and magnetron.

The Varian Brothers invented the klystron prior to World War II. The basic amplifier form has an input cavity resonator (called the buncher), a field-free drift space, an output cavity resonator (called the catcher), and a collector electrode. It requires a rather elaborate biasing scheme with floating supplies.

Klystrons are primarily used above 500 MHz and can yield high linear power gain (20-40 dB) at very high rf power levels at 30 to 40 percent efficiency in CW, SSB, or pulse modes. High-power klystrons are used by some Amateurs for power amplification on 1296 and 2304 EME.

The reflex klystron is a single cavity klystron configuration with a repeller. Often used as a low-power 1 to 20 milliwatt oscillator, reflex klystrons were popular in the early microwave days as local oscillators, pumps, and transmit-
QUALITY TEST GEAR
YOU CAN COUNT ON

$369.95*
20 MHz DUAL TRACE
Features component-sweep test circuit for resistors, capacitors, digital circuits and diodes—TV sync filter—high sensitivity—2 feature full overload protection—5X horizontal magnifier

$469.95*
35 MHz DUAL TRACE
Wide frequency bandwidth—optimal sensitivity—delayed triggering sweep—holdoff—ALF trigger—single sweep—TV sync magnification—XY or X-Y operation—HF noise reduction

$2495.00*
The COMMUNICATIONS SERVICE MONITOR THAT WORKS HARDER FOR LESS.
Introducing COM-3, the new service monitor designed by service technicians for service technicians. It works harder for less...giving you advanced testing capabilities at a very affordable price.

FEATURES: Direct entry keyboard with programmable memory Audio & transmitter frequency counter LED bar graph frequency/errone display 51-100 kHz output levels High reverse sensitivity, less than 5x at 100 kHz to 999,999 MHz Continuous frequency coverage Transmission protection, up to 100 watts CTs tone encoder, 1 kHz and external modulation

MINI-100 COUNTER
CT-70 7 DIGIT 525 MHZ
$119.95
Compact sized reliability and accuracy. This LCD digital multimeter easily fits in your pocket. You can take it anywhere. It features full overload protection, fast readouts, and automatic power-off function.

CT-90 9 DIGIT 600 MHZ
$139.95
Includes AC adapter
This multimeter has a wide range of features including automatic power-off, high and low range detection, and a large LCD display.

CT-50 8 DIGIT 600 MHZ
$189.95
Includes AC adapter
CT-125 9 DIGIT 1.2 GHz
$189.95
Includes AC adapter

RAMSEY FREQUENCY COUNTERS
Ramsey Electronics has been manufacturing electronic test gear for over 10 years and is recognized for lab quality products at break through prices. Our frequency counters have features and capabilities of counters costing twice as much.

PS-20 AUDIO MULTIPLIER
The PS-20, accurately duplicates audio signals up to 10 MHz. It provides a unique feature for measuring linearity and distortion of audio equipment. It has a built-in speaker for easy monitoring.

PS-10B 1 GHz PRESCALER
Extends the range of your counter to 10 GHz. It is designed for measuring the accuracy of counters costing twice as much.

MINI KITS—EASY TO ASSEMBLE—FUN TO USE—FOR BEGINNERS, STUDENTS AND PROS

TONE DECODER
A complete tone decoder with an optional VCO. The PS-500 features 300-5000 Hz selectable frequencies. Includes 100 VCD frequencies. Accepts external VCO input. Excludes tone decoder.

PRICE CUT
$5.95

COLOR DIAGRAM
A complete color-coded diagram with full instructions. Accepts external VCO input. Excludes tone decoder.

$8.95

VOICE ACTIVATED SWITCH

$2.95

LED Blinky Kit
An LED blinky kit provides a continuous light when a tone is detected. It includes all parts and instructions. Accepts external VCO input. Excludes tone decoder.

$5.95

MAX BLOWER
A complete Max Blower kit provides a continuous light when a tone is detected. It includes all parts and instructions. Accepts external VCO input. Excludes tone decoder.

$4.95

SUPER SLEUTH
A complete Super Sleuth kit provides a continuous light when a tone is detected. It includes all parts and instructions. Accepts external VCO input. Excludes tone decoder.

$7.95

MIC WIRELESS MINI
A complete Micro Wireless mini kit provides a continuous light when a tone is detected. It includes all parts and instructions. Accepts external VCO input. Excludes tone decoder.

$3.95

SIREN
A complete Siren kit provides a continuous light when a tone is detected. It includes all parts and instructions. Accepts external VCO input. Excludes tone decoder.

$5.95

50 MHZ TIME BASE
A complete 50 MHz time base kit provides a continuous light when a tone is detected. It includes all parts and instructions. Accepts external VCO input. Excludes tone decoder.

$4.95

TELEPHONE TRANSMITTER
A complete Telephone Transmitter kit provides a continuous light when a tone is detected. It includes all parts and instructions. Accepts external VCO input. Excludes tone decoder.

$9.95

FMC RECEIVER
A complete FM Receiver kit provides a continuous light when a tone is detected. It includes all parts and instructions. Accepts external VCO input. Excludes tone decoder.

$14.95
Morgan Hill, CA
NEW IMPROVED HEAT SINKS FOR ALL MIRAGE AMPLIFIERS
One of the biggest problems with transistor amplifiers is thermal overload — during extensive key down operation the amplifier will shut down due to excessive transistor heat build up. MIRAGE'S new heat sink uses a special manufacturing process to imbed copper in the aluminum body. Copper is 2.5 times more conductive than aluminum and ensures more rapid and even heat dissipation throughout the heat sink. By reducing the amount of heat in the amplifier, transistor life has been significantly improved. The extra margin of safety means you don't have to worry about shutting down during long wined FM conversations or RTTY operation.

Morgan Hill, CA
NEW 360 WATT 2 METER AMPLIFIER
Here's a new amplifier active 2 meter operators will want! Designed with the DX'er in mind, the new B3036 amplifier gives a full 360 watts output with just 30 watts of drive power. Also includes a low noise (.5dB) GaAs FET pre-amplifier with a helical resonator front end. Uses MIRAGE'S new copper/aluminum high dissipation heat sink with built-in fan for extra protection and heat transfer. The unit measures approximately 13" x 5 3/8" and is powered by 13.6 volts DC at 40 amps. Carries the MIRAGE five year warranty, one year on transistors.

Morgan Hill, CA
HEAVY DUTY BOOM FOR LARGE HF ANTENNAS
Designed to meet the challenge of the severest of weather conditions, KLM now offers a heavy duty boom for its line of HF antennas. The boom is a 3" diameter by .25" wall size piece of aluminum. Instead of swaged ends to join pieces, the heavy duty boom uses splice sections that insert into the boom. The splices are made from the same rugged aluminum as the boom and are designed to meet or exceed the most demanding Amateur requirements. Contact your KLM dealer for this special order item.

QSO PRO
A Easy-To-Use Logbook
Program For Your
MS-DOS® Compatible Computer
★ Complete Cursor Control
★ Room to store complete address information
★ A Real-Time Log
★ Total QSL's by State
★ 900 QSO's on floppy, hard disk limited by space available
See us at Dayton Booth 447.

$39.95*
*Ohio resident must add 5% sales tax.

Make Checks Payable To:
MORLAN SOFTWARE
P.O. Box 2400
East Liverpool, Ohio 43920-2400

GENERATE YOUR OWN AMATEUR RADIO EXAM
ALL ELEMENTS
Novice through Extra with the latest Exam syllabus questions.
Use MS-DOS, IBM compatible, computers
$19.95 per element post-paid
SEE US AT DAYTON
contact:
DeVRY AMATEUR RADIO SOCIETY
3300 N. Campbell
Chicago, ILL 60618
(312) 929-8500 ex 2221
ters. The klystron, a more modern version of the tube, is a single cavity klystron with lower gain but higher efficiency.

The TWT’s invention was first announced in 1946, but the tube was not available commercially until 1949 when Varian Associates released an S-band (2-4 GHz) amplifier. It differs from conventional tube amplifiers in many ways. First, the power supply positive terminal is grounded. All the control elements of the tube (filament, cathode, grid, anode, and helix) must be floated with respect to the collector, which is at ground potential. DC voltages are usually regulated and often in the 1 to 2,000 volt range. Gain is very high, 30 to 50 dB, and typically flat over an octave bandwidth (e.g., 2-4 GHz).

The TWT can be designed as either a moderately low noise figure (3-7 dB) amplifier or a linear power amplifier for transmitters with power outputs exceeding 100 watts up through 10 GHz. Many TWTs are being replaced (at least at lower power levels) by SOA solid-state amplifiers because of the complexity of the power supply, moderate size, and high cost. This is a boon to Amateurs who often find “obsolete” TWTs on the surplus market! These tubes have recently been used as transmitter output power amplifiers for Amateur EME records on 3.4 and 5.6 GHz.

The BWO, sometimes called the Carcinotron, arrived in 1963. An outgrowth of the TWT amplifier, it is inherently a low output power (1-10 milliwatts) oscillator. Its name, backward wave oscillator, reflects the fact that electrons travel in a direction opposite from that in which the wave is propagated.

BWOs can be used at extremely high (100 GHz) frequencies. They are not too prevalent in the Amateur market but were widely used as the tuneable local oscillator in the early spectrum analyzers. Many Amateurs are probably familiar with the magnetron — the typical power source in the 2450-2500 MHz microwave ovens found in today’s kitchens. Primarily an oscillator that can be used either in CW or pulse modes, it played an important part in the development of high-power levels for the early radars.

In the magnetron, the electron flow from the cathode to the plate is mainly influenced by a magnetic field applied perpendicular to the cathode-anode path and by the field effects produced by the anode cavities. It uses large magnets, high voltages, and is usually operated in the pulse mode. However, as discussed in reference 15, the type in consumer microwave ovens is not suitable for Amateur operations.

microwave solid-state amplifiers and oscillators

Solid-state devices, like vacuum tube microwave amplifiers, are widely used although they appeared later. Most applications use one of the many types of microwave diodes discussed in references 16 and 17.

The earliest solid-state microwave applications were mixers and detectors, first with germanium, and then silicon and gallium arsenide diodes. Development of the paramp (parametric amplifier), or negative resistance amplifier, followed using varactor diodes. The late Sam Harris, W1FZJ, was influential in creating paramps for the Amateur. Noise figures as low as 1.0 dB were reported for the first time making EME possible on 1296 MHz.

The paramp uses a pump or extra oscillator typically operating at five to ten times the amplifier frequency. Amateurs first used low-power reflex klystrons, and later Gunn diode oscillators (reference 17). Microwave circulators made paramps more stable by providing a good impedance match regardless of the load.

Microwave tunnel diodes (Esaki diodes) were also used as microwave detectors and oscillators. They were subsequently developed into negative resistance amplifiers, but the noise figures were only moderate and the dynamic range was poor. Most microwave amplifiers and oscillators now use silicon bipolar transistors, GaAs (Gallium Arsenide) FETs, and HEMTs.

other microwave diode applications

Diodes can be used as multipliers. Common types are varactors and SRDs (step recovery diodes). Noise diodes can be used for testing the sensitivity or noise figure of amplifiers. Limiter diodes are common in the microwave region as protection for other solid-state devices. This is particularly important since mechanical relays have less isolation at higher frequencies.

filters and filter elements

Discrete components like coils and capacitors are normally used on frequencies up through UHF, but as you go higher in frequency, capacitors often become inductive. Low values of inductance are also difficult or impossible to realize. For these reasons cavity-type filters became popular in the microwave region. Figure 5A shows a re-entrant cavity. The capacitor is often eliminated by adjusting the length of the inductor or center element.

Waveguide is often used as you go higher in frequency. Multiple section filters can be fabricated by placing partitions in a waveguide. Holes or cutouts are made to couple energy between sections; these openings are called irises. Screws or tuners are placed in the walls of the waveguide to tune the elements (reference 21).

Other filter elements are evolving. One is the YIG (yttrium iron garnet) sphere — a small resonant crystal structure that can be electronically tuned through the application of a magnetic field. The SAW (surface acoustic wave) resonator made from crystals is another being used for filters, replacing crystal resonators. It typically operates between 50 and 1000 MHz. Of more recent popularity are dielectric resonator materials used in DROs (dielectric resonator oscillators) or in tuners, as shown in fig. 5C.

microwave power measurement

It is frequently necessary to determine microwave power levels. At very low levels (less than 10 milliwatts) this is often done with detector diodes as described in reference 17. At higher...
levels, a diode detector can be placed at a lower power level using a directional coupler as in fig. 3A.

Several other devices were developed to accurately measure microwave power up to the 100 milliwatt level. One, the bolometer (a resistor with a high temperature coefficient of resistivity), is usually mounted in a probe and connected to a bridge circuit which senses the rf power levels. Common bolometers are the thermistor, a resistance element made of a semiconducting material with a negative temperature coefficient; and the barretter, a metallic resistor with a positive temperature coefficient. They are used with detection circuitry that senses resistance change versus power level.

The calorimeter is another instrument used for microwave power measurement up through 10 watts. Usually a self-contained unit without an external probe, it detects heat through a self-balancing bridge that has identical temperature sensitive resistors in each leg.

microwave frequency measurement

Wavemeters were used to measure microwave frequencies before the advent of accurate meters. Two basic wavemeter types are the absorption and reflective. The absorption type usually has a resonant filter and built-in detector which could consist of a frequency calibrated re-entrant cavity (see fig. 5A) inserted in the test setup in fig. 6A and followed by a diode detector.

Reflective wavemeters are still used, especially at microwave frequencies. They are usually made up of a tuned circuit lightly coupled to a waveguide (fig. 6B). When tuned to the operating frequency, they extract a minute amount of power causing a slight power drop in the main line. Because of its appearance, this wavemeter has been nicknamed the “coffee grinder”.

Lecher and slotted lines are two other kinds of microwave frequency measurement gear. Lecher lines are primarily reserved for the VHF and UHF frequencies where balanced lines are used.

The slotted line is practical in UHF and microwave regions and can be found at flea markets (see fig. 6C). It is made up of a detector and narrow slot cut in a coaxial line or waveguide. A detector probe is inserted a short distance into the slot (and hence the line) to extract a small amount of rf power. If there is a slight impedance mismatch on the line, the probe can be moved back and forth between the voltage peaks. The physical distance traveled can be measured and converted to frequency.

impedance matching

Impedance matching is a big problem, especially at microwave frequencies. Old-timers will jokingly say that they used to tune a waveguide by denting it with a ballpeen hammer — believe it! Nowadays screws or dielectric strips are often placed in waveguides or near a transmission line. Many of these techniques are explained in reference 21.

Discontinuities, imperfections, impedance changes, connectors, and fringing effects are particularly troublesome on the microwave frequencies because the wavelength is so short. As a result, greater attention must be paid to minor details, especially rf connectors, 22, 23.

An older type of waveguide impedance matching used a sliding short — basically a piece of waveguide shunted across the line. These adjustable shorts are common at flea markets. Reference 21 describes this technique.

VSWR can be measured with directional couplers but the slotted line shown in fig. 6C can also be used. Expensive network analyzers are becoming popular especially with those who work in well-equipped microwave labs. These analyzers present impedance in the graphical form of a Smith chart.

No discussion of impedance matching would be complete without mentioning the Smith chart, developed by the late Philip H. Smith at Bell Labs. Smith charts basically convert Cartesian coordinates to a system of two orthogonal families of circles. The lines represent contours of constant reactance and resistance. Its use makes impedance matching much easier.
Unadilla Amateur Antenna Baluns
For 20 years, preferred by Amateur, Commercial and Military Operators
First with built-in lightning arrester-minimizes TVI, maximizes power handling

W2AU 1:1 & 4:1
Only $17.95

W2DU-HF
Only $19.95

W2DU-VHF
Only $19.95

W2AU Broadband Ferrite Core Baluns
For medium power (1000 watts RF)
W2AU 1:1
* 50 to 50 or 75 to 75 ohms
* For dipoles, V's, beams, quads
W2AU 4:1
* 200 to 50 or 300 to 75 ohms
* For high impedance antennas such as folded dipoles

W2DU Non-Ferrite Very High Power Baluns
W2DU-HF (High Power)
* 1.8-30 MHz
* 3000-9000 watts with 1:1 antenna SWR
* 1500-5000 watts with 2:1 antenna SWR
W2DU-VHF (High Power and Extended Range)
* 30-300 MHz
* 2000-4000 watts with 1:1 antenna SWR
* 1200-2400 watts with 2:1 antenna SWR

The Perfect Dipole!
Only $65.00
Complete Kit
- W2AU 1:1 Balun
- Pair of W2VS KW-40 Traps
- Pair of End-sulators
- 125' #14-7 Copper Wire
- Complete Installation & Pruning Instructions

Purchases from any of over 300 dealers nationwide or order direct

<table>
<thead>
<tr>
<th>Product</th>
<th>Price (ea.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIPOL</td>
<td>$65.00</td>
</tr>
<tr>
<td>W2AU 1:1</td>
<td>$17.95</td>
</tr>
<tr>
<td>W2AU 4:1</td>
<td>$17.95</td>
</tr>
<tr>
<td>W2DU-HF & W2DU-VHF</td>
<td>$19.95</td>
</tr>
</tbody>
</table>

Total Order $...... Shipping $2.00 Total $......

Name
Address
City State Zip
Phone ()

[] VISA [] Mastercard
Card # ____________
Expires [] Check [] Money Order

To order or request informational brochure, call
617-475-7831

Unadilla/Reyco/Unline is now a Division of UNADIL/A/ANTENNAS/ETC.

DIRECTOR, R. F. HARDWARE ENGINEERING

Pegasus Message Corporation is a fast-growing young company deploying a nationwide R.F.-based communications network. We are currently seeking a Director, R. F. Hardware Engineering, to fulfill leadership and managerial roles in directing outside vendors developing mobile and fixed R. F. systems, and also to take part in systems engineering for the Pegasus network.

A BSEE degree is required, as well as a minimum of 10 years experience in R.F. engineering. An advanced degree would be a plus, as would experience as an amateur radio operator. Experience in the fields of VHF antenna design and mobile radio communications is also desirable.

We offer a competitive salary and benefits program, as well as the opportunity for equity participation in a rapidly growing and successful company. If you are interested in applying for this position, which will be based at our Herndon, Virginia office (near Washington, D. C.), please send your resume to:

Pegasus Message Corporation
Hallmark Bldg., Suite 187
13873 Park Center Rd.
Herndon, VA 22071
Attn: Ms. Jamie Seifert, Dept. 20
CTM is the ham radio and computer magazine with that “down home flavor”, dedicated to the practical aspects of Amateur Communications. Just starting out? You’ll find our well-illustrated tutorials friendly and open; we show you how. If your interest is in High Tech, you’ll find reviews and user reports of the latest thing to come down the pike and they are written so you can understand them too! If your interest is in training, you’ll find articles for ham radio, computers and emergency communications.

You’ll find it ALL in CTM

$18. year U.S. - 6 Months $10.
Mexico & Canada $32. year
Other Countries (air) $68. (Surface) $43.

There is always time for some friendly fun that you don’t need a license to enjoy — and appreciate...

Are you into Packet Radio? Thinking about it? Then you definitely need CTM! During 1987 we had 65 packet and packet related articles and that doesn’t even count the other HAM articles or the many Computer articles. The other four ham magazines* only had 26 packet articles during 1987. There’s something for everyone in CTM! Jump right in, you’ll find the natives friendly — and helpful, too!

*CTM™ 5 articles; Ham Radio™ 10 articles; QST™ 5 articles and 73™ 6 articles = 26 articles for 1987 for the other ham magazines...

NOW which do you need to
SUBSCRIBE?
CTM of course!

Hey LOOK!
Your Friends have been talking!

The Secret's Out!
attenuators and terminations

On frequencies below the microwave bands, attenuators and loads usually consist of a resistor or resistor network. This works fine since good carbon resistors exhibit low reactance. However, as you go higher in frequency, the reactance of most resistors becomes significant and it’s no longer a low VSWR (pure) resistance.

Some stripline/microstrip loads and attenuators are available. Manufactured using vacuum deposited nichrome or other suitable materials on a ceramic substrate, they are usually expensive and have frequency limitations. Because of this, other attenuator and termination methods had to be developed on the higher frequencies. Carbon or micro-wave ferrite-type devices were often used. One special attenuator method was developed for waveguide. It consists of inserting a blade or rotary vane of carbon into the waveguide as shown in fig. 7A.

Terminations are another story. Often they are lossy absorbers, not terminations in the true sense of a resistor. Termination fig. 7B shows one type consisting of a tapered section of lossy dielectric placed at the end of a waveguide. This type of attenuator can dissipate reasonable power since it’s larger than average discrete resistors, but will usually not operate below some cutoff frequency, typically around 1 GHz.

mixers

It wouldn’t be fair to skip over microwave mixers since many of the types used today in the VHF/UHF region originally evolved in the microwave region! In fact, one of the first solid-state mixers used a single 1N21 point contact-type diode which became the standard of the radar industry.16,17 Schottky/hot carrier diodes were first developed for microwaves and later for hf through UHF. Even the subharmonic pumped mixer (where the local oscillator is actually at one-half the normal frequency required) was first used on microwaves.

Balanced mixers with two diodes mounted in series across a waveguide have been around a long time. The Varian OrthoMode™ in fig. 8A was one of these. The magic “T” (see fig. 8B) was another popular waveguide-type mixer. As noted earlier, this configuration is actually a waveguide coupler. The rat race (fig. 2G) and the quadrature coupler (fig. 2D) are also used for driving balanced mixers frequently using waveguide.

microwave spectrum analyzers

These instruments really make the life of a microwave engineer a lot easier.
PORTABLE ANTENNA

MODEL AP-10
Designed for APARTMENTS MOTELS VACATIONS

$64.95
Add 5% Sales Tax Shipping and Handling

Quick Simple Installation. Operates on 2.6. 10. 15. 20. 30 and 40 meters. All coils supplied. Only 22-1/2 inches long. Weighs less than 2 lbs. Supplied with 10 ft. RG-58 coax and counterpoise. Whip extends to 57 inches. Handles up to 300 watts.

VSWR=1.1:1 when tuned
Write for more details and other B&W products

ALL OUR PRODUCTS MADE IN USA
BARKER & WILLIAMSON
Quality Communication Products Since 1932
At your Distributors. Write or Call:
10 Canal Street, Bristol PA 19007
(215) 788-5581

America's Weekly Guide to Satellite TV

The best in satellite programming! Featuring:
★ Over 120 Channels listed ★ Weekly, Updated Listings ★ Magazine Format ★ Complete Alphabetical Movie Listings ★ Sports Specials ★ Prime Time Grids ★ Specials ★ Programming Updates!

• Only $45.00 per year (52 weekly issues)
• 2 Years $79.00 (104 weekly issues)
• $1.00 for sample copy
*NC Residents must add 5% Sales Tax

Subscribe Today!
call toll free 1-800-234-0021
Visa® and MasterCard® accepted
OnSat PO Box 2347 Shelby, NC 28151-2347

W6SAI BOOKS

published by Bill Orr, W6SAI and Stu Cowan, W2LX

BEAM ANTENNA HANDBOOK
Completely revised and updated with the latest computer generated information on BEAM Antenna design. Covers HF and VHF Yagis and 10, 16 and 24 Mhr WARC bands. Everything you need to know. 204 illustrations. 268 pages. © 1985. Revised 1st edition
RP-BA Softbound $9.95

SIMPLE LOW-COST WIRE ANTENNAS
Primer on how-to-build simple low cost wire antennas. Includes invisible designs for apartment dwellers. Full of diagrams and schematics. 192 pages. © 1972. 2nd edition
RP-WA Softbound $9.95

ALL ABOUT CUBICAL QUAD ANTENNAS
Simple to build, lightweight, and high performance make the Quad at DX'ers delight. Everything from the single element to a multi-element monster. A wealth of information on construction, feeding, tuning and installing the quad antenna. 112 pages. © 1982. 3rd edition
RP-CQ Softbound $7.95

THE RADIO AMATEUR ANTENNA HANDBOOK
A wealth of projects that covers verticals, long wires, beams as well as plenty of other interesting designs. It includes an honest judgment of gain figures, how to site your antenna for the best performance, a look at the Yagi-Quad controversy, baluns, skimmers, and delta loops. Practical antenna projects that work! 190 pages. © 1978. 1st edition
RP-AH Softbound $9.95

Please enclose $3.50 for shipping and handling.
important VHF/UHF events
April 11 ARRL 144-MHz Spring Sprint Contest (Monday evening local)
April 13 New moon
April 16 EME peering
April 19 ARRL 220-MHz Spring Sprint Contest (Tuesday evening local)
April 21 Predicted peak of the Lynds meter shower at 1730 UTC
April 27 ARRL 432-MHz Spring Sprint Contest (Wednesday evening local)
April 29-May 1 Dayton Hamvention
May 4 Predicted peak of the Eta Aquarids meteor shower at 1900 UTC
May 6 ARRL 902-MHz Spring Sprint Contest (Friday evening local)
May 10 EME peering
May 12 ARRL 1296-MHz Spring Sprint Contest (Thursday evening local)
May 13-15 14th Annual Eastern VHF/UHF Conference, Nashua, New Hampshire (contact W1EJ)

May 15 New moon
May 21-22 ARRL 50-MHz Spring Sprint Contest (Saturday evening local)
May 26 ARRL 2004-MHz Spring Sprint Contest (Thursday evening local)

references
dx signal quality

Most DXers become quite proficient at copying weak, varying signals through QRM and noise. A greater occurrence of geomagnetic ionospheric disturbances with accompanying fading during the equinox season really makes one work. Studies on fading and signal quality may provide information allowing you to operate more effectively during this season.

Fading is characterized by the time interval between signal crests or troughs and by the amplitude change between these peaks and valleys, commonly called depth of fade. It is often accompanied by frequency distortion which is also used to characterize signal quality. Fade rate is defined as intervals per second. Signal fade can appear as either a decrease in (attenuation) strength or an increase (focusing) of signal amplitude. Flutter is a rapid fade rate in which several intervals (cycles) occur per second. One interval per second is called a fast fade, and intervals of several seconds or longer are known as long fades. Flat fading involves no frequency distortion, and selective fading includes frequency distortion within the bandwidth being used.

Most of the attenuation associated with fading occurs as the signal passes through the D and E regions of the ionosphere where the numbers of electrons are greatest, but electron motion becomes turbulent at times of disturbed geomagnetic fields. Fading depth and duration are not great from these regions.

The significant focusing and frequency fading characteristics come mainly from the F region of the ionosphere. Here fade depth and duration can attain any set of values between extremes. Signal variability is a function of distance since a great number of hops averages out the amplitude extremes. As distance between the transmitter and receiver increases the take-off angle lowers; that factor plus the multihop path both tend to lengthen the fade interval. For a set distance, the duration between fades decreases with the higher take-off angle if you increase the number of hops.

During the first few hours (positive phase) of disturbed geomagnetic field conditions in mid-latitudes, the fade interval is shorter than normal and lengthens to longer than normal in the remaining hours (negative phase). It slowly approaches normal values again in two to three days. Conversely, the fade rate is usually higher than normal during those first hours, sometimes up to a day, then slowly returns to normal in the remaining ones. This sequence is reversed in phase at lower latitudes closer to the geomagnetic equator. The extent to which fading affects communications also depends on the signal modulation that's employed. The type of communications least affected are CW, voice, and teletype respectively. As a general rule, higher speed data transmission is most affected. The ease of overcoming this difficulty depends on the speed (bit or mark/space length), the amount of redundancy built into the modulation, and the modulation type (FSK or PSK, coherent/synchronous or asynchronous, and the bit structure). The system can be designed to operate well in fixed links. The predominant type of fading can be overcome by tailoring the speed, redundancy, and modulation form to suit. For the most part, DXers have lived with fading for years and know almost instinctively the best mode to use "to get through". For most of us old DXers it is just CW with an occasional missing dit or dah.

last-minute forecast

The lower frequency bands, for daytime short skip and nighttime DX, should be excellent during the first and last weeks of the month. Winter (low) noise conditions still prevail helping these lower bands, except during spring weather-front thunderstorm passages. Equinox geomagnetic disturbances may reduce MUFs around April 2, 11, 21, and 29, especially at night. The higher bands will be very good the middle two weeks of the month. Look for transequatorial openings to southern countries especially during geomagnetic disturbances when MUFs increase in the local afternoons and evenings.

The perigee of the moon's orbit (for moonbounce DX) is on the 13th, with the moon at full phase on the 2nd. There will be a short meteor shower, the Lyrid, on April 20-22 with a rate of five per hour — hardly much help for meteor-scatter DX. But a bigger shower, the Aquarid, starts before the end of April, peaks on the 5th of May, and ends in mid-May. Its rate is 10 to 30 per hour.

band-by-band summary

Ten meters will be open to the south and southeast for an hour before local noon, to the south at noon and to the southwest in the afternoon. The openings will be longer when the solar flux is at its 27-day cycle maximum. Trans-equatorial openings are also best at that time.

Fifteen and 20 meters, almost always open to some part of the world, will be the main daytime DX bands.
<table>
<thead>
<tr>
<th>APRIL</th>
<th>000</th>
<th>030</th>
<th>060</th>
<th>090</th>
<th>120</th>
<th>150</th>
<th>180</th>
<th>210</th>
<th>240</th>
<th>270</th>
<th>300</th>
<th>330</th>
<th>360</th>
<th>390</th>
<th>420</th>
<th>450</th>
<th>480</th>
<th>510</th>
<th>540</th>
<th>570</th>
<th>000</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASIA</td>
<td></td>
</tr>
<tr>
<td>FAR EAST</td>
<td>20</td>
<td>15</td>
<td>12</td>
<td>15</td>
<td>12</td>
<td>15</td>
<td>20</td>
<td>15</td>
<td>12</td>
<td>15</td>
<td>12</td>
<td>15</td>
<td>20</td>
<td>15</td>
<td>12</td>
<td>15</td>
<td>12</td>
<td>15</td>
<td>20</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>EUROPE</td>
<td></td>
</tr>
<tr>
<td>S. AFRICA</td>
<td>12</td>
<td>15</td>
<td>20</td>
<td>15</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>S. AMERICA</td>
<td></td>
</tr>
<tr>
<td>ANTARCTICA</td>
<td></td>
</tr>
<tr>
<td>NEW ZEALAND</td>
<td></td>
</tr>
<tr>
<td>OCEANIA</td>
<td></td>
</tr>
<tr>
<td>AUSTRALIA</td>
<td></td>
</tr>
<tr>
<td>JAPAN</td>
<td></td>
</tr>
</tbody>
</table>

The italicized numbers signify the bands to try during the transition and early morning hours, while the standard type provides MUF during "normal" hours.

*Look at next higher band for possible openings.
2x4Z BASE REPEATER ANTENA

THE HIGHEST GAIN DUAL BAND BASE/REPEATER ANTENA

HIGH POWER 200 WATTS

CENTER FREQUENCY
146.500 MHz
446.500 MHz

GAIN:
VHF - 8.2d.B
UHF - 11.5d.B
VSWR - 1.1-1.2 or less

CONNECTOR:
N TYPE FEMALE

LIGHTNING PROTECTION GROUNDED DIRECT

LENGTH: 16 FT.
WEIGHT: 5 LBS. 3 OZ.
WIND LOAD: 90 MPH
MOUNTING: UP TO 2 IN.

MAST CAN SIMULCAST ON BOTH BANDS

WATERPROOF CONNECTING JOINTS

UPS SHIPPABLE

Twenty should stay open on long southern paths into the night, while 15 will drop out in the late afternoon. DX is 5000 to 7000 miles (8000-11,200 km) in any direction represent daytime DX. Nighttime DX on these bands may be expected to offer a greater distance than on 80 meters and, like 80, follow the darkness path across the sky. Reduced midday signal strengths and distances may occur on days of high solar flux values.

Eighty and 160 meters will exhibit short skip conditions during daylight hours and lengthen for DX at dusk. These bands follow the darkness path, opening to the east just before local sunset, swinging more to the south near midnight, and ending up in the Pacific areas shortly before dawn. The 160-meter band opens later and ends earlier.

<table>
<thead>
<tr>
<th>PARTIAL LISTING OF MISC. TRANSISTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRF138</td>
</tr>
<tr>
<td>MRF174</td>
</tr>
<tr>
<td>MRF200</td>
</tr>
<tr>
<td>MRF212</td>
</tr>
<tr>
<td>MRF271</td>
</tr>
<tr>
<td>MRF274</td>
</tr>
<tr>
<td>MRF277</td>
</tr>
<tr>
<td>MRF278</td>
</tr>
<tr>
<td>MRF279</td>
</tr>
<tr>
<td>MRF280</td>
</tr>
<tr>
<td>MRF281</td>
</tr>
<tr>
<td>MRF282</td>
</tr>
<tr>
<td>MRF283</td>
</tr>
<tr>
<td>MRF285</td>
</tr>
<tr>
<td>MRF286</td>
</tr>
<tr>
<td>MRF287</td>
</tr>
<tr>
<td>MRF288</td>
</tr>
<tr>
<td>MRF289</td>
</tr>
<tr>
<td>MRF290</td>
</tr>
<tr>
<td>MRF291</td>
</tr>
<tr>
<td>MRF292</td>
</tr>
<tr>
<td>MRF293</td>
</tr>
<tr>
<td>MRF294</td>
</tr>
<tr>
<td>MRF295</td>
</tr>
<tr>
<td>MRF296</td>
</tr>
<tr>
<td>MRF297</td>
</tr>
<tr>
<td>MRF298</td>
</tr>
<tr>
<td>40582</td>
</tr>
<tr>
<td>NE4137</td>
</tr>
</tbody>
</table>

2N5946
2N5945
2N5643
2N5642
2N5641
2N5591
2N4427
2N3553
2N3886
2N4427
2N589
2N590
2N591
2N5641
2N5642
2N5954
2N5956
2SC1946A
2SC1947
2SC2057
2SC2057
2SC2559
2SC2640
2SC2641
SAU4
SAU17A
SA6
SA7
SA15
M57712, M57733 use
M57737, SC1019
SA7

Hi-Gain, Matched, and Selected Parts Available

We stock RF Power transistors for Thrill, KLM, Collins, Yaesu, Kenwood, Cubic, Mirage, Motorola, Heathkit, Regency, Johnson, Icom, Drake, TWC, Wilson, GE, etc. Cross-reference on CD, PT, SD, SRF, JO, and 2SC PNs.

Quantity Pricing Available. Foreign Orders Accepted. Shipping/Handling $5.00. COD, VISA. MC. Orders received by 1 PM PST shipped UPS same day. Next day UPS delivery available.

ORDER DESK ONLY - NO TECH HELP

Box 2310, RR 1, Troy, ME 04987
(800) 654-1927
ORDER LINE and/or TECH HELP
(819) 744-0728
FAX (819) 744-1943

DOWN EAST MICROWAVE

MICROWAVE ANTENNAS AND EQUIPMENT

+ Loop Yagis + Power Dividers + Linear Amplifiers + Complete Arrays + Microwave Transverters + GaAsFET Preamps
+ TROPO + EMIS + Wide Signal + OSCAR + 902 + 2400 + 3400 MHz
+ 2345 + 2400 + 3400 MHz
+ 1545 + 4640
+ Loop Yagis + 2600 + 80 MHz
+ 3333 + 3333 + Loop Yagis + 902 + 160 MHz
+ Above antennas assembled and tested. Kits available.
+ All Aluminum and Stainless Construction.
+ Add $6 UPS SH, $11 West of the Mississippi.
+ 2318 PA Linear Amp 1W in 10W out 15MHz 15.6V, $245 ppd.
+ 2336 PA Linear Amp 15W 10W out 19MHz 125V, $295 ppd.
+ NEWI MICROWAVE TRANSVERTERS
+ BY LMW ELECTRONICS
+ 2345Y, 2400, 3400 MHz, GaAsFET, 15 MHz. Sequencer. Output Meter 5649
+ 2345Y, 2400, 3400 MHz, GaAsFET. Sequencer. Output Meter 5649
+ Add $6 for shipping UPS/48
+ Stripped down version, kits also available
+ Write For FREE Catalog
+ DOWN EAST MICROWAVE
+ Bill Olsen, W3HGT
+ Box 2310, RR 1, Troy, ME 04987
+ (207) 948-3741

1275 NORTH GROVE ST.
ANAHEIM, CALIF. 92806
(714) 630-4541
CABLE: NAT OLGIZ
FAX (714) 630-7024

AMATEUR SPECIAL

82 April 1988
antenna tuner

In last month's Notebook I discussed transmission lines and their construction and impedance. The May 1988 ham radio is the annual antenna issue, so next month's column will focus on that subject. In this issue, let's look at another part of a transmitting/receiving system — the "antenna tuner".

Most everyone calls the device used by Amateurs between their station and the antenna an "antenna tuner", even though this isn't really what it is. The proper term is impedance-matching circuit, but that just doesn't turn people on the way "antenna tuner" does.

In earlier days, the circuitry used to get an antenna to "load" was an antenna tuner of sorts; the end of the antenna was brought right into the shack and tapped on the tuned circuit. Adjustments were made by changing the coupling link from the transmitter and moving the antenna tap on the coil, fig. 1.

This system worked, and still does, but it has faults. For one, it brings a lot of rf right into the shack. This was okay in the days of vacuum tubes that were not too sensitive to the presence of rf, but stray rf certainly creates big problems with today's semiconductors, not to mention nearby TV and hi-fi sets.

Getting the antenna out of the shack and up in the air had two desirable results: it reduced the rf problem and improved radiation by being in the clear, away from nearby objects. This created the need for a transmission line to conduct power between the transmitter and the antenna, but did not eliminate the need for some type of matching device at the transmitter output. No two antennas are alike in installation, environment, construction, or impedance and method of feed, and what works well on one band is not necessarily the optimum choice for another. Operation over a wide portion of any band creates another problem.

You can make the length of an antenna correct for one part of a band but it is not resonant in another part, so if you move your operating frequency very far you'll see the VSWR start to climb. Some rigs will put up with this, but many will not.

Enter the impedance-matching circuit, sometimes called a "Transmatch" or "antenna Coupler" or "antenna Tuner."

A basic circuit is shown in fig. 2. The simple tuned circuit has a link to couple energy from the transmitter to it, and taps on the coil for matching to twin-lead transmission line. This type is ideal when you have a center-fed dipole with a feedline of TV ribbon or open-wire "ladder line." The capacitor (C1) in series with the link "tunes" it for maximum coupling of energy from the transmitter. C2 and L2 form a resonant tank at the operating frequency. The taps are simply moved equal distances from the center of the coil until the transmitter shows proper loading.

A "Transmatch" or "Ultimate Transmatch" is another all-purpose tuner. It one of the most useful, wide-range matching circuits in Amateur radio, and has several variations. The basic circuit is shown in fig. 3. The transmitter input is coupled to the circuit by C1, and the combination of variable capacitance of C1, inductance L1, and the output capacitor C2 provide matching for a load that can be anything from 50-ohm coaxial cable to open-wire line or a single-wire end-fed antenna (if you still want to bring rf back into the shack).

The inductance (L1) for this kind of circuit is usually variable, consisting of
turns of wire on a ceramic cylinder that can be rotated by a knob on a panel. The tap is a roller that contacts the turns of the wire as the inductor is rotated providing a continuously variable inductance which (along with C₂) matches a wide range of impedances. A variation of this circuit uses a tapped inductor and a well-insulated switch to select the proper value, eliminating the hard-to-find roller inductor.

A balun transformer allowing connection to a balanced line is a useful addition to this Transmatch circuit; one is shown in fig. 4. It can be built into the same enclosure as the Transmatch, or as a separate unit and attached to the coaxial connector. If you build it into the Transmatch circuit enclosure, connect the points shown as “A” in figs. 3 and 4. The transformer is wound on a ferrite core.

Commercial Transmatches are available but they are not difficult to construct in the home workshop. Looking for the roller inductors and variable capacitors to build a Transmatch is a favorite pastime of Amateurs at ham fests and flea markets. It is a popular project.

There are other circuits that can be used to match impedances; two of the most common are the “L” network and the “Pi” network in fig. 5. The L network is useful for matching a low impedance to a high one. The lower impedance must always be connected to the inductance end of the circuit and the higher impedance must always be across the capacitor. This circuit works well as an “antenna tuner”, placed at the base of a vertical antenna and adjusted to provide a match between the antenna and the feedline to the transmitter.

The Pi network covers the widest range of any common circuit, and was for years the mainstay of impedance-matching techniques. Many transmitters used this type of circuit at the output of the power amplifier, and it was said that they would “match anything”. I can personally attest to one trial to see if this was true.

In Willimantic, Connecticut, three of us decided one evening to see if this circuit really would (as a popular saying of the time claimed) “load a piece of wet string”. We soaked some heavy twine in a bucket of salt water and quickly connected it to the network, suspending the far end over the limb of a convenient tree. We made a contact on 20 meters, but the rf power kept drying out the string so we had to re-wet it while our operator was receiving. He then waited for our “ready” yell before transmitting. I don’t think the guy at the other end of the contact ever believed us, even when he got the QSL card listing the antenna as “1/2-wave wet string”!

The Pi network is bi-directional; either end can be the high- or low-impedance port.

receiver benefits from matching (circuit)

In addition to the impedance-matching, these circuits also reduce harmonics that might otherwise get to the antenna and be radiated. Also, when the selective circuit is placed between the antenna and the receiver, interference from strong stations outside the Amateur bands is reduced. Receivers, like transmitters, do perform better when their input impedance is properly matched.

It is important to remember that none of these circuits change your antenna impedance or reduce the VSWR on the transmission line feeding your antenna. If your dipole on 15 meters looks like 7-1/2 ohms at the feedpoint, absolutely nothing you do in your shack will change that. Likewise, if the VSWR on the transmission line is 15:1, it is going to stay there no matter what kind of “matcher” you use. The main function of a matching circuit in your shack is to present your transmitter with a proper load. Any VSWR problems on the feedline can be cured only by working on the antenna itself or by placing a matching circuit right at the antenna feedpoint. It’s okay if the VSWR is moderate — systems with 3:1 or 4:1 on the line between the antenna and the Transmatch do their job just fine. At values higher than that, you are losing some power in the feedline and perhaps radiating some of it.
from the line rather than the antenna, so some antenna work is in order.

Operating Practices

No one likes to hear stations tuning up in the middle of their QSO, but these circuits do require adjustment from time to time. Here are a few tips to make life easier for everyone:

- On most matchers, the variable capacitors and inductors have calibrated knobs, dials, or multiturn indicators. Make a calibration chart or marks on the panel listing the tuning positions for each of your favorite bands and operating frequencies. Then you will need to make only minor adjustments, or perhaps none at all, when you change frequency.
- Initial tuning and calibrating of the Transmatch should be done when a particular band is dead, using the lowest value that your power and SWR meters will accurately indicate. Your VSWR is not going to change if you tune up with 5 watts and then use 200 for QSOs.
- Do your initial tuning of the transmitter only into a dummy load, then switch to the matching network. From then on, make minor adjustments of the matching network to keep the transmitter happy; don’t readjust the transmitter tuning. Some Transmatches have a built-in switch to select a dummy load, and a power/SWR meter to aid in tune-up. Both are worthwhile additions if you build your own.

The Other Side of the Coin

On the other hand, Transmatches (and all matching networks, for that matter) lose some of the power on the way through. Circuits constructed with quality components — heavy or silver-plated wire, and inductors and capacitors with steatite or ceramic insulation — have losses small enough to ignore. Poor insulation and small wire can increase losses significantly. Also, some circuits are built using toroidal transformers and if their core material is not meant for use at the frequency of operation, the losses will be large.
AUTHORIZED SALES & SERVICE
FOR
KENWOOD ICOM

Also displaying the popular accessories needed to complete a HAM STATION...

ARRL PUBLICATIONS • AEA PRODUCTS • AMPHENOL
• ALPHA DELTA • ASTRON • AUSTIN ANTENNAS • AVANTI
• BELDEN • BENCHER • B & W • DAIWA • ALINCO
• HUSTLER • KLM • LARSEN • MIRAGE • ROHN
• TELEX/HY-GAIN • TOKYO HY-POWER LABS
• TRAC KEYERS • VIBROPLEX • WELZ • ETC.

OPEN SIX DAYS A WEEK VISA MC WELCOMED

Telephone 617/486-3400, 3040
675 Great Rd., (Rte. 119) Littleton, MA 01460
1½ miles from Rte. 495 (Exit 31) toward Groton, Mass.

SONY
ICF-2010
RECEIVER
Air: 116-136 MHz
FM: 76-108 MHz
AM: 150 kHz-30 MHz
$324.95
Cash or Check Price

A National Publication For The Buying And Selling Of Electronic Equipment
THE MOST AFFORDABLE REPEATER
ALSO HAS THE MOST IMPRESSIVE PERFORMANCE FEATURES
(AND GIVES THEM TO YOU AS STANDARD EQUIPMENT!)

KIT, ONLY $675
WIRED $975

VHF OR UHF

FEATURES:
- **SENSITIVITY SECOND TO NONE!** GaAsFET front end on vhf models gives 12dB SINAD of 0.12uV (vhf), 0.15uV (uhf). UHF model 0.25uV std. 0.1uV with optional helical resonator preamp.
- **SELECTIVITY THAT CAN'T BE BEAT!** Both 8-pole xtal filter & ceramic filter for >100dB at ±12KHz. Helical resonator front end to combat desense & intermod.
- **CLEAN, STABLE TRANSMITTER,** up to 18W with accessory power amplifier.
- **FCC TYPE ACCEPTED** for commercial high band and uhf.
- **Courtesy beep,** field-programmable, with helical resonator preamp.
- **Automatic frequency control** to compensate for off-frequency transmitters (all standard features).
- **Full range of options** available, such as autopatch, phone line or radio remote control, sub-audible tones, duplexers.

HIGH PERFORMANCE TRANSMITTERS & RECEIVERS FOR repeaters AUDIO & DIGITAL LINKS, TELEMETRY, ETC.

- **FM EXCITERS:** Kits $99. Wt $179. 2W continuous duty. TCXO & xtal oven options available.
- **TA51 for 10M, 6M, 2M, 150-174, 220 MHz.**
- **TA451 for uhf.** FCC type accepted for commercial bands.
- **VHF & UHF AMPLIFIERS.** For FM, SSB, ATV. Output from 10 to 50 Watts. Several models, kits starting at $79.

- **R144/R220 FM RECEIVERS for 2M, 150-174, or 220 MHz.** GaAs FET front end, 0.12uV sensitivity! Both crystal & ceramic filters plus helical resonator front end for exceptional selectivity, >100dB at ±12KHz (best available anywhere)!
- **Flutter-proof squelch.** AFC tracks drifting transmitters.
- **R451 UHF FM Rcvr.** Similar to above. Tuned line front end, 0.25uV sens. (0.1uV with optional hel. res. preamp). Kit $149, wt $229.
- **R981 FM Rcvr for 900 MHz.** Triple-conversion, GaAs FET front end, 0.2uV sens. Kit $199, wt $229.

NEW

- **GaAs FET PREAMPS** at a fraction of the cost of comparable units!

LNG -(*)
GaAs FET PREAMP
ONLY $59! Wired/tested

FEATURES:
- **Very Low Noise:** 0.7dB VHF, 0.88dB UHF
- **High Gain:** 13-20dB, depending on frequency
- **Wider Dynamic Range:** to resist overload
- **Stable:** new-type dual-gate GaAs FET

* Specify tuning range desired. 143-150, 150-162, 162-174, 213-232, 420-450, 450-465, or 800-960 MHz.

HIGH SPEED DIGITAL RF LINKS

You've waited a long time for a simple, reliable, low-cost 9600 baud PACKET NETWORKING system. Now you've got it! Our new M0-M9 MODEM and direct FSK Transmitters and Receivers for 220 or 440 MHz interface directly with most TNC's. Fast diode switched PA's output 15 or 50W. Call for complete info on the right system for your application.

ACCESSORIES

- **COR-3 Kit.** Control cks and audio mixers needed to make a repeater. Tail & timeout timers, local spkr ampl, courtesy beep...
- **CWID Kit.** Field programmable, times, the works...
- **TD-2 DTMF DECODER/CONTROLLER Kit.** Full 16 digits, switches 5 functions, toll call restrictor, programmable, much more. Great for selectivity calling too!...
- **AP-3 AUTOPATCH Kit.** Use with above for repeater autopatch. Reverse patch and phone line remote control std...
- **AP-2 SIMPLEX AUTOPATCH TIMING BOARD Kit.** Use with above for simplex autopatch...
- **M0-202 FSK DATA MODULATOR Kit.** Run up to 1200 baud digital signals through any fm transmitter with full handshakes. Radio link computers, telemetry gear, etc...
- **DE-202 FSK DATA DEMODULATOR Kit** for revs of all link...

RECEIVING CONVERTERS

Our 25th Anniversary

hamtronics, inc.
65-H Moul Road-Elton NY 14468-9535
Phone:716-392-9430 Hamtronics® is a registered trademark.

- Send $1 for 36 page catalog by return mail. (Send $2.00 or 4 IRC's for overseas mailing)
- Order by phone or mail • Min $3 S & H per order
- Use Visa, Mastercard, Check, or UPS COD.
CONFERENCES

AMSAT-NA FIFTH Space Symposium

This conference was held in conjunction with the 1987 Amsat Annual Meeting in Southfield, MI, Nov. 6-8, 1987. 11 papers are presented with topics on trends in spacecraft technology, and space science education, FO-12 mailbox, QRP EME, Phase III-C and Phase IV developments in orbital determination and attitude control. Over 100 pages $12.

OTHER CONFERENCES

Mid-Atlantic VHF Conference. This conference was sponsored by the Mt. Airey VHF Radio Club, Oct. 10-11, 1987. 11 papers cover everything from mountain toppling to transceivers for the 3400 and 5600 MHz bands. 120 pages $10.

21st Central States VHF Society Conference held in Arlington, Texas, July 23-26, 1987. 28 papers covering everything from use of TVRO dishes for moonbounce to a solid state amplifier for 5.7 GHz. 166 pages. $10.

6th ARRL Computer Networking Conference held in Redondo Beach, California, August 29, 1987. The latest concepts on networking, high speed modems and other packet-radio technology are discussed in 30 papers that were prepared for the conference. 174 pages. $10.

MICROWAVE UPDATE 1987 held in Estes Park, Colorado, September 10-13, 1987. 17 papers on equipment, antennas and techniques for 902 MHz through 10 GHz. Much information on construction of 2.3, 3.4 and 5.7 GHz gear. 136 pages. $10.

Please include $2.50 ($3.50 UPS) for shipping and handling.

PUBLISHED BY:
THE AMERICAN RADIO RELAY LEAGUE
225 MAIN STREET
NEWINGTON, CT 06111
AntennaBooks

ALL ABOUT CUBICAL QUAD ANTENNAS by Bill Orr, WESSAI and Stu Cowan, W2LX

The cubical quad antenna is considered by many to be the best DX antenna because of its simple, lightweight design and high performance. You'll find quad designs for everything from the single element to the multi-element monster quad. There's a wealth of data on construction, feeding, tuning, and mounting quad antennas. 112 pages. © 1982, 2nd edition. Includes data for WARC bands.

RP-CO Softbound $7.95

THE AMATEUR RADIO VERTICAL HAM BOOK by Cpt. Paul H. Lee, USN (Ret.), N6PL

Based upon the author's years of work with a number of different vertical antenna designs, you'll get plenty of theory and design information along with a number of practical construction ideas. Included are designs for simple 1/4 and 5/8-wave antennas as well as broadband and multi-element directional antennas. Paul Lee is an engineer and avid ham and is Amateur Radio's resident expert on the vertical antenna. © 1984, 2nd edition.

CG-VH Softbound $9.95

THE RADIO AMATEUR ANTENNA HANDBOOK by Bill Orr, WESSAI and Stu Cowan, W2LX

Contains lots of well illustrated construction projects for vertical, long wire, and HAM/VHF beam antennas. There is an honest judgment of antenna gain figures, information on the best and worst antenna locations and heights, a long look at the quad vs the yagi antenna, information on baluns and how to use them, and new information on the popular Sloper and Delta Loop antennas. The text is based on proven data plus practical, on-the-air experience. 190 pages. © 1978, 1st edition.

RP-AH Softbound $11.95

HF ANTENNAS — THE Easy Way by John Haefele, W3HIP

This tutorial is an excellent source book on antenna theory and applications. Examples of areas covered are: fundamentals, antennas and feedline terminology, baluns, ground systems, lightning protection, The Basic Antenna, the dipole, the zeppl, G3RV, Wondal, Special, the sloper, DORR, Beverage, folded simple. Beams, W3JK, Yagi, two element quads, and the VH meter band story. John's writing is in a easy-to-understand conversational style and is full of examples and handy tips and hints.

There are no drawings or illustrations but John's prose paints pictures for clear and complete understanding of the information being presented. © 1984 1st Edition.

JH AT Softbound $11.95

BEAM ANTENNA HANDBOOK by WESSAI and W2LX

Completely revised and updated this Antenna Handbook includes the very latest state of the art antenna design. Computers generated beam dimensions for the 30, 20, 17, 15, 12, 10 and VHF bands are included eliminating the need for time consuming math calculations. Also covered are: Beam height and optimum apex of radiation, how element types and hardware effect performance, effect of nearby objects on radiation patterns, feedlines, baluns and matching systems and much more. Ham Radio VHF Colloquium W1JR, and noted European VHFers DILGWd VHF antenna designs are covered extensively as well as NBS VHF long Yagis. 206 clearly written pages — 204 easy to understand illustrations, make this the book to buy for beam construction. © 1985, 1st edition.

RP-BA Softbound $9.95

SIMPLE LOW-COST WIRE ANTENNAS by Bill Orr, WESSAI and Stu Cowan, W2LX

Learn how to build simple, economical wire antennas. Apartment dwellers take note! Fool your landlord and your neighbors with some of the "impossible" antennas found here. Well diagrammed. 192 pages. © 1972.

RP-WA Softbound $9.95

ARRL ANTENNA BOOK 14th Edition

The Amateur Antenna bible. Includes just about every bit of information you'd ever want to know about antenna design, construction and theory. Starts with wave propagation, antenna fundamentals and transmission line theory, progresses through coupling the transmitter and antenna to the feedline to 49, inclusive chapters on how to build different antennas. © 1982, 14th edition. 200 pages.

AR-AM Softbound $8.00

FOR INFORMATION: (603) 878-1441

GREENVILLE, NH 03048

603-878-1441

HAM RADIO BOOKSTORE

LOW BAND DX/ING COMPUTER PROGRAMS

by John Devoldere, ON4UN, for Apple IIe/c, MS-DOS, Commodore C-128 Apple Macintosh and Kaypro

CPM Computers

Here's a collection of 30 superb programs written by ON4UN. Just about every interest or need is covered—from antenna design and optimization to general operating programs. Antenna programs include: shunt and series input L network design, feedline transformer, shunt network design, SWR calculation, plus 11 more! General Ham programs include: sunrise/sunset, great circle distances, grayscale, vertical antenna design program, success calendar plus 9 more! Phew. When you sit down to use these programs you'll be amazed at what you have.

The best value in computer software available today © 1986.

UN-Apple IIe/Iic: $39.95 ea.

UN-MS (MS-DOS): $39.95 ea.

UN-CPM/Kaypro: $39.95 ea.

UN-C-128 (COMMODORE): $39.95 ea.

UN-MAC (MACINTOSH): $49.95

LOW BAND DX/ING

by John Devoldere ON4UN

Now Available! The new, 2nd edition of the definitive book on Low Band DX'ing. Based upon years of practical on-the-air experience, learn the secrets of how ON4UN has been so successful on the low bands. Extensive coverage is given to transmit and receive antennas with clear concise explanations and plenty of illustrations—dipoles, inverted V's, slopers, phased arrays and Beverages—they're all in this book. Also covered: propagation, transmitters, receivers, operating, software and an extensive Low Band bibliography. Going to be a best seller! Get yours today. © 1987 2nd Edition 200 pages.

AR-UN Softbound $9.95

BUY'EM BOTH SPECIAL OFFER

Book & Software Reg. $49.90 ($59.90 for Mac)

Just $44.90 ($54.90 for Mac)

UN-So (specify computer) $44.90

UN-MSO Macintosh Special $54.90

SAVE $5

Please enclose $3.50 shipping & handling

ORDERS ONLY: (800) 341-1522

THE EXPERT'S EDGE

The Ultimate computer program for station operation

GENERAL

Multiple windows with radio transmit and receive in separate windows—20 buttons, keys user modifiable pop-up menus to options—Host automation—2000 options allow taking terminal and once key

DIAGNOSIS

Host to Host diagnostics for all equipment

Radio

250 subtle memories for frequency, memory and scratch pad operation—Each memory tunable like a VFO. Control of up to 4 separate radios depending on radio type along with tuning on screen with display of frequencies and modes

Terminal

250 rapid access memory buttons for contacts, QSOs. Built-in memory keyer. Write in to and transmit from the 1st-4th packet in a separate window.

STEERING

Built-in logging program gets radio frequency, mode, date and time automatically from your (QSO)/QSOd data on-line. Logging program allows printing of logs in any terminal desired.

DIRECTED DYNAMICS

4700 LOYOLA LANE, #119

AUSTIN, TX 78723 (512) 345-8401

SECURITY SYSTEMS

ALARM & CLOSED CIRCUIT TV

DISCOUNT PRICING

Panasonic CCTV

Wireless & Hardwired Alarm Systems

Experienced

State Licensed

For More Information

7:30 AM-6 PM CST M-F

Texas Radio

BUG CATCHER

MOBILE

HF ANTENNA

NEW IMPROVED MODEL!

5-BAND COVERAGE: All Amateur, MARC, and CAP frequencies from 10 to 440 meter

BANDSWITCHING: Switches instantly to pre-set frequencies on any band

HIGH-B RESPONSE: High-Q air inductor provides maximum efficiency on all bands

FUNCTIONAL DESIGN: Provides low wind loading, easier tuning, and more pleasing appearance. Nautical design construction for long life and reliability. New fold-over feature.

5-WATT CAPACITY—Now competitive ratings!

COMPLETE ANTENNA: Ready to mount!

PRICE $74.95

1800 Watt Model Available — $44.95

Add 5% for shipping in lower 48.

SASE for Product info

TEXAS RADIO PRODUCTS

5 East Upham, Temple, Texas 76501

(817) 271-1166

April 1988

89
<table>
<thead>
<tr>
<th>State</th>
<th>Store Name</th>
<th>Address</th>
<th>Hours</th>
<th>Contact Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>California</td>
<td>A-TECH ELECTRONICS</td>
<td>1033 HOLLYWOOD WAY</td>
<td>9-5:30, Sat. 9-3</td>
<td>(818) 845-9203 New Ham Store and Ready to Make a Deal!</td>
</tr>
<tr>
<td>California</td>
<td>JUN'S ELECTRONICS</td>
<td>3919 SEPULVEDA BLVD.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>California</td>
<td>A-TECH ELECTRONICS</td>
<td>1033 HOLLYWOOD WAY</td>
<td>9-5:30, Sat. 9-3</td>
<td>(818) 845-9203 New Ham Store and Ready to Make a Deal!</td>
</tr>
<tr>
<td>Colorado</td>
<td>COLORADO COMM CENTER</td>
<td>525 EAST 70th AVE.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colorado</td>
<td>COLORADO COMM CENTER</td>
<td>525 EAST 70th AVE.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colorado</td>
<td>COLORADO COMM CENTER</td>
<td>525 EAST 70th AVE.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connecticut</td>
<td>HATRY ELECTRONICS</td>
<td>500 LEDYARD ST. (SOUTH)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connecticut</td>
<td>HATRY ELECTRONICS</td>
<td>500 LEDYARD ST. (SOUTH)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connecticut</td>
<td>HATRY ELECTRONICS</td>
<td>500 LEDYARD ST. (SOUTH)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delaware</td>
<td>AMATEUR & ADVANCED COMMUNICATIONS</td>
<td>3208 CONCORD PIKE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delaware</td>
<td>AMATEUR & ADVANCED COMMUNICATIONS</td>
<td>3208 CONCORD PIKE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delaware</td>
<td>AMATEUR & ADVANCED COMMUNICATIONS</td>
<td>3208 CONCORD PIKE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delaware</td>
<td>DELWARE AMATEUR SUPPLY</td>
<td>71 MEADOW ROAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delaware</td>
<td>DELWARE AMATEUR SUPPLY</td>
<td>71 MEADOW ROAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delaware</td>
<td>DELWARE AMATEUR SUPPLY</td>
<td>71 MEADOW ROAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Florida</td>
<td>AMATEUR ELECTRONIC SUPPLY</td>
<td>1896 DREW STREET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Florida</td>
<td>AMATEUR ELECTRONIC SUPPLY</td>
<td>1896 DREW STREET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Florida</td>
<td>AMATEUR ELECTRONIC SUPPLY</td>
<td>1896 DREW STREET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Georgia</td>
<td>DOC’S COMMUNICATIONS</td>
<td>702 CHICKAMAUGA AVENUE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Georgia</td>
<td>DOC’S COMMUNICATIONS</td>
<td>702 CHICKAMAUGA AVENUE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hawaii</td>
<td>HONOLULU ELECTRONICS</td>
<td>819 KEAAUMOKU STREET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hawaii</td>
<td>HONOLULU ELECTRONICS</td>
<td>819 KEAAUMOKU STREET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hawaii</td>
<td>HONOLULU ELECTRONICS</td>
<td>819 KEAAUMOKU STREET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idaho</td>
<td>ROSS DISTRIBUTING COMPANY</td>
<td>76 SOUTH STATE STREET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idaho</td>
<td>ROSS DISTRIBUTING COMPANY</td>
<td>76 SOUTH STATE STREET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idaho</td>
<td>ROSS DISTRIBUTING COMPANY</td>
<td>76 SOUTH STATE STREET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illinois</td>
<td>ERICKSON COMMUNICATIONS, INC.</td>
<td>5456 N. MILWAUKEE AVE.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illinois</td>
<td>ERICKSON COMMUNICATIONS, INC.</td>
<td>5456 N. MILWAUKEE AVE.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illinois</td>
<td>ERICKSON COMMUNICATIONS, INC.</td>
<td>5456 N. MILWAUKEE AVE.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indiana</td>
<td>THE HAM STATION</td>
<td>220 N. FULTON AVE.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indiana</td>
<td>THE HAM STATION</td>
<td>220 N. FULTON AVE.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indiana</td>
<td>THE HAM STATION</td>
<td>220 N. FULTON AVE.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maryland</td>
<td>MARYLAND RADIO CENTER</td>
<td>8576 LAURELDALE DRIVE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maryland</td>
<td>MARYLAND RADIO CENTER</td>
<td>8576 LAURELDALE DRIVE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maryland</td>
<td>MARYLAND RADIO CENTER</td>
<td>8576 LAURELDALE DRIVE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minnesota</td>
<td>MISSOURI RADIO CENTER</td>
<td>102 NW BUSINESS PARK LANE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minnesota</td>
<td>MISSOURI RADIO CENTER</td>
<td>102 NW BUSINESS PARK LANE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minnesota</td>
<td>MISSOURI RADIO CENTER</td>
<td>102 NW BUSINESS PARK LANE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nevada</td>
<td>AMATEUR ELECTRONIC SUPPLY</td>
<td>1072 N. RANCHO DRIVE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nevada</td>
<td>AMATEUR ELECTRONIC SUPPLY</td>
<td>1072 N. RANCHO DRIVE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nevada</td>
<td>AMATEUR ELECTRONIC SUPPLY</td>
<td>1072 N. RANCHO DRIVE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Hampshire</td>
<td>RIVENDELL ELECTRONICS</td>
<td>8 LONDONDERRY ROAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Hampshire</td>
<td>RIVENDELL ELECTRONICS</td>
<td>8 LONDONDERRY ROAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Hampshire</td>
<td>RIVENDELL ELECTRONICS</td>
<td>8 LONDONDERRY ROAD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dealers: YOU SHOULD BE HERE TOO! Contact Ham Radio now for complete details.
New Jersey

ABARIS SYSTEMS
276 ORIENTAL PLACE
LYNDHURST, NJ 07071
201-939-0015
Don WB2GPU
Astatic, Azden, B&W, Butternut, Larsen, Mirage/KLM, Kenpro, Nye, Santeck, THL, and many others.
M-F 10 am-8 pm
SAT 9 am-7 pm
VISA/MC

KJI ELECTRONICS
66 SKYTOP ROAD
CEDAR GROVE, NJ 07009
(201) 239-4389
Gene K2KJII
Maryann K2RVR

New York

BARRY ELECTRONICS
512 BROADWAY
NEW YORK, NY 10012
212-925-7000
New York City’s Largest Full Service Ham and Commercial Radio Store.

VHF COMMUNICATIONS
915 NORTH MAIN STREET
JAMESTOWN, NY 14701
716-664-6345
Call after 7 PM and save! Supplying all of your Amateur needs. Featuring ICOM “The World System.” Western New York’s finest Amateur dealer.

Ohio

AMATEUR ELECTRONIC SUPPLY
28940 EUCLID AVE.
WICKLiffe, OH 44092(Cleveland Area)
216-585-7388
Ohio Wats: 1 (800) 362-0290
Outside Ohio: 1 (800) 321-3594
Hours M-F 9:30-5, Sat. 9-3

DEBCO ELECTRONICS, INC.
3931 EDWARDS RD.
CINCINNATI, OHIO 45209
(513) 531-4499
Mon-Sat 10AM-9PM
Sun 12-6PM
We buy and sell all types of electronic parts.

Universal Amatuer Radio, Inc.
1280 AIDA DRIVE
REYNOLDSBURG (COLUMBUS), OH 43068
614-866-4267

Wisconsin

AMATEUR ELECTRONIC SUPPLY
4828 W. FOND DU LAC AVE.
MILWAUKEE, WI 53216
414-442-4200
Wisc. Wats: 1 (800) 242-5195
Outside Wisc: 1 (800) 558-0411
M-F 9:50-3 Sat 9-3

Pennsylvania

HAMTRONICS,
DIV. OF TREVOSE ELECTRONICS
4033 BROWNSVILLE ROAD
TREVOSe, PA 19047
215-357-1400
Same Location for over 30 Years

Tennessee

MEMPISH AMATEUR ELECTRONICS
1465 WELLS STATION ROAD
MEMPISH, TN 38108
Call Toll Free: 1-800-238-6168
M-F 9-5, Sat 9-12
Kenwood, ICOM, Ten-Tec, Cushcraft, Hy-Gain, Hustler, Larsen, AEA, Mirage, Ameritron, etc.

Texas

MADISON ELECTRONICS SUPPLY
3621 FANNIN
HOUSTON, TX 77004
713-520-7300
Christmas?? Now??

KENNEDY ASSOCIATES
AMATEUR RADIO DIVISION
5707A MOBUD
SAN ANTONIO, TX 78238
512-880-6110
Stocking all major lines. San Antonio’s Ham Store. Great Prices — Great Service. Factory authorized sales and service.
Hours: M-F 10-6, SAT 9-3

MISSION COMMUNICATIONS
11903 ALEIF CLODINE
SUITE 500 (CORNER HARWIN & KIRKWOOD)
HOUSTON, TEXAS 77082
(713) 879-7764
Now in Southwest Houston — full line of equipment. All the essentials and extras for the “ham.”

Foreign Subscription Agents
for Ham Radio Magazine

1988 CALL DIRECTORY
(on microfiche)

Buckmaster Publishing
Mineral, Virginia 23117
703-894-5777

Half-Square QRV-DX Monobanders

April 1988
new Hamtronics catalog

Hamtronics, Inc. 1988 catalog has kits and wired units for Amateur radio, two-way shops, and scientific and industrial radio users. New product listings include: R901 fm receiver for 902-928 MHz, R137 weather satellite receiver for the 137-MHz band, an AP3 repeater autopatch module, 70-watt hi-band and UHF repeater power amplifiers, and a complete system for 9600 baud packet radio linking.

To order send $1 (2 for overseas) to Hamtronics, Inc., 65-F Moul Road, Hilton, New York 14468-9535.

new antennas, solar power supply

The QRV 160-10 is a low-visibility, all-band hf antenna originally created for rapid emergency installation. Thanks to special kinkproof wire, installation can easily be completed by a single individual. Insulated and completely weather-sealed, the ORV 160-10 may be connected directly to a transceiver or a transmatch by means of its PL 259 connector. The feedline may be extended as necessary with 50-ohm coaxial line.

Based on the popular G5RV design, the ORV 160-10 measures 102 feet from end to end, and can be installed in dipole, V, sloper, or folded configurations. Unique adjustable insulators facilitate bending to fit available space. An extensive technical manual explains how to obtain desired results from difficult installation sites, including spans as short as 26 feet. The ORV 160-10 is rated for full legal power. It comes ready to use, and is priced at $49.95, including U.S. delivery.

AntennasWest has also introduced its ORV-Solar 23 Solar Power Supply, designed to provide independent power for remote repeaters, portable or RV-based stations, and hamshack installations. The heart of the system is an easily installed, unbreakable and bullet-tested solar panel with unique linear current boosting circuitry. Rated at 23 watts, the ORV-Solar delivers 1.65 amperes at 14 volts and increased current at lower voltages. The ORV-Solar 23 is available for immediate delivery from AntennasWest at $289.95 post-paid. An optional kit for mounting on vertical masts is available at $34.95.

For further information on these new products, contact AntennasWest, 1971 North Oak Lane 1300, Provo, Utah 84604-2138.

Circle #302 on Reader Service Card.

new pocket HTs from Kenwood

The new Kenwood TH-25 Series HT is compact with wideband frequency coverage, big LCD display, and 5 watts output option.

Operating features include: front panel DTMF pad, automatic power control, 14 memories, automatic offset selection, band and memory scan, automatic "power off" circuit, and CTCSS encode/decode option. Accessories supplied with the unit are: StubbyDuk, battery pack, wall charger, belt hook, wrist strap, and water resistant dust caps.

Contact Kenwood Amateur Radio dealers for details and information on accessories. The suggested retail price for the TH-25AT is $329.95; the TH-45AT is priced at $349.95.

ALPHA linear amplifiers

Ehhorn Technological Operations has introduced a new ALPHA line of linear amplifiers. The ALPHA 86 features 1500 watts output power, PIN diode T/R switching for full QSK, and easy tune-up. It maintains full output in any mode with no key-down time limit and uses a pair of Edmac's 3CX800A7 tubes.

The ALPHA 87 needs no tune-up; factory pre-tuned bandpass circuits allow instant QSY to any hf band.

The ALPHA 88 is a fully automatic version of the ALPHA 86. A microprocessor is preprogrammed at the factory for all Amateur bands. The ALPHA 88 samples the input frequency and automatically tunes the tank circuits.

For more information contact Ehhorn Technological Operations, Inc., P.O. Box 888, 451 Valley Road, Canon City, Colorado 81212.

Circle #301 on Reader Service Card.

HL-250U linear amplifier

The HL-250U is a high-power linear amplifier for Amateur UHF band all mode operation. It provides a maximum output power of 250 watts when driven by any 10 or 25 watt radio through the automatic drive level select circuit. The HL-250U is solid-state, requires no tuning, has forced air cooling with stable output and high voltage safety measures provided. The built-in low-noise GaAsFET receive pre-amp enables comfortable UHF DX QSOs.

The suggested retail price of the HL-250U is $824.95. For more information contact ENCOMM, Inc., 1506 Capital Avenue, Plano, Texas 75074.

Circle #303 on Reader Service Card.

antenna design and construction aid

A new approach to antenna design and construction is offered by Epsilon Company. It is the only antenna design program featuring a sinuoidal projection of the antenna's radiation pattern. This approach shows the signal intensity at all angles, horizontal and vertical of the antenna simultaneously, referenced to isotropic. It's like sitting in a planetarium. At the center of the floor is your antenna which is the only source of light. The dome or sky is illuminated according to signal intensity at each point. Long Wire Pro's sinuoidal projection is a sophisticated flat projection of the sky, color coded according to signal intensity. You can explore the projection with a mouse or cursor keys and read in a numeric window the gain at a particular azimuth and elevation.

Long Wire Pro lets you select wire lengths, for center-fed and end-fed long wires, Vee's, and rhombics. Next choose the height above ground, the kind of ground, such as moist, dry, average, etc. Then enter the slant of the antenna over ground.

The projection is then drawn in the center of the screen. Above this is a window showing a table of the antenna's parameters. You can select parameters along with the maximum gain, azimuth, and elevation referenced to isotropic, the overall dimensions, and in the case of terminated antennas, the recommended termination resistor. All this can be printed on a dot matrix printer.

One can simulate many antennas in less than ideal real conditions. Odd wire lengths, antenna slants, and low ground conductivity are all conditions that cause radiation pattern to change from published patterns.

Long Wire Pro runs on IBM PC/XT/AT's and compatibles with 256K or more, DOS 2.0 or higher, and color is required. It makes use of 8087/80287 math co-processor if present, and also a mouse if present. The disk contains two files, one will run on 16OK RAM, and the other on 450K of RAM. The small version is intended to run on 256K computers and has 3 degree resolution. The large file's program has 1 degree resolution. In all other respects they are the same.

Epsilon is selling Long Wire Pro for $35.00, and it can be ordered from Epsilon Co., P.O. Box 715, Trumbull, Connecticut 06611.

Circle #306 on Reader Service Card.
here is the next generation Repeater
2 meters - 220 - 440

MARK 4CR

The only repeaters and controllers with REAL SPEECH!

Create messages just by talking. Speak any phrases or words in any languages or dialect and your own voice is stored instantly in solid-state memory. Perfect for emergency warnings, club news bulletins, and DX alerts. Create unique ID and tail messages, and the ultimate in a real speech user mailbox — only with a Mark 4.

Call or write for specifications on the repeater, controller, and receiver winners.

See us at DAYTON
Booths 106, 107, 108

MICRO CONTROL SPECIALTIES
Division of Kendecom Inc.
23 Elm Park, Groveland, MA 01834 (617) 372-3442

THE RF CONNECTION
SPECIALIST IN RF CONNECTORS AND COAX

THE MULTIPLE RECEIVER SOLUTION
4 Channel Signal-to-Noise Voter
- Expandable to 37 Channel by Just Adding Cards
- Continuous Voting
- LED Indicators of EDR and Voted Signals
- Built-in Calibrator
- Remote Voted Indicators Printed Out
- 4 x 4 Double-Sided Gold Plated 44 Pin Card
- Remote Double Inputs
- MORE
Built, tested and calibrated with manual
$350.00
Telephone interface now available
For more information call or write
HALL ELECTRONICS
Voter Department
815 E. Hudson Street
Columbus, Ohio 43211
(614) 261-8871
Measure Up With Coaxial Dynamics
Model 81000A RF Directional Wattmeter

Model 81000A is a thoroughly engineered, portable, insertion type wattmeter designed to measure both FWD/RFL C.W. power in Coaxial transmission lines. 81000A is comprised of a built-in line section, direct reading 3-scale meter protected by a shock-proof housing. Quick-match connectors, plus a complete selection of plug-in elements, gives the FRONT RUNNER reliability, durability, flexibility and adaptability with a two year warranty.

Contact us for your nearest authorized Coaxial Dynamics representative or distributor in our world-wide sales network.

COAXIAL DYNAMICS, INC.
15210 Industrial Parkway
Cleveland, Ohio 44135
216-267-2233
1-800-COAXIAL
Telex: 88-0530

Service and Dependability...A Part of Every Product

new AMECO preamplifier

AMECO has introduced the model PT-3 Preamplifier, successor to the model PT-2. The PT-3 is a continuously tunable preamplifier that covers 1.8 through 54 MHz packaged in a cabinet with a dark-colored panel. Options are available for second receiver and separate receiving antenna capabilities.

The retail price for the PT-3 Preamplifier is $109.95; the price for the P-12T Adapter is $8.95.

For details contact AMECO, 220 E. Jericho Turnpike, Mineola, New York 11501.

Circle #305 on Reader Service Card.

advanced hf station transceiver

ICOM's new IC-781 hf base station operates on all modes and bands from 10 to 160 meters. A band spectrum scope displays signals in a 50/100/200 kHz range of your operating frequency on a multifunction 5 inch CRT screen.

The IC 781 also features:
- dual band watch
- twin passband tuning
- 99 tunable memories
- wide and narrow filters
- direct keyboard entry
- 150 watts output
- built-in power supply
- dual noise blanker
- five multifunction timers
- two internal clocks

The IC 781 comes standard with: built-in high speed automatic antenna tuner, iambic keyer, semiautomatic or full QSK CW break-in to 60 wpm, audio peaking filter, rf speech processor, multiscanning, 105-dB dynamic range receiver that continuously tunes 100 kHz to 30 MHz, plus exceptional frequency control.

For additional information contact ICOM America, Inc., 2380 116 Avenue, N.E., Bellevue, Washington 98009.

Circle #304 on Reader Service Card.
Put More Punch in Your Packet

Outstanding mechanical design makes the IsoPole the only logical choice for a VHF base station, especially for Packet operation. All IsoPole antennas yield the maximum gain attainable for their respective lengths and a maximum signal on the horizon. Exceptional decoupling from the feed line results in simple tuning and a significant reduction in TVI potential. The IsoPole antennas are all impedance matched in the factory so that no field tuning is required. The IsoPoles have the broadest frequency coverage of any comparable VHF base station antenna. This means no loss of power output from one end of the band to the other, when used with SWR protected solid state tranceivers. Typical SWR is 1.4 to 1 or better across the entire band.

A standard 50 Ohm SO-239 connector is recessed within the base sleeve (fully weather protected). With the IsoPole you will not experience aggravating deviation in SWR with changes in weather. The impedance matching network is weather sealed and designed for maximum legal power. The aerodynamic cones are the only appreciable wind load and are attached directly to the support (a standard TV mast which is not supplied).

IsoPole Specifications

<table>
<thead>
<tr>
<th>Model</th>
<th>Freq. Coverage (Mhz)</th>
<th>Power Rating</th>
<th>Gain**</th>
<th>Radiating Element Length</th>
<th>Amateur Net Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>144</td>
<td>135-160 12Mhz @ 146Mhz</td>
<td>1 kw 1 kw</td>
<td>3 dbd</td>
<td>125.5" (3.2m)</td>
<td>$49.95</td>
</tr>
<tr>
<td>220</td>
<td>210-230 15Mhz @ 220Mhz</td>
<td>1 kw 1 kw</td>
<td>3 dbd</td>
<td>79.25" (2m)</td>
<td>$49.95</td>
</tr>
<tr>
<td>440</td>
<td>415-465 22Mhz @ 435Mhz</td>
<td>1 kw 1 kw</td>
<td>3 dbd</td>
<td>46" (1.2m)</td>
<td>$69.95</td>
</tr>
</tbody>
</table>

** dbd — db gain over a dipole in free space

High Performance Hand-Held Antenna — The Hot Rod

The Hot Rod antenna can be expected to make the same improvement to hand-held communications that the IsoPole antennas have made to base station operation. Achieve 1 or 2 db gain over ANY 5/8 wave two meter telescopic antenna. The factory tuned HR-1 is 20% shorter, lighter and places far less stress on your handheld connector and case. It will easily handle over 25 watts of power, making it an excellent emergency base or mobile antenna. In the collapsed position, the Hot Rod antenna will perform like a helical quarter wave. Three Hot Rods are available; HR-1 1/2 wave 2M Ant., HR-2 for 220 Mhz, and HR-4 for 440 Mhz. Amateur Net Price on all Hot Rods is $19.95.

For either base station or hand-held operation AEA has the perfect VHF/UHF antenna. Put more punch in your Packet station with an AEA IsoPole or Hot Rod antenna. To order your new antenna contact your favorite Amateur Radio Distributor. For more information contact Advanced Electronic Applications, P.O. Box C-2160, Lynnwood, WA 98036, or call 206-775-7373.

Prices and Specifications subject to change without notice or obligation.
OHIO: April 29: The Dayton-Cincinnati chapter of the Quarter Century Wireless Association announces the annual QSWA banquet Friday evening at Neil's Heritage House, CDB bar 6:30 PM, banquet 7:30 PM EST. Tickets $13 each. Bob Dingle, K4ALU, 267 Dell Ridge Drive, Dayton, Ohio 45429 (513) 299-7114. Come join the fun.

OHIO: DAVTON HAMVENTION WEEKEND. April 29: The Third Annual DX Dinner hosted by the Southwest Ohio DX Association. Scruffers Dayton Plaza Hotel. Buffet $20.00 per person payable in advance to S.W. O. D.A. Send check to or with SASE to Jay Gough, K4ZL, 8133 Woodward Drive, West Chester, OH 45069.

SOUTH CAROLINA: April 30 and May 1. The 49th annual Greenville Hamfest sponsored by the Blue Ridge Amateur Radio Society, American Legion Fairgrounds, Greenville. License exams, indoor/outdoor flea market, food, concessions, free parking, camping and more. April 30 8 AM to 5 PM; May 1 8 AM to 3 PM. Admission $4.00 advance; $5.00 at the gate. For tickets and information SASE to BRRARS, PO Box 6751, Greenville, SC 29606.

NEW YORK: May 1. The Suffolk County Radio Club Indoor/Outdoor Electronic Flea Market. Republic Lodge No. 1987, 585 Broadhollow Road, Melville, LI. 8 AM to 2 PM. Admission $3.00. Non-ham spouse and kids free. Indoor tables $10.00 each. Outdoor space $7.00. Includes one admission. Talk in on 144.65/144.21 and 146.52 simplex. For information Bill Sullivan, N2ETG (516) 689-9871 evenings.

NEW YORK: May 7. The 29th annual Southern Tier Hamfest, Treadway Inn, Rt 17, Ouewe, Admission $4.00. Under 14 free. Dinner and gate ticket combined $11 in advance. VEC exams. Leagues forum, displays, flea market, For more information or tickets SASE to STARC, PO Box 2802, Endicott NY 13760.

MINNESOTA: May 7. Swapfest & contest sponsored by the Arrowhead Radio Amateur Club. First United Methodist Church, 230 East Skyline Parkway, Duluth. 9 AM to 3 PM. Admission $4.00, 4 tables $5.00. Talk in on 146.34/94. For information contact Ron Carlson, K0BR, 5128 Wyoming Street, Duluth, MN 55804 (218) 562-6981.

WISCONSIN: May 7. The Oconomowoc Radio Club is sponsoring its 10th annual Cedarburg Swapfest, Circle B Recreation Center, Highway 60 and County 1, Cedarburg, 2 miles north of Milwaukee, 8 AM to 1 PM. Admission $2.00 advance, $3.00 door. 4 tables $3.00. Food and refreshments available. Setup from 7 AM. For tickets, maps or more information SASE to 1988 DRC Swapfest, 101 E. Clay St, Saukville, WI 53080 or call (414) 284-3271.

ILLINOIS: Kaneville, May 15. The annual Kaneville Hamfest sponsored by the Kaneville Area Radio Society will be held at the Kaneville Country Fairgrounds from 8 AM to 3 PM. Free flea market tables (limited) and many exhibitors. ARRL Booth. Free parking. Food and drinks available. Admission $2.00 advance; $3.00 at the door. Setup Friday May 14 8 PM to 9 PM and May 15 8 AM to 9 AM. Talk in on 146.34/94. More information from KANS c/o Frank DeCaro, KAPN1, RR 1, Box 361, Chesbrough, Illinois 60022. Tel 815-926-6703 after 5 PM CST or 815-937-2452 before 5 PM CST.

NEW JERSEY: May 22. The Bergen County ARS is sponsoring its Spring Hamfest, Bergen County College, 400 Par amus Road, Paramus. Rain or shine. 8 AM to 4 PM. Admission $5.00 per taglist space. $30.00 per table. $10.00 per tent space. For information or tickets please SASE to N3VFN, RR 1, Shu lsbury, NJ 07702.

APRIL 23: The Great River ARC of Dubuque, Iowa will open N9FW from 1600Z to 2400Z at the site of the annual Box Scouts of America U.S. Grant Pilgrimage in Galena, Illinois. Lower 25 KC of General Band. Scouts will be available to send messages to relatives. For call card SASE to N9WF, RR 1, Shullsbury, NJ 07702.

APRIL 23: INTERNATIONAL MARCONI DAY. The Cornish Radio Amateur Club, Cornwall, England, and other stations worldwide representing early Marconi station locations, will celebrate the birthday of Guglielmo Marconi on April 23, from 0000Z to 2400Z. Participating stations GB4MD, G3TLMD, VE1TD, VE2MD, VI4FM and K7VMI. Operation will be on all bands from 30 MHz upwards. For a certificate for working 5 of the 6 stations send 3 IRC's to the Cornish Radio Amateur Club, PO Box 100, Truro, Cornwall, England.

MAY 7: BOY SCOUTS of the DuPage Area Council will operate the Wheaton, Illinois, Community Amateur Radio station, W9CU from the DuPage County Fairgrounds, 9000 to 9000 with their youth as control operators. This Special Event station is intended to encourage Radio as a hobby for local youth. For certificate SASE to W9CU, PO Box 55, Wheaton, IL 60189. Att: Scoutmasters.

THE FOUNDATION FOR AMATEUR RADIO, INC plans to award twenty-eight scholarships for academic year 1988-89 to assist licensed Radio Amateurs plan to pursue a full time course of study beyond high school and are enrolled or have been accepted by an accredited university, college or technical school. For further information write FARI Scholarships, 6003 Rhode Island Avenue, College Park, MD 20740 prior to May 31, 1988.

HAM EXAMS: The MIT UHF Repeater Association and the MIT Radio Society offer monthly Ham Exams. All classes Novice to Extra. Wednesday, April 20, 1:30 PM, MIT Room 1-190, 77 Massachusetts Ave, Cambridge, MA. Reservations requested 2 days in advance. Contact Ken Hoffman at (617) 495-1075. Exam fee $4.00. Bring a copy of your current license if any. For further information or a completed form 610 available from the FCC in Quincy, MA 02269.

SUBSCRIBE TO HAM RADIO TODAY FOR 1 YEAR - $22.95 2 YEARS - $38.95 3 YEARS - $49.95 Prices U.S. only
ADVERTISER'S INDEX AND READER SERVICE NUMBERS

Listed below are the page and reader service number for each advertiser in this issue. For more information on their products, select the appropriate reader service number and make a check mark in the space provided. Mail this form to ham radio Reader Service, I.C.A., P.O. Box 2558, Woburn, MA 01801.

<table>
<thead>
<tr>
<th>Name</th>
<th>Call</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reader Service #</th>
<th>PagE #</th>
</tr>
</thead>
<tbody>
<tr>
<td>149</td>
<td>55</td>
</tr>
<tr>
<td>134</td>
<td>43</td>
</tr>
<tr>
<td>163</td>
<td>68</td>
</tr>
<tr>
<td>191</td>
<td>95</td>
</tr>
<tr>
<td>139</td>
<td>46</td>
</tr>
<tr>
<td>128</td>
<td>46</td>
</tr>
<tr>
<td>141</td>
<td>18</td>
</tr>
<tr>
<td>135</td>
<td>43, 94, 91</td>
</tr>
<tr>
<td>113</td>
<td>22</td>
</tr>
<tr>
<td>184</td>
<td>88</td>
</tr>
<tr>
<td>ARRL, National Convention, Portland</td>
<td>76</td>
</tr>
<tr>
<td>Astron Corp</td>
<td>25</td>
</tr>
<tr>
<td>Barker & Williamson</td>
<td>11</td>
</tr>
<tr>
<td>Barry Electro, Inc</td>
<td>48</td>
</tr>
<tr>
<td>Biel Company</td>
<td>43</td>
</tr>
<tr>
<td>Buckmaster Publishing</td>
<td>55</td>
</tr>
<tr>
<td>Buckmaster Publishing</td>
<td>91</td>
</tr>
<tr>
<td>Butternut Electronics</td>
<td>22</td>
</tr>
<tr>
<td>Caddell Corp</td>
<td>79</td>
</tr>
<tr>
<td>Coaxial Dynamics, Inc</td>
<td>94</td>
</tr>
<tr>
<td>Communication Concepts, Inc</td>
<td>46</td>
</tr>
<tr>
<td>Communications Specialists</td>
<td>59</td>
</tr>
<tr>
<td>Contact Systems</td>
<td>8</td>
</tr>
<tr>
<td>Consolidated Electronics</td>
<td>43</td>
</tr>
<tr>
<td>Courage Hands-Ham System</td>
<td>6</td>
</tr>
<tr>
<td>CTM</td>
<td>58</td>
</tr>
<tr>
<td>Dayton Hamvention</td>
<td>89</td>
</tr>
<tr>
<td>DeVry VEC</td>
<td>72</td>
</tr>
<tr>
<td>Digimax Instruments Corp</td>
<td>88</td>
</tr>
<tr>
<td>Don East Microwave</td>
<td>82</td>
</tr>
<tr>
<td>DRSI</td>
<td>36</td>
</tr>
<tr>
<td>EEB</td>
<td>66</td>
</tr>
<tr>
<td>EGE, Inc.</td>
<td>15</td>
</tr>
<tr>
<td>Engineering Consulting</td>
<td>62</td>
</tr>
<tr>
<td>Epson Co</td>
<td>31</td>
</tr>
<tr>
<td>Experio</td>
<td>89</td>
</tr>
<tr>
<td>Falcon Communications</td>
<td>94</td>
</tr>
<tr>
<td>GLB Electronics</td>
<td>27</td>
</tr>
<tr>
<td>Gordon West Radio School</td>
<td>40</td>
</tr>
<tr>
<td>GVT</td>
<td>40</td>
</tr>
<tr>
<td>GTI</td>
<td>93</td>
</tr>
<tr>
<td>HAL Communications Corp</td>
<td>42</td>
</tr>
<tr>
<td>Hardware</td>
<td>93</td>
</tr>
<tr>
<td>Ham Radio Outlet</td>
<td>50, 51</td>
</tr>
<tr>
<td>Ham Radio's Bookstore</td>
<td>22, 39, 62, 78, 85, 89</td>
</tr>
<tr>
<td>Ham Store</td>
<td>64</td>
</tr>
<tr>
<td>Hamstore, NY</td>
<td>87</td>
</tr>
<tr>
<td>International Callbooks</td>
<td>30</td>
</tr>
<tr>
<td>Heath Company</td>
<td>31</td>
</tr>
<tr>
<td>ICOM America, Inc</td>
<td>47</td>
</tr>
<tr>
<td>IIX Equipment Ltd</td>
<td>62</td>
</tr>
<tr>
<td>Jun's Electronics</td>
<td>52</td>
</tr>
<tr>
<td>Kennedy Associates</td>
<td>30</td>
</tr>
<tr>
<td>Kenwood U S A Corp</td>
<td>2, 5, 7, 15, CIV</td>
</tr>
<tr>
<td>Larsen Antennas</td>
<td>85</td>
</tr>
<tr>
<td>Madison Electronics Supply</td>
<td>68</td>
</tr>
<tr>
<td>MFI Enterprises</td>
<td>8</td>
</tr>
<tr>
<td>Micro Control Specialists</td>
<td>93</td>
</tr>
<tr>
<td>Microflect</td>
<td>39</td>
</tr>
</tbody>
</table>
| *Please contact this advertiser directly.*

SPECIAL OFFER

- Both H.P. & International Callbooks incl. shipping within USA $55.00
- incl. shipping to foreign countries $60.00

All payments must be in U.S. funds.
Dependable Service
At The Right Price ... Everytime

KENWOOD

TS440S “DX-CITING”
- 100% Duty Cycle
- 100 Memories
- Direct Keyboard Entry
- Optional Built-in AT

On Sale Now, Call for Price!

FT-767GX HF/HF BASE STATION
- Add Optional 6m, 2m & 70cm Modules
- Dual VFO’s
- Full CW Break-In
- Lots More Features

IC-761 NEWEST HF SUPER RIG
- 160-10M/General Coverage Receiver
- Built-in Power Supply and Automatic Antenna Tuner
- SSB, CW, FM, AM, RTTY
- QSK to 60 WPM

ALINCO

ALD-24T DUAL BAND MOBILE
- 140-149 MHz/440-450 MHz
- 25 Watts on Both Bands
- Crossband Full Duplex
- 21 Memory Channels
- CTCSS Encoder/Decoder, Standard

2m and 220 MHz Amplifiers
GaAsFET Receive Pre-Amps and High SWR Shutdown Protection

KENWOOD

TS-140S AFFORDABLE DX-ing!
- HF Transceiver With General Coverage Receiver
- All HF Amateur Bands
- 100 W Output
- Compact, Lots of Features

FT-736R VHF-UHF BASE STATION
- SSB, CW, FM on 2 Meters and 70 cm
- Optional 50 MHz, 220 MHz or 1.2 GHz
- 25 Watts Output on 2 Meters, 220 and 70 cm
- 10 Watts Output on 6 Meters and 1.2 GHz • 100 Memories

IC-735 COMPACT HF TRANSCEIVER
- All HF Band/General Coverage Receiver
- 12 Memories/Frequency and Mode
- USB, LSB, AM, FM, CW
- 100 Watts Output
- Includes HM-12 Scanning Mic

ASTRON CORPORATION

Power Supply
- RS7A . . . $48
- RS12A . . . $60
- RS20A . . . $88
- RS2OM . . . $105
- RS3OM . . . $190
- RS35A . . . $250

KENWOOD

TM-221A
- 2m FM Mobile Transceiver
- 45W Output w/ HiLo Switch
- 14 Multi-Function Memories
- TM-421A Available For 440 MHz

FT-212RH THE "ANSWERING MACHINE" MOBILE
- Rx: 138-174 MHz
- Tx: 144-148 MHz
- 45W Output
- Digital Voice Recorder
- FT-712 RH For 70cm

ASAMPO STH-25AT POCKET-SIZED AND POWERFUL
- Frequency Coverage: 141-163 MHz (Rx), 144-148 MHz (Tx)
- Front Panel DTMF Pad
- 5 Watts Output
- 14 Memories
- TH-45AT Available for 440 MHz

IC-900 SIX BANDS IN ONE MOBILE
- Remote Controller, Interface A Unit, Interface B Unit, Speaker, Mic and Cables
- Six Band Units to Choose
- 10 Memories Per Band
- Programmable Band Scan
- Fiber Optic Technology

YAESU

TH-23/73R
- Super “Mini” HT’s
- Zinc-Aluminum Alloy Case
- 10 Memories
- 140-164 MHz, 440-450 MHz
- 2W Battery Pack or Optional 5W Pack

IC-702AT IC-704AT
- Pocket Size HT’s
- Ten Memories
- LCD Readout
- Wideband Coverage
- Up to 3 Watts Output
- 32 Built-in Subaudible Tones

PK-84/HFM
- Morse, Baudot, ASCII, AMTOR and Packet
- Operates VHF and HF
- You Need Only Your Transceiver and a Commodore 64 or 128

SPECIAL! FINAL CLEARANCE
$149.95 Limited Supply
NEW
POCKET SIZE
SIZE: 4" H x 3.5" W x 1" D
MADE IN USA

$99.95 - $150.00

OPTOfrequency
inc

FREQUENCY
COUNTERS
TO 1.3 GHZ

8 LED DIGITS • 2 GATE TIMES
ANODIZED ALUMINUM CABINET
INTERNAL NI-CAD BATTERIES INCLUDED
AC ADAPTER/CHARGER INCLUDED

EXCELLENT SENSITIVITY & ACCURACY

AC-DC • PORTABLE OPERATION

Small enough to fit into a shirt pocket, our new 1.2 GHz and 1.3 GHz, 8 digit frequency counters are not toys! They can actually outperform units many times their size and price! Included are rechargeable Ni-Cad batteries installed inside the unit for hours of portable, cordless operation. The batteries are easily recharged using the AC adapter/charger supplied with the unit.

The excellent sensitivity of the 1200H makes it ideal for use with the telescoping RF pick-up antenna; accurately and easily measure transmit frequencies from handheld, fixed, or mobile radios such as: Police, firefighters, Ham, taxi, car telephone, aircraft, marine, etc. May be used for counter surveillance, locating hidden "bug" transmitters. Use with grid dip oscillator when designing and tuning antennas. May be used with a probe for measuring clock frequencies in computers, various digital circuitry or oscillators. Can be built into transmitters, signal generators and other devices to accurately monitor frequency.

The size, price and performance of these new instruments make them indispensable for technicians, engineers, schools, Hams, CBers, electronic hobbyists, short wave listeners, law enforcement personnel and many others.

STOCK NO:

#1200HCK Model 1200H in kit form, 1-1200 MHz counter complete including all parts, cabinet, Ni-Cad batteries, AC adapter/battery charger and instructions ... $99.95

#1200HC Model 1200H factory assembled 1-1200 MHz counter, tested and calibrated, complete including Ni-Cad batteries and AC adapter/battery charger ... $137.50

#1300HC Model 1300H factory assembled 1-1300 MHz counter, tested and calibrated, complete including Ni-Cad batteries and AC adapter/battery charger ... $150.00

ACCESSORIES:

#TA-100S Telescoping RF pick-up antenna with BNC connector $12.00

#P-100 Probe, direct connection 50 ohm, BNC connector $18.00

#CC-70 Carrying case, black vinyl with zipper opening. Will hold a counter and accessories ... $10.00

ORDER FACTORY DIRECT

1-800-327-5912

OPTOfrequency
inc

FREQUENCY
COUNTERS
TO 1.3 GHZ

FLA (305) 771-2050

OPTOfrequency
inc

5821 N.E. 14th Avenue
Ft. Lauderdale, Florida 33334

MasterCard

VISA

AVAILAble NOW!

Orders to US and Canada add 5% of total ($2 min., $10 max)
Florida residents add 5% sales tax. COD fee $2
Because you never know who's listening.

You see, the FT-736R is the most complete, feature-packed rig ever designed for the serious VHF/UHF operator. But you'd expect this of the successor to our legendary FT-726R.

For starters, the FT-736R comes factory-equipped for SSB, CW and FM operation on 2 meters and 70 cm (430-450 MHz!), with two additional slots for optional 50-MHz, 220-MHz, or 1.2-GHz modules.

Crossband full duplex capability is built into every FT-736R for satellite work. And the satellite tracking function (normal and reverse modes) keeps you on target through a transponder.

The FT-736R delivers 25 watts RF output on 2 meters, 220 MHz, and 70 cm. And 10 watts on 6 meters and 1.2 GHz. Store frequency, mode, PL frequency, and repeater shift in each of the 100 memories.

For serious VHF/UHF work, use the RF speech processor. IF shift. IF notch filter. CW and FM wide/narrow IF filters. VOX. Noise blanker. Three-position AGC selection. Preamp switch for activating your tower-mount preamplifier. Even an offset display for measuring observed Doppler shift on DX links.

And to custom design your FT-736R station, choose from these popular optional accessories: Iambic keyer module. FTS-8 CTCSS encode/decode unit. FVS-1 voice synthesizer. FMP-1 AQS digital message display unit. L2-GHz ATV module. MD-1B8 desk microphone. E-736 DC cable. And CAT (Computer Aided Transceiver) system software.

Discover the FT-736R at your Yaesu dealer today. But first make plenty of room for exotic QSL cards. Because you never know who's listening.
Kenwood brings you a wide range of 220 MHz gear designed for every need. Choose from two types of mobile and two types of HT. The TH-315A is a full-featured HT covering 220–225 MHz. Ten memory channels and 2.5 watts of power. (5 W with PB-1 or 12 VDC.) Uses the same accessories as the TH-215A for 2 meters or TH-415A 440 MHz. For truly “pocket portability,” choose the TH-31BT, a thumb-wheel programmable, 1 watt unit. For mobile use, select the TM-321A or TM-3530A.

The TM-321A is the 25 W, 220 MHz, 14-memory version of the super popular, super compact TM-221A. The 25-watt TM-3530A has 23 memories, a 15 telephone number memory and auto dialer. Direct keyboard frequency entry and front panel DTMF pad enhances operating convenience. Novice to Amateur Extra, these transceivers will put everyone on the air “Kenwood Style”!

The TM-321A comes with 16-key DTMF mic. A complete line of accessories is available for all models.

Specifications and prices are subject to change without notice or obligation.