Amateur Radio Stamps from Around the World
DOUBLE YOUR PLEASURE
DOUBLE YOUR BANDS

Dual Band Radios from ICOM!
Double your operating pleasure with Icom's new dual band IC-3210 mobile and IC-32AT handheld FM transceivers. Each unit incorporates a wealth of special features and options designed to move you into the forefront of today's expanded 2-meter and 440MHz activity. Icom dual banders: the FM enthusiasts dream rigs!

Wideband Coverage. Both the IC-3210 and IC-32AT receive 138 to 174MHz including all NOAA weather channels, transmit 140 to 150MHz including MARS/CAP, and operate 440 to 450MHz. Total coverage of today's hottest FM action!

Full Duplex Operation. Simultaneously transmit on one band while receiving on the other for incomparable dual band autopatching!

20 Memories. Store any combination of standard or odd repeater offsets and subaudible tones.

Powerful! The IC-3210 delivers 25 watts output on both bands. The IC-32AT is five watts output on both bands. Selectable low power for local use on both units.

Programmable Band and Memory Scanning. Includes easy lockout and recall of various memories. Exceptional flexibility!

Repeater Input Monitor Button. Opens the squelch and checks Tx offset simultaneously.

Priority Watch. Monitor any channel for calls while continuing operation on another frequency.

Optional Beeper. Monitors for calls with your subaudible tone, then gives alerting beeps.

Double Your Bands with Icom's dual band IC-32AT handheld and IC-3210 mobile, and double your operating pleasure on 2-meters and 440MHz.
New telephone initiated control capabilities are awesome. Imagine having full use and full control of your base station radio operating straight simplex or through any repeater from any telephone! From your desk at the office, from a pay phone, from a hotel room, etc. You can even change the operating channel from the touchpad!

Our digital VOX processor flips your conversation back and forth fully automatically. There are no buttons to press as in phone remote devices. And you are in full control 100% of the time!

The new digital dialtone detector will automatically disconnect Private Patch IV if you forget to send # (to remotely disconnect) before hanging up. This powerful feature will prevent embarrassing lock-ups.

The importance of telephone initiated control for emergency or disaster communications cannot be overstated. Private Patch IV gives you full use of the radio system from any telephone. And of course you have full use of the telephone system from any mobile or HT!

To get the complete story on the powerful new Private Patch IV contact your dealer or CSI to receive your free four page brochure.

Private Patch IV will be your most important investment in communications.

Connects to MIC and ext. speaker jack on any radio. Or connect internally if desired.

Can be connected to any HT. (Even those with a two wire interface.)

Can be operated simplex, through a repeater from a base station or connected directly to a repeater for semi-duplex operation.

20 minutes typical connect time

Made in U.S.A.

OPTIONS
1. ½ second electronic voice delay
2. FCC registered coupler
3. CW ID chip

CONNECT SYSTEMS INC.
23731 Madison St.
Torrance CA 90505
Phone: (213) 373-6803

AMATEUR ELECTRONIC SUPPLY
Milwaukee WI, Wickenburg AZ, Orlando FL, Clearwater FL, Las Vegas NV
BARRY ELECTRONICS CORP.
New York NY
EGE, Inc.
Woodbridge VA
ERICKSON COMMUNICATIONS
Chicago IL
HAM RADIO OUTLET
Anaheim CA, Burbank CA, Oakland CA, Phoenix AZ, San Diego CA, Van Nuys CA, Atlanta GA

HENRY RADIO
Los Angeles CA
INTERNATIONAL RADIO SYSTEMS
Miami FL
JUNS ELECTRONICS
Culver City CA
MADISON ELECTRONICS SUPPLY
Houston TX
MIAMI RADIO CENTER CORP.
Miami FL
MIKES ELECTRONICS
Mt. Laurel, NJ, Miami FL
MAG DISTRIBUTING CORP.
Miami FL

OMNI ELECTRONICS
Laredo TX
PACE ENGINEERING
Tucson AZ
THE HAM STATION
Evansville IN
WESTCOM
San Marcos CA
CANADA CAT ELECTRONIC DISTRIBUTORS
Burnaby BC
COM WEST RADIO SYSTEMS, LTD.
Vancouver BC
Affordable DX-ing!

TS-140S

HF transceiver with general coverage receiver.
Compact, easy-to-use, full of operating enhancements, and feature packed. These words describe the new TS-140S HF transceiver. Setting the pace once again, Kenwood introduces new innovations in the world of "look-alike" transceivers!

- Covers all HF Amateur bands with 100 W output. General coverage receiver tunes from 50 kHz to 35 MHz. (Receiver specifications guaranteed from 500 kHz to 30 MHz.) Modifiable for HF MARS operation. (Permit required)
- All modes built-in. LSB, USB, CW, FM and AM.
- Superior receiver dynamic range Kenwood DynaMix™ high sensitivity direct mixing system ensures true 102 dB receiver dynamic range.

- New Feature! Programmable band marker. Useful for staying within the limits of your ham license. For contesters, program in the suggested frequencies to prevent QRM to non-participants.
- Famous Kenwood interference reducing circuits. IF shift, dual noise blankers, RIT, RF attenuator, selectable AGC, and FM squelch.

- M. CH/VFO CH sub-dial. 10 kHz step tuning for quick QSY at VFO mode, and UP/DOWN memory channel for easy operation.
- Selectable full (QSK) or semi break-in CW.
- 31 memory channels. Store frequency, mode and CW wide/narrow selection. Split frequencies may be stored in 10 channels for repeater operation.
- RF power output control.
- AMTOR/PACKET compatible!
- Built-in VOX circuit.
- MC-43S UP/DOWN mic. included.

Optional Accessories:
- AT-76D compact antenna tuner • AT-250 automatic antenna tuner • HS-5/HS-6/HS-7 head phones • IF-232C/IF-10C computer interface
- MA-6/VF-1 HF mobile antenna (5 bands)
- MB-430 mobile bracket • MC-435 extra UP/DOWN hand mic. • MC-55 (8-pin) goose neck mobile mic. • MC-60A/MC-80/MC-85 desk mics.
- PG-2S extra DC cable • PS-430 power supply
- BP-40/SP-500 mobile speakers • SP-430 external speaker. • SW-100A/SW-200A/SW-2000 SWR/power meters • TL-922A 2 kW PEP linear amplifier (not for CW QSK) • TU-8 CTCSS tone unit
- YG-455C-1 500 Hz deluxe CW filter. YK-455C-1 New 500 Hz CW filter.

Complete service manuals are available for all Kenwood transceivers and most accessories. Specifications, features, and prices are subject to change without notice or obligation.

KENWOOD
KENWOOD U.S.A. CORPORATION
2201 E. Dominguez St., Long Beach, CA 90810
P.O. Box 22745, Long Beach, CA 90801-5745
contents

10 a 4800 baud modem for VHF/UHF packet radio
Glen Leinweber, VE3DLN,
Max Pizzolato, VE3DNM,
Jon Vanden Berg, VE3DVV,
and Jack Botner, VE3LNY

22 one hundred years of electric waves
W. Clem Small, K6EIA

27 practically speaking:
impedance matching
Joe Carr, K4IPV

34 the Quad antenna, part 3,
circular loop and octagonal arrays
R.P. Haviland, W4MB

54 remote base/simplex
phone patch controller
Roger Owens, AA4NX and
Jeff Owens, KK4LA

70 ham radio techniques:
the joys of TVI or,
were you on the air last night?
Bill Orr, W6SAI

75 precision high-voltage
dc regulator
R.L. Measures, AG6K

81 Elmer’s notebook:
propagation basics
Tom McMullen, W1SL

Joe Reisert is on vacation.

on the cover: Amateur Radio stamps from around
the world from the collection of Raymond Schuessler
a philatelist from Venice, Florida.

98 advertisers index
9 comments
88 DX forecaster
96 flea market
4 reflections

August 1988
Let’s dust off that used equipment!

We received some interesting letters following Joe Schroeder’s June editorial “Novice enhancement and the future of Amateur Radio.” Some lamented the relatively high cost of new equipment and others felt, like Joe, that the best bet would be a market survey asking present and former operators what helped or hindered their developing Amateur Radio interest. One ham, returning to the hobby after 20 years, found the latest equipment to be reasonably priced and of good quality.

Novice enhancement has given beginning Amateurs increased operating privileges, but can they afford the cost for new equipment to get on the air? Someone just starting in the hobby may not want to sink a small fortune into his rig until he knows what he really wants. And how much does a Novice really need: a radio that covers 10 through 80 meters, CW and SSB capabilities — that’s about it. This may seem like an oversimplification, but how many Novices need all the bells and whistles? For those who can afford it fine; for those who can’t...

Here’s a pitch for you. A good majority of us have lurking in our basements a veritable storehouse of used equipment. Stuff that we’ve outgrown as we’ve upgraded our shacks. It’s my bet that there are numerous Novices out there that would just love to put this equipment to use. Starting immediately, on a space available basis, we’ll run free classified ads for our subscribers to sell old, used equipment. Here’s a perfect opportunity for you to help a new ham get on the air.

You don’t want to sell it? Then why not become an Elmer and help that new ham by lending him your perfectly good, but long forgotten, transceiver along with some assistance in establishing his first station?

How many of you remember your first station? I’m sure most of us can credit a certain special person (our Elmer) for his invaluable time and assistance in helping us to put that first, hesitant CQ on the air. I know I do...thanks Bill, K1BH.

Marty Durham, NB1H
Technical Editor

As you can see by the enclosure, we’re hard at work on the new Ham Radio Magazine. We think you’ll be excited by it. Your suggestions in informal surveys have resulted in a major effort on our part to make HR the magazine you want. Every month there’ll be at least two projects of the weekender type — simple, easy-to-build ideas that will add to your Amateur operation. New layout, fresh graphics and plenty of surprises are in store for Ham Radio readers.

Your input is most important to us. Let us know what you think. Starting next month, there’ll be an evaluation card for you to fill out and return. So, after you’ve been through the September issue, send a note, call, or look us up at a show. We’ll be waiting to hear from you.
Three Choices for 2m!

TM-2570A/2550A/2530A

Feature-packed 2m FM transceivers

The all-new "25-Series" gives you three RF power choices for 2m FM operation: 70 W, 45 W, and 25 W. Here's what you get:

- Telephone number memory and autodialer (up to 15 seven-digit phone numbers). A Kenwood exclusive!
- High performance GaAs FET front end receiver
- 23 channel memory stores offset, frequency, and subtone. Two pairs may be used for odd split operation
- 16-key DTMF pad with audible monitor
- Extended frequency coverage for MARS and CAP (142-149 MHz; 141-151 MHz modifiable)
- Center-stop tuning—a Kenwood exclusive!

- New 5-way adjustable mounting system
- Automatic repeater offset selection—an other Kenwood exclusive!
- Direct keyboard frequency entry
- Front panel programmable 38-tone CTCSS encoder includes 97.4 Hz (optional)

- Big multi-color LCD and back-lit controls for excellent visibility
- The TM-3530A is a 25 watt version covering 220-225 MHz. The first full featured 220 MHz rig!

Optional Accessories

- TU-7 38-tone CTCSS encoder
- MU-1 DCL modem unit
- YS-1 voice synthesizer
- PG-2N extra DC cable
- PG-3B DC line noise filter
- MB-10 extra mobile bracket
- CD-10 call sign display
- PS-430 DC power supply for TM-2550A/2530A/2530A

- PS-50 DC power supply for TM-2570A
- MC-60A/MC-80/MC-85 desk mics
- MC-48B extra DTMF mic. with UP/DWN switch
- MC-43S UP/DWN mic
- MC-55 (8-pin) mobile mic. with time-out timer
- SP-40 compact mobile speaker
- SP-50B mobile speaker
- SW-200A/SW-200B SWR/power meters
- SW-100A/SW-100B compact SWR/power meters
- SWT-1 2m antenna tuner

Kenwood U.S.A. Corporation
2201 E. Dominguez St., Long Beach, CA 90810
P.O. Box 22745, Long Beach, CA 90801-5745
Join the fun at the

Whatever your interest, you'll find the Kantronics All Mode™ at the top of the pack. CW, Radioteleype, AMTOR, ASCII, WEFAX and Packet, “KAM handles them all.” HF and VHF simultaneous operation? You bet! The KAM can operate RTTY or AMTOR on HF while communicating Packet on VHF. Believe it. It's the only true dual-port on the market.

World-Class

Swedish and German hams have noticed KAM's engineering and are some of our biggest fans. The Japanese scrutinized our features and gave us ideas for extras like a subject field for the Personal Packet Mailbox™, listings of digipeater paths and more CW characters and functions. We are shipping KAM around the world.

Fun for Everyone

You'll be the envy of the airwaves with all the modes and features KAM brings to your fingertips. In addition to Packet, ASCII, AMTOR,
WEFAX, CW and Radioteletype, you’ll have Dual-Port Operation (the only TNC offering this feature), Personal Packet Mailbox™, KA-NODE™, gateway, and digipeater operation.

You can operate non-packet modes on HF while maintaining a packet station at the same time on VHF. Or run an HF/VHF accessible personal mailbox or pc-based BBS totally dedicated to packet. Configure your KAM as an HF to VHF digipeater (gateway) or KA-NODE. Or open your LAN to the world. All these modes and more features are waiting to be discovered. Increase your station abilities to the most advanced available.

Today and Tomorrow

KAM is packed with all the latest features of today with Kantronics-written firmware. And since we write and copyright our own firmware, we’re in a position to lead you into the exciting modes of tomorrow first. We have a history of keeping our customers current. Proof is in our firmware updates (2.7 in 1987 and 2.83 in 1988) offered at a fraction of the cost of a new purchase.

So join the fun, join the Top of the Pack.

Kanantronics
RF Data Communications Specialists
1202 E. 20 St Lawrence, Kansas 66046 (913) 842-7745

Kantronics All-Mode, KAM, Personal Packet Mailbox, and KA-NODE are trademarks of Kantronics Company, Inc.
JDR INSTRUMENTS

Complete customer satisfaction... superior service... friendly, knowledgeable personnel... quality merchandise... providing the best values in leading edge technology.

35 MHZ OSCILLOSCOPE
A remarkable value
$499.95

Wide bandwidth and exceptional 1mV/DIV sensitivity make the Model 3500 a powerful diagnostic tool for engineers or technicians at a remarkable price. Delayed triggering allows any portion of a waveform to be isolated and expanded for closer inspection. Variable Holdoff allows stable viewing of complex waveforms.

MODEL 2000
$389.95
20 MHZ DUAL TRACE OSCILLOSCOPE
Model 2000 makes frequency calculation and phase measurement quick and easy. The component tester aids in fast troubleshooting. Service technicians appreciate the TV Sync circuits for viewing TV-V and TV-H and accurate synchronization of the video signal, Blanking, VITs, and V-H Sync pulses.

DMM-300
3.5 DIGIT DMM MULTITESTER
$79.95
This full function 3.5 digit DMM offers highly accurate performance and a host of added features like audible continuity, capacitance, transistor, temperature, and conductance to help you do the job—fast. Temperature probes and battery included.

- Basic DC accuracy: plus minus 0.25%
- DC voltage: 200mV—1000V, 5 ranges
- AC voltage: 200mV—750V, 5 ranges
- Resistance: 200 ohms—20M ohms, 6 ranges
- Capacitance: 2000pf—20uF, 3 ranges
- Transistor Tester: 0°—2000°F
- Conductance: 200ohms
- Fully overload protected
- Input impedance: 10M ohm.

DMM-100
3.5 DIGIT POCKET SIZE DMM
$29.95
Perfect for the field service technician. Shirt pocket-size without compromising features or accuracy. Large, easy to read 1/2 LCD display. Fully overload protected for safety. 2000 hour battery life with standard 9v cell. Probes and battery included.

- Basic DC accuracy: plus minus 0.5%
- DC voltage: 2V—1000V, 4 ranges
- AC voltage: 200V—750V, 2 ranges
- Resistance: 2k ohms—2M ohms, 4 ranges
- DC current: 2mA—2A, 4 ranges
- Input impedance: 10M ohm
- Fully overload protected
- Approx. 5 1/4" x 1 1/2" x 1. Under 7 ozs.

DPM-1000
3.5 DIGIT PROBE TYPE DMM
$54.95
Custom 80 pin LSI chip provides accuracy and reliability in such a compact size. Auto-ranging, audible continuity and data hold feature help you pinpoint the problem quickly. Case and batteries included.

- Basic DC accuracy: plus minus 1%
- DC voltage: 2V—550V, auto-ranging
- AC voltage: 2V—550V, auto-ranging
- Resistance: 2k ohms—2M ohms, auto-ranging
- Fully overload protected
- Input impedance: 11M ohm
- Approx. 6 1/2" x 1 1/2" x 3/4" Under 3 ozs.

* 2 YEAR REPLACEMENT WARRANTY
* 30 DAY MONEY BACK GUARANTEE
* TOLL FREE TECHNICAL SUPPORT
* NEXT DAY AIRSHIP AVAILABLE

ORDER TOLL FREE 800-538-5700
re-discovering ham radio

Dear HR:

I found the "Reflections" editorial in the June 1988 issue to be very interesting. I am one of the very new Amateurs you mention, and have come back after retirement, having let my General ticket expire in the 60s.

I would point out that the "well-established" factor is probably a very important one, because the basic cost of ham gear is quite high, compared to (say) photography. Also, as to why the cost of ham gear is quite high, compared to photography.

My surprise in finding that SSB gear was so good, and reasonably priced in CB units is one of the main things that got my interest up again! And, sure enough, I found one rig that did a very neat job, at quite reasonable cost! I'll hand that along to my daughter, hopefully, now that I've upgraded my equipment.

I really had no idea just how very good the gear can be today; or how very astute the average hams on-air are! I tend to do a lot of listening, and find that there are so very many guys who are actively involved in evaluating and improving their antennas, feedlines, tuners, etc. I have also read a lot of the detracting comments by the QRP people and have an old friend who is a CW freak.

It really seems to me to be a pretty healthy mix, except for the few bad-actors. Your comments on putting the situation in the hands of professionals seems reasonable. I suggest that really believable illustrations showing rig setups and compact beam antennas would help get people to pick up more of the magazines, and commence the day-dreams that lead the way!

Yours was the very first ham magazine that I started buying, again...then subscribed to, for I didn't want to miss any. I give you the highest marks on all accounts.

As a matter of general interest, I'd like very much to see a no-holds-barred comparison review of the hf linear amps available, as many as possible! I've heard lots of comments on amps, and rigs in general on-the-air, and have been very glad that I paid attention!

Ralph Marler, KC1JG, Portsmouth, New Hampshire 03801

legal usefulness of amateur radio

Dear HR:

I disagree strongly with Joe Schroeder, W9JUV, in his "Reflections" in the June issue. Amateur Radio as we know it really does need an overhaul or it simply won't sell, market survey or no.

The problem is not Novice enhancement nor the current licensing structure. It lies in our extremely narrow definition of "Amateur". As it stands, in spite of the marvelous technical capability we have, Amateur Radio is useless as a service to the average person on the streets. Case in point: June 1988, QST, page 78 states that ordering a pizza via local autopatch is illegal because it is a "business communication". If I can't do something as trivial as that via Amateur Radio, what good is it?

People buy things because they are useful. Up to a point you can sell people on something that doesn't meet a real need, but not very long and not very many. If we were to broaden the definition of "Amateur" to permit the kind of communications that most people want on domestic frequencies (VHF and up, no international communications) we would find a lot of response out there. If I could order a pizza, talk to my wife about who has called in while I was out on a sales call, talk about my business (short of advertising on the air), it would be useful, and I could recommend it to my friends and encourage them to get involved. Now I suggest buying a cellular phone.

I have long been involved in Amateur Radio because I enjoy the technical aspects of it. But after the thrill of talking beyond the sound of my voice wears off, I look for usefulness. Perhaps I am spoiled. I returned recently from several years on a large island in the Pacific. Four hf frequencies tied over two hundred families together across several hundred miles of impassable jungle. We arranged transportation, ordered groceries, flight followed aircraft, managed people, all under difficult conditions. I know what radio is like when it is useful.

I am convinced that unless Amateur Radio in the United States is opened up to more legal usefulness, it simply will not be there when the emergencies arise, and our frequencies will be taken away.

Bill McLagan, WA7AQN, Corvallis, Oregon 97330

market survey of Amateurs good idea

Dear HR:

I strongly support portions of Joe Schroeder's June 1988 Reflections! I am especially in agreement with his comments about marketing and marketing analysis.

New, Amateurs, younger ones in particular, must have a difficult time understanding how to operate today's overly sophisticated transceivers during early entry into operating. Perhaps a worse consideration for a beginner is the price tag associated with even the lowest priced modern rigs. We have entered into an era of $6,000+ transceivers, and the bottom of the scale is on the order of $1,000. It is not difficult to visualize the shock coeffi-

(continued on page 94)
Fast, reliable modem cuts connect time

a 4800 baud modem for VHF/UHF packet radio

Do you sometimes feel guilty of hogging your local packet network when you have a large file or message to transfer? Here's a modem that can cut down on your connect time.

A wide variety of radios now work with this modem. Reliability is high enough that our local digipeater (VE3PKT) has been switched exclusively to 4800 baud and has been running trouble free for many months. We will show how you can add a 4800 baud modem to the HAPN-1 packet radio adapter. It fits nicely into the card's "prototype area" for experimenters.

A software switch provided with the HAPN-1 adapter lets you change from the standard (built-in) 1200 baud modem to this one. The interface between the packet card and radio is arranged to accommodate both modems; all it takes to switch from one speed to the other is a keyboard selection.

Although the bandwidth used in VHF and UHF voice operation could support data rates higher than 4800 baud, HAPN chose 4800 baud for the following reasons:

- Most existing VHF or UHF radios can be used.
- No major changes to your radio or TNC (terminal node controller) should be required.
- Alignment and setup should be easy.
- It uses no exotic or difficult to obtain parts.

- It uses the same bandwidth as normal 2-meter voice operation.
- 4800 baud provides nearly four times the effective data rate of 1200 baud.

The modem contains an on-board squelch circuit that activates in approximately 10 milliseconds, typically 10 to 30 times faster than the squelch in most radios. As a result, clear-to-send delays (Tx-delay) and turnaround times are shorter, reducing "wasted channel" time.

principles of operation

Most packet radio TNCs include a modem; other telecommunication groups treat the modem as a separate entity. Its purpose is to transform the serial, digital data into a form compatible with the transmitting medium — in our case, a VHF 2-meter radio. It also must take a noisy, undulating voltage from the radio receiver and change it into a digital data stream acceptable to the TNC. Our current packet radio system requires the TNC to know when the radio channel is in use; this is the modem's job too.

transmitting duobinary codes

The digital data coming into the modem is a stream of ones and zeros that modulate the transmitter's rf

The HAPN-1 adapter is a terminal node controller on a board that plugs into a slot on an IBM PC or compatible microcomputer. It is designed as a version to work with the TAPR TNC-2 compatible unit. It will reside on a "daughter board" that plugs into J4, a connector provided by TAPR for an external modem, and work off a single +12 volt supply. The board will contain a multiplexer making it possible to switch between 1200 and 4800 baud easily. This board is currently in the prototyping stage.

By Glen Leinweber, VE3DNL; Max Pizzolato, VE3DNM; John Vanden Berg, VE3DVV; and Jack Botner, VE3LNY; Hamilton and Area Packet Network, Box 4466, Station D, Hamilton, Ontario, Canada L8V4S7.
carrier. This modem uses a duobinary coding system where a 0 to 1 transition momentarily shifts the carrier up in frequency, then back to center. The carrier is shifted down in frequency and then back to center by a 1 to 0 transition. If two or more consecutive ones come along, the carrier shift occurs only for the first 1, returning back to center for the rest. Similarly, a string of two or more zeroes shifts the carrier down in frequency only for the first 0, returning to center for the rest. Because the frequency of the carrier is changed in frequency only for the first 0, returning does not require a data randomizer to avoid data-sensitivity errors caused by the carrier drifting from the center of the channel.

All these transitions are smoothed out by a four-pole low-pass filter before they reach the radio’s modulator. The filter prevents spurious sidebands from interfering with adjacent channels (see fig. 1). The shape of the waveform going into the rig’s modulator must be carefully controlled. Most rigs amplify the microphone signal with rather nonlinear amplifiers that can severely distort these waveshapes. You can get the best results when the signal is tapped into the frequency modulator directly, bypassing the rig’s audio stages.

What happens with a rig using a phase modulator? A phase modulator can be accommodated by modifying the shape of the waveform input. A jumper, J8, in the modem chooses one of two waveshapes to be filtered for either frequency (FM) or phase (PM) type
modulators. This modulation scheme works well with frequency synthesized radios. Tap points in both receiver and transmitter that work for this modem also seem to work for 1200 baud modems.

receiving duobinary codes

After getting into the receiver, the frequency-modulated signals pass into the radio’s FM detector. Every detector type (ratio detector, quadrature, etc.) yields the same shape waveform. It will be the same shape whether it is generated from a PM or FM modulator (fig. 2). The voltage waveform output is proportional to the frequency excursions of the transmitting signal — positive pulses returning to zero and negative pulses returning to zero. The receiving part of the modem must discriminate between positive-going pulses, no pulses, and negative-going pulses.

After amplification by U14c, the signals are filtered by a four-pole low-pass filter which reduces high-frequency noise (U14d and U14a). Comparators (or slicers) U16d and U16a detect positive and negative going pulses, respectively. U16b and U16c together output a short digital pulse at the center of either positive or negative pulses. These digital signals are combined in U17, which reconstructs the original data.

As with the transmitter, the signal coming out of the receiver’s detector must have the correct waveshape. The audio de-emphasis circuit (usually placed immediately after the detector) will distort the pulse shapes enough to cause unreliable operation. This means that tapping the receive signal from the volume control or speaker won’t work.

carrier detect

Our packet radio protocol states that if a channel is busy, one shouldn’t begin a transmission. Squelch circuits found in every FM radio duplicate this function. The carrier-detect circuit in this modem works much like the squelch, but rather than muting the audio it generates a logic signal for the TNC.

This is a noise-operated circuit. U15b detects high-frequency audio noise (approximately 11 kHz) where neither audio nor modem pulse energy is present. With no carrier present, there’s lots of high-frequency noise to raise the voltage at R74. Smoothing this pulsating waveform is U14b, a low-pass filter. It drives a Schmidt trigger (U3 in the HAPN-1 adapter) logic gate that makes a quick, clean, carrier/no carrier decision.

At these higher bit rates, the switching time from transmit to receive and back becomes more important. In some radios much of this time is wasted by slow squelch action. This one reacts in 10 to 15 milliseconds.

modem switch

A four-pole, two-position electronic switch, U18, is

fig. 2. Timing and waveshapes for the 4800 baud modem. Amplitudes are not drawn to scale. There are two possible transmit waveshapes, one for FM and one for PM modulators.

Parts list

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistors</td>
<td>1/4 watt, 5 percent</td>
</tr>
<tr>
<td>R60, R81</td>
<td>12</td>
</tr>
<tr>
<td>R40</td>
<td>100</td>
</tr>
<tr>
<td>R71</td>
<td>560</td>
</tr>
<tr>
<td>R58</td>
<td>1k</td>
</tr>
<tr>
<td>R76, R79</td>
<td>1.6k</td>
</tr>
<tr>
<td>R66, R67, R68</td>
<td>2.2k</td>
</tr>
<tr>
<td>R30, R63, R64, R65</td>
<td>3.3k</td>
</tr>
<tr>
<td>R73</td>
<td>4.7k</td>
</tr>
<tr>
<td>R59, R62</td>
<td>10k</td>
</tr>
<tr>
<td>R58, R53</td>
<td>15k</td>
</tr>
<tr>
<td>R34, R49</td>
<td>29k</td>
</tr>
<tr>
<td>R32, R33, R35, R36, R37, R48</td>
<td>47k</td>
</tr>
<tr>
<td>R46, R47, R50, R51</td>
<td>56k</td>
</tr>
<tr>
<td>R36, R43, R50, R52, R54, R57, R75</td>
<td>100k</td>
</tr>
<tr>
<td>R55, R56</td>
<td>220k</td>
</tr>
<tr>
<td>R77</td>
<td>270k</td>
</tr>
<tr>
<td>R72</td>
<td>330k</td>
</tr>
<tr>
<td>R76</td>
<td>1M</td>
</tr>
</tbody>
</table>

Capacitor voltage rating: at least 16 volts, 10 percent tolerance or better and to have spacing of 0.2".

<table>
<thead>
<tr>
<th>Capacitor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C31, C32, C33, C34, C38, C39, C40</td>
<td>1000 pF</td>
</tr>
<tr>
<td>C47, C50</td>
<td>4700 pF</td>
</tr>
<tr>
<td>C37, C42, C43, C49</td>
<td>0.047 uF ceramic bypass</td>
</tr>
<tr>
<td>C36</td>
<td>0.1 uF ceramic bypass</td>
</tr>
<tr>
<td>C48</td>
<td>0.15 uF</td>
</tr>
<tr>
<td>C38</td>
<td>0.7 uF</td>
</tr>
</tbody>
</table>

Diodes: Switching signal-silicon

<table>
<thead>
<tr>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C67, C88, C99</td>
<td>1N4148 or 1N4149</td>
</tr>
</tbody>
</table>

Jumpers:

<table>
<thead>
<tr>
<th>Jumper</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>J8</td>
<td>three post jumper</td>
</tr>
<tr>
<td>J9</td>
<td>two post jumper</td>
</tr>
</tbody>
</table>

Sockets:

<table>
<thead>
<tr>
<th>Sockets</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 x 14 pin</td>
<td></td>
</tr>
</tbody>
</table>

Integrated circuits:

<table>
<thead>
<tr>
<th>Integrated circuits</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>U14</td>
<td>TL084</td>
</tr>
<tr>
<td>U15</td>
<td>TL084</td>
</tr>
<tr>
<td>U16</td>
<td>LM329</td>
</tr>
<tr>
<td>U17</td>
<td>74L500</td>
</tr>
<tr>
<td>U18</td>
<td>14551</td>
</tr>
<tr>
<td>U19</td>
<td>74HC00</td>
</tr>
</tbody>
</table>
The world's most popular 3 KW roller inductor tuner with cross-needle meter gives you the widest range matching network available for coax, balanced lines and random wires plus you get antenna switch, dummy load and balun - all at a super price...

The MFJ-989B is a compact 3 KW PEP roller inductor tuner with lighted Cross-Needle SWR/Wattmeter that handles the highest power of any MFJ tuner! Its roller inductor allows you to get your SWR down to the absolute minimum. And you get other outstanding features like an antenna switch, dummy load, balun and more - all at an outstanding price. At only 10¼x4½x15, the MFJ-989B matches the new, smaller rigs. Why can you get your SWR down to minimum every time? Because the MFJ-989B has a roller inductor with 3-dig'nt turn washer plus a spinner knob for precise inductance control. And because it has the widest range matching network available for coax, balanced lines and random wires. And it covers 1.8 to 30 MHz continuously.

The MFJ-989B's 2-color, lighted Cross-Needle Meter not only gives you SWR automatically with no controls to set but also forward and reflected power at a glance! Plus... 6-position antenna switch, 50 ohm dummy load, 4:1 balun for balanced lines, ceramic feed-through, and flip-stand for easy viewing. Meter light requires 12 V.

MFJ's Best VERSA TUNER II

MFJ's all-in-one Deluxe Versa Tuner

MFJ-949C II gives you a clutter-free shack and $149.95 all the features you could ever want at a super price. Here's what you get: coax/balanced line/random wire 300 watt tuner for 1.8-30 MHz, Cross-Needle SWR/Wattmeter, 50 ohm dummy load, 4:1 balun and 6-position antenna switch... all in a compact 10 x 3 x 7 inch cabinet that matches the smaller new rigs.

You can tune out SWR on dipoles, vees, long wires, verticals, whips, beams and quads. A lighted Cross-Needle meter gives you SWR, forward and reflected power - all at a glance. A 6-position antenna switch lets you select 2 coax lines, direct or through tuner, random wire/balanced line and dummy load. 1000 volt capacitors, efficient airwound inductor, heavy duty switches.

MFJ's smallest VERSA TUNER

MFJ-901B $59.95

The MFJ-901B is our smallest - 5 x 2 x 6 inches - (most affordable) 200 watt PEP. Versa tuner - when both your space and your budget is limited. Matches dipoles, vees, random wires, verticals, mobile whip, beams, balanced and coax lines continuously 1.8-30 MHz. Excellent for matching solid state rigs to lines. Efficient airwound inductor. 4:1 balun.

144/220 MHz VHF TUNERS

MFJ-920 $49.95

MFJ-921 $69.95

MFJ's newest VHF tuners cover both 2 Meters and the new Novice 220 MHz bands. They handle 500 watts PEP and match a wide range of impedances for coax fed antennas. MFJ-921 has SWR/Wattmeter.

ORDER ANY PRODUCT FROM MFJ AND TRY IT - NO OBLIGATION. IF NOT SATISFIED RETURN WITHIN 30 DAYS FOR A NO-HASSLE REFUND (less shipping).

- One year unconditional guarantee
- Add $5.00 each shipping/handling
- Call or write for free catalog, over 100 products.

MFJ ENTERPRISES, INC.
Box 494, Miss. State, MS 39762

MFJ... making quality affordable

Reader Service CHECK - OFF Page 98

August 1988
July 7, 1988

Tell 'em you saw ~t~n HAM RADIO'
CALL TOLL FREE (800) 854-6046

WORLDWIDE DISTRIBUTION
FREE SHIPMENT
LARGEST HAM OUTLET IN THE WORLD
MOST ITEMS UPS SURFACE

7 STORE BUYING POWER

ICOM IC-761
HF SUPERIOR GRADE TRANSCEIVER
SALE! CALL FOR PRICE

ICOM IC-781
The Ultimate 150 W, ALL BAND HF TRANSCEIVER
GREAT PRICE!

ICOM IC-900
MULTI-BAND MOBILE
YOU CAN OPERATE SIX BANDS WITH ONE CONTROLLER!
2 MTR 25/45W, 440 MHz. 10 MTR, 6 MTR, 220 MHz & 1.2 GHz. 10 MEMORY
ARE YOU READY FOR 1.2 GHz OPERATION?

ICOM IC-275A/275H, 138-174 MHz
IC-375A, 220 MHz
IC-475A/475H, 430-450 MHz
LOW PRICE!

ICOM IC-735
100 W, 100 KHz-30 MHz Dual VFO Receiver
CALL FOR LOW, LOW PRICE

ICOM IC-R7000
25 MHz-1300 MHz SCANNING RECEIVER
GREAT PRICE!

ICOM IC-U4AT/u2AT
440 MHz, 2MTR Mini Hand-Held AT Model w/ TT Pad
GREAT PRICE!

NOW! RAPID DELIVERIES
COAST TO COAST FROM STORE NEAREST YOU

HAND-HELD VHF/UHF
IC-02AT IC-2AT 2MTR
IC-03AT IC-3AT 220 MHz
IC-04AT IC-4AT 440 MHz

All Major Brands in Stock Now!

Bob Ferrerio W6RJ President
Jim Rafferty N6RJ VP Sales/Calif Div.
Anaheim Mgr.

ANAHEIM, CA 92801
2620 W. La Palma (714) 761-3003 (213) 660-2040
Between Disneyland & Knotts Berry Farm

ATLANTA, GA 30340
6071 Buford Hwy
(404) 263-0700
Larry Mgr. W4AGW

BURLINGAME, CA 94010
999 Howard Ave (415) 342-5757
George Mgr. W6EDSV
5 miles south on 101 from SFO

OAKLAND, CA 94606
2710 Livingston St.
(415) 534-9727
Al Mgr. W6GYSK

PHOENIX, AZ 85015
1707 W. Carmelita Blvd
(602) 274-3515
Bob Mgr. K7ROH

SAN DIEGO, CA 92123
5375 Kearny Villa Rd
(619) 400-4906
Tom Mgr. K6M8K

VAN NUYS, CA 91411
5765 Sepulveda Blvd
(818) 968-2272
Al Mgr. K6HYA

10 AM-5:30 PM CLOSED SUNDAYS

Toll free including Hawaii. Phone hrs: 7:00 am to 5:30 p.m. Pacific Time. California, Arizona and Georgia customers call or visit nearest store. California, Arizona and Georgia residents please add sales tax. Prices, specifications, descriptions subject to change without notice.
EIMAC's new DX champion! The 3CX800A7.

Varian EIMAC continues to commit its development of reliable tubes for HAM radio.

The new, rugged 3CX800A7 power triode provides 2 kW PEP input for voice service or 1 kW cw rating up to 30 MHz. Two tubes will meet the new, higher power ratings authorized by the FCC.

Designed for today's low profile, compact linear amplifiers, the 3CX800A7 powerhouse is only 2½ inches (6.35 cm) high. Cooling requirements are modest and a matching socket, air chimney and anode clamp are available.

A data sheet and more information is available from Varian EIMAC. Or the nearest Electron Device Group sales office. Call or write today.

Varian EIMAC
301 Industrial Way
San Carlos, California 94270
Telephone: 415-592-1221
included to allow software switching from one modem to the other. A logic signal from an unused output line of the 8273 (U6, pin 36) controls the switch.

Since each modem operates at a different bit rate, one of the poles switches the 8273's 32X clock (pin 25) input from the standard 1200 baud position to the 4800 baud position. Another switch position selects the digital data output from one modem or the other. The serial data comes from the switch's pole into the 8273 data input (U4, pin 13).

Because this is a MOSFET switch, it can deal with analog and digital signals. The transmit signal going to the rig's modulator can be routed from one modem or the other by the third switch. Turning the 8273 control port (port B) bits on and off puts the switch under software control. The node customization program supplied with the HAPN-1 adapter provides a modem select menu; choose the modem/baud rate by pressing one of the function keys. The modem/baud rate remains in effect until the customization procedure is used to change the selection again.

construction

The prototype area at the end of the HAPN card is the perfect place to build this modem. (See photo A.) Power supply lines (+12 volts, -12 volts, +5 volts, -5 volts) are available, as are all the TNC interface points. Interfacing is shown for the HAPN-1 card; later versions of the card have traces to the interface points brought out to the prototype area, making modem construction a little easier.

You must use small components. The parts layout in fig. 3 assumes all capacitors have a lead spacing of 0.2 inch. Resistors of 1/4 watt have their leads bent to 0.4 inch.

Insert the components according to the layout diagram, and solder them to the board. Then cut the leads off and make the interconnections. A small soldering iron and fine wire (like wire-wrap wire) are a must. Take care with the interconnections; the parts
Table 1. Modem pin designations on HAPN series boards

<table>
<thead>
<tr>
<th>Signal name</th>
<th>HAPN-1</th>
<th>HAPN-1.1</th>
<th>HAPN-1.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rx 4800 audio</td>
<td>DB-9 pin 7</td>
<td>square pad 01</td>
<td>square pad 01</td>
</tr>
<tr>
<td>Tx 4800 audio</td>
<td>DB-9 pin 8</td>
<td>square pad 02</td>
<td>square pad 02</td>
</tr>
<tr>
<td>-12 volts</td>
<td>C22/R20</td>
<td>square pad 03</td>
<td>square pad 03</td>
</tr>
<tr>
<td>32xCLK</td>
<td>U6 pin 25</td>
<td>square pad 04</td>
<td>square pad 04</td>
</tr>
<tr>
<td>1200 baud</td>
<td>U8 pin 4</td>
<td>square pad 05</td>
<td>square pad 05</td>
</tr>
<tr>
<td>4800 baud</td>
<td>U8 pin 3</td>
<td>square pad 06</td>
<td>square pad 06</td>
</tr>
<tr>
<td>Not TxD</td>
<td>U6 pin 29</td>
<td>square pad 07</td>
<td>square pad 07</td>
</tr>
<tr>
<td>+ RTS</td>
<td>U9 pin 12</td>
<td>U9 pin 12</td>
<td>U9 pin 12</td>
</tr>
<tr>
<td>+12 volts</td>
<td>U11 pin 4</td>
<td>square pad 08</td>
<td>square pad 08</td>
</tr>
<tr>
<td>+5 volts</td>
<td>U11 rail</td>
<td>square pad 09</td>
<td>square pad 09</td>
</tr>
<tr>
<td>Tx 1200 audio</td>
<td>U5 pin 4</td>
<td>square pad 10</td>
<td>square pad 10</td>
</tr>
<tr>
<td>1200 RD</td>
<td>U7 pin 7</td>
<td>square pad 11</td>
<td>square pad 11</td>
</tr>
<tr>
<td>RD</td>
<td>U4 pin 13</td>
<td>square pad 12</td>
<td>square pad 12</td>
</tr>
<tr>
<td>Not PB1</td>
<td>U6 pin 36</td>
<td>square pad 13</td>
<td>square pad 13</td>
</tr>
<tr>
<td>CD</td>
<td>U3 pin 9</td>
<td>square pad 14</td>
<td>square pad 14</td>
</tr>
<tr>
<td>-5 volts</td>
<td>edge connector B5</td>
<td>square pad 15</td>
<td>square pad 15</td>
</tr>
</tbody>
</table>

Note: Edge connector pin B5 is the fifth pin from the bracket going to the fifth hole on the top row.

are placed very close together and finding a wiring mistake after the modem has been assembled is no fun. (See photo B.)

Cut the following two printed circuit traces so the multiplexer chip (U18) can switch from one modem to the other under program control:
1. Cut the default 1200 BPS trace at "SW" (next to P1).
2. Cut the trace going to U4 pin 13. This will be at different locations, depending on the board revision you have:
 - HAPN-1 — fat trace on the component side, going to U4 pin 13.
 - HAPN-1.1 — short trace between square pad no. 11 and square pad no. 12.
 - HAPN-1.2 — short trace between square pad no. 12 and square pad no. 13.

Table 1 shows how the new modem interfaces with different revision boards. The later boards have been enhanced with pads at the prototype area making it easier to add the modem. Square pads are immediately adjacent to the prototype area, in a vertical row. They are consecutively numbered from the top of the board to the bottom.

Voltage hookup

Look up the signal name in table 1 and locate the appropriate interface point for your board.

GND from any wide ground trace at the side of the prototype area to U17 pin 7, U18 pin 8, and U19 pin 7. Also complete ground side connections to all components needing ground (see schematic, fig. 1).

- +12 volts to U16 pin 3, U14 pin 4, and U15 pin 4. Also connect +12 volts to R59.
- -12 volts to U16 pin 12, U14 pin 11, and U15 pin 11. Also connect -12 volts to R62.

+5 volts to U17 pin 14, U18 pin 16, and U19 pin 14. Also connect +5 volts to R66, R67, R68, and R79.

-5 volts to U18 pin 7.

Finally, make up a cable for the radio with the following:
- "Rx audio" to DB9 pin 7
- "Tx audio" to DB9 pin 8
- "PTT" to DB9 pin 1
- "GND" to DB9 pin 3

Modem/radio interface

One project goal was to maintain the functionality of the existing modem while allowing easy switching between the two. It was also desirable to keep the interface between the modem and the radio as simple as possible.

A quick survey of local hams shows that most would have to change the tap points into their radio for the new modem. Choose the wrong tap points and this modem will not work! At this time a wide variety of radios have been adapted successfully with little modification.

Transmitter Interface

The 4800 modem transmit signal must go directly to the FM or PM modulator in your transceiver. Connections to the microphone jack will not work. Tapping at this point also seems to work well with 1200 baud modems, as long as the level is readjusted to match the new tap point. Because this tap point bypasses the limiter stages in the audio chain, take care not to over-deviate. Deviation should be kept to about 3 kHz by adjusting R31 on the modem. Use shielded cable to connect the modem to your radio.

If you choose the correct tap point, your radio will still operate properly when used for voice work but
you will have to disconnect the modem interface cable to get full voice modulation. When it is used for packet communication, it’s a good idea to unplug the microphone to prevent room noise pickup.

You must determine which modulation type your radio uses. If you have a phase modulator, install a jumper between the center pin of J8 and the pin connected to R30. If your rig uses a frequency modulator, install the jumper between the center pin of J8 and C30.

Many radio manuals include a block diagram. This is a useful guide to determine what form of modulation your radio uses. FM is always applied to an oscillator circuit; either a crystal-controlled oscillator or a voltage-controlled oscillator (VCO). If it’s FM, your rig’s schematic will show a voltage variable capacitance (varactor) diode coupled closely to the frequency determining inductors and capacitors (or crystal) of an oscillator circuit.

Phase modulation is always applied to a stage following an oscillator, never to the oscillator itself. PM could be produced using either a voltage variable capacitance diode or a transistor stage called a “reactance modulator”.

The point in your radio where the Tx audio should be introduced must be very close to the modulator. Your rig’s audio processing stages will probably end in a low-pass filter before going into the modulator. The tap point will be between the low-pass filter and the modulator itself. If possible, tap in at a high impedance point; the modem shouldn’t have to drive an impedance lower than about 400 ohms.

Figure 4A shows an example of the transmitter interface to a Kenwood TR-7930 transceiver.

receiver interface

You cannot use a connection into your rig at the speaker or volume control for this modem. Your rig must be tapped directly at the FM detector before the audio is de-emphasized. The de-emphasis circuit (a resistor/capacitor combination) is rarely identified on schematic or block diagrams. It nearly always follows the squelch pickoff point, but is often placed before any audio gain stages.

Most radios use a squelch circuit called a “noise-operated squelch” that gets its operating signal from the FM detector, before de-emphasis. Tap for the modem at exactly the point where this squelch circuit joins the FM detector. The input circuit of the modem is ac coupled, and is high impedance (100k). It can
accommodate signal amplitudes from 2 mv to 200 mv rms.

Some integrated-circuit detector chips include an audio preamp that may supply too much signal for the modem. You can accommodate these larger signals by soldering a resistor (10k to 33k) in parallel with R45.

Use shielded wire between the receiver interface point and the modem. Keep the length as short as possible — avoid a run of more than 10 feet. If you must keep your radio at some distance from your TNC, construct a buffer stage at the detector so that it is not loaded by the capacitance of a long run of shielded cable.

The existing interface for the push-to-talk circuit doesn’t need to be changed. Route all signals through the nine-pin connector at the back of the board. You may leave the existing 1200 baud lines on this connector (pins 2 and 4) intact, wiring the new transmit and receive lines to pins 7 and 8. Once you get the new modem running successfully, try switching to 1200 baud using the new tap points in your radio. An adjustment of the modem TX level control (P3) should be all that’s necessary.

The HAPN card allows two sources of carrier detect — one derived from the demodulator chip (XR2211), the other from an external (squelch-derived) source. A jumper at J1 or J2 selects one of these sources. Jumper J9 selects a third option, the 4800 carrier detect. Because this circuit detects 1200 baud packets, 4800 baud packets, and even voice, remove the jumper on J1 or J2 and install it permanently at J9.

Figure 4B shows an example of the receiver interface to a Kenwood TR-7930 transceiver.

test and alignment

Check the four power supply lines for shorts with an ohmmeter before plugging the modified card back into your computer. After installing the adapter, but before connecting your radio, make sure the dc voltages on all the signal pins of U14 and U15 are 0 volts. Connect your radio and go to a clear channel.

Measure the voltage at TP 1 and adjust potentiometer R44 for about 9 Vdc. This voltage gives the peak amplitude of the audio signal, and should drop to about 6 Vdc during a 4800 baud packet. If R44 adjusts out of range, change R45 up in value if the TP 1 voltage is too low, down in value if it’s too high.

Now adjust R74 as you would a squelch control. Use the HAPN “T25” test program to look at the “carrier detect” function. You can also set R74 by looking at U14b pin 7. Adjust for —5 Vdc on a clear channel. It should rise to approximately 0 volts when a carrier is present, or when the radio is disconnected from the modem.

The transmit level control R31 is more difficult to set properly, since you probably have no way of meas-
uring deviation. The 4800 baud deviation should be 3 kHz, a little less than voice deviation of 5 kHz. You might have another station compare the level of your 4800 baud packets with a voice transmission, ideally with a scope. Start R31 off at minimum, increasing it slowly. Setting R31 too high may over-deviate your transmitter and the monitoring station will see only that waveform amplitude is not increasing, although you may be causing adjacent channel interference. Remember that by connecting directly to the modulator you have bypassed the audio limiting circuits; the only thing limiting deviation is R31 in the modem.

The existing factory limiter setting in your radio (which should be close to 5 kHz) can also be used as a reference for setting the 3-kHz deviation for 4800 baud. Hook up your scope at the selected 4800 baud modulating point, apply a signal into the microphone input (use a signal generator or whistle into the mike), and increase the amplitude until you can see limiting on the scope. Note the peak amplitude. This will be your 5-kHz deviation reference. Take 60 percent of this value and use it for adjusting the 4800 baud transmit level (R31). You can also use the same level when adjusting your 1200 baud transmit level (P3).

acknowledgments

This modem is an adaptation of the design by Ken Smith, VE3HWB, so a great deal of credit must go to him. Ken’s original article, “Packet Radio with the 1802,” was published in the Ipsos Facto newsletter of the Association of Computer Experimenters (ACE), April 1979. Thanks also to HAPN members VE3IUV, VE3NAV, and VE3MCF for their efforts in building and testing the prototypes, and their contributions to this article.

available from HAPN

The HAPN-1 adapter revision 2 is still available from HAPN as described in the August 1986 article for the same price. Revision 2 contains a number of extra traces in the prototype area to simplify the addition of a second modem there.

We also have a printed circuit board for a standalone version of the 4800 baud modem, the HAPN-M, available for $25 U.S. postage paid. The modem is identical to the one described in this article, except that it has RS-232C drivers in the interface to the TNC. It may be used with any RS-232C compatible TNC, or TTL levels if the RS-232C interface circuits are bypassed.

We would like to remind HAPN-1 users who build this modem that a software update may be required to fully support the modem switch. Software updates are $5 U.S. each, plus $5 per diskette. (If you use any of the programs on diskette 2, a diskette 2 update is required along with diskette 1.)

Wiring diagrams of the modem and interfacing diagrams for the Santec ST-144/UP handheld and the ICOM IC-27 transceivers are available from HAPN if you send us a self-addressed envelope and an IRC.

HAPN update

HAPN (Hamilton and Area Packet Network) is a nonprofit association dedicated to furthering the state of packet radio. We are presently working on the TAPR-2 TNC version of the 4800 baud modem and on developing drivers for the VADCG V-3 experimental protocol. We believe that widespread use of 4800 baud will go a long way to improve the efficiency of packet radio local area networks, at minimal cost to the users. The V-3 link level driver is being tested, but the network level is yet to be coded. V-3 is a very interesting networking protocol, an outgrowth of VADCG's V-2 protocol. (For further information on V-3 write VADCG, 9531 Odlin Road, Richmond, BC, V6X 1E1, Canada.)

Reference

A tribute to Heinrich Hertz

One hundred years ago, in a technical high school in Germany, a teacher working with hand-me-down apparatus made a discovery that would affect generations to come. His equipment consisted of little more than a few electrical conductors and a Leyden jar, yet he stumbled upon the basic principle which became the foundation of modern radio, television, radar, and electromagnetic wave communication.

The year was 1886; the man was Heinrich Hertz. Hertz's initial discovery was followed by a series of research studies that firmly established the existence of mysterious and remarkable "electric waves" — waves which could travel through walls and empty space. Today we call them "radio waves," or "electromagnetic radiation."

Most people think that Marconi was the man responsible for radio. Marconi was responsible for the practical application of radio, but Hertz laid the groundwork and did all the research work upon which modern radio is based.

Now, 100 years after Hertz’s discoveries, it may come as a surprise to many that his work is still the foundation of modern radio. We don’t use spark-gap transmitters in our communications today, and Hertz never heard of a superheterodyne receiver — he didn’t even see his electrical waves as potential media for communication. But it is amazing to realize the extent to which Hertz’s work is represented in hi-tech, high-performance radio communications.

The path to the goal

Hertz’s work can be traced to that of such notables as English scientist Michael Faraday and Scottish physicist James Clerk Maxwell. Of particular importance are Faraday’s ideas about electrical and magnetic fields, and Maxwell’s theoretical predictions of the existence of electromagnetic waves. In 1887, Hertz was working on a problem concerning the relation between electromagnetic forces and the dielectric polarization of insulators. While working with some spiral coils used for demonstrations during his tenure at the Technical High School at Karlsruhe, he noticed that a discharge of a small Leyden jar through one coil caused a spark across a spark gap of the other. Further investigation revealed that there were very rapid electrical oscillations occurring within the coils.

While still pursuing the problem of the dielectric polarization of insulators, Hertz was, as he says: "...frustrated by the invariable occurrence of strong sparking in the secondary conductor..." Now the secondary conductor just happened to be a loop antenna with a spark gap, used as a detector of electromagnetic waves. Of course Hertz had not designed his loop as an antenna; antennas hadn’t been invented yet! He designed the loop as the secondary loop of a transformer. At first his results puzzled him. Later in his discussion he says: "It only gradually became clear to me that the law which I had assumed as the basis of my experiment did not apply here..."

Hertz did not realize at first that his electrical oscillations were producing waves which traveled through space. But he was a dedicated researcher and followed where his findings led. He wrote later: "But when I had established with certainty the existence of actual waves, I...arrived at the phenomena which are described in the paper ‘On Electromagnetic Waves in Air, and their Reflection.’" Hertz realized that he had discovered the electromagnetic waves Maxwell had predicted with his mathematical equations.

By W. Clem Small, KR6A, R 1, Box 64A, Weybridge, Vermont 05753
Hertz: a pioneer among pioneers

You may be surprised to learn that there were others who predated Hertz in demonstrating electric waves in air.* It seems that he was unaware of their work and made his discoveries independently. Let's take a look at these men.

Lord Kelvin, in the preface to the English edition of Hertz's classic Electric Waves⁹, referred to Joseph Henry who showed that electrical force can diffuse through space in a manner very much like light waves. In 1842, before Hertz's discovery of electric waves, Henry demonstrated such radiation by showing magnetic effects in steel needles caused by lightning bolts miles distant from the needle. The "sparks" of Henry's lightning bolts now seem to be precursors to the sparks of Hertz's spark-coil transmitter.

Then, in 1871, Elihu Thomson and E. A. Houston reported work in which Thomson sent signals between a spark transmitter and a spark-gap receiver (equipment similar to that which Hertz would use) from the basement to the top floor of the school where they taught. In 1876, Sylvanus Thompson used equipment even more similar to Hertz's, to show that another electric wave discoverer, Thomas A. Edison, was wrong in claiming that he had discovered a "new" nonelectric force. Edison had discovered this new force in 1875 while investigating sparking which occurred during work on an electromagnet with a vibrating armature — a device having much in common with the induction coil of Hertz's spark-gap transmitter. Again, the method of detection was the observation of a visible spark at the point of reception. Edison displayed his electric waves only in conductors, not in air. Because of the strange behavior of these waves, he claimed that his new force was not a form of electricity, but of some "etheric" force. Thompson showed that he was wrong, but unfortunately, didn't go on to show just what it was that Edison had discovered. Then in 1880, David Hughes performed studies which demonstrated the effects of Hertz's electric waves. But when Hughes demonstrated his results to eminent scientists of his day, he was discouraged from pursuing the matter. The scientists claimed he was using the well-known principle of induction, rather than displaying something new.

Thomson and Houston, Thompson, Edison, and Hughes all seem to have demonstrated the effects of what were later to become known as radio waves, but none of them pursued the discovery to the same extent as Hertz. Much later, after wireless communications were a reality, Edison sold the patent on his etheric force to Marconi for $30,000.

Perhaps even more startling is the work of E. A. Dolbear, who in 1882 gave the first demonstration of transmission and reception of the human voice with his "electrostatic telephone." Although he did use an induction coil in his transmitter, Dolbear's apparatus differed from Hertz's significantly. Another early wireless pioneer, a dentist named Mahlon Loomis, is often considered a precursor to Hertz for his work with the "aerial telegraph." In 1872, using an aerial and a ground at each site, Loomis used his apparatus to signal for 14 miles between two mountain tops. But his apparatus was also quite different from Hertz's, and Loomis's work is generally thought to have been based on atmospheric conduction rather than electric waves. Some historians believe that Dolbear's work also was not with electrical waves, but by induction — a popular means of early "wireless" communication. Others might deny the inclusion of Henry's or Edison's work in the list of Hertz precursors. Yet other historians would include all those I've mentioned above as legitimately predating Hertz in the discovery of wireless waves.

It is obvious that a number of men were experimenting with an intent to develop a wireless system using apparatus remarkably like that which Hertz later used to discover electric waves. Yet none of them was able to convince the scientific world that he had indeed found a worthwhile new means of signaling without wires. Before the scientific world would be willing to accept such a claim, Maxwell had to use his mathematics to justify the reasons for believing in such radiation, and Hertz had to provide solid experimental verification of those predictions. Where many had tried, one succeeded.

Hertz's legacy

In the 100 years since the discovery of electromagnetic radiation, there have been tremendous gains in the science and technology of radio communications. We have advanced from the early spark coils and coherers through crystal detectors, arc transmitters, radio-frequency alternators, vacuum tubes, transistors, and on to solid-state devices. Today's technology shows impressive strides beyond Hertz's crude apparatus. But how far have we really come?

Although he didn't foresee the potential his discovery held as a basis for communications, Hertz pioneered the development of some of the most modern communication technology we have today. For instance, the parabolic dish antenna, important to microwave communications, is a direct descendent of Hertz's parabolic reflector antenna. The dipole antenna was also Hertz's discovery and basic to much of his early work. Today dipole antennas are a component

*W. von Bezold, G. F. Fitzgerald, and Oliver Lodge are three other pioneers in the study of electric waves. None of them actually demonstrated electric waves in space, but did precede Hertz with work which had specific implications that could have led to his findings.
RF POWER AMPLIFIERS

- Lowest NF GaAs FET Preamp
- Finest Quality Military Construction
- Off-The-Shelf Dealer Delivery

For the past five years, Amateurs worldwide have sought quality amplifier products from TE Systems. Renowned for the incorporation of high quality, low-noise GaAs FET preamplifiers in RF power amplifiers, TE Systems offers our fine line of products through select national distributors.

All amplifiers are linear (all-mode), automatic T/R switching with adjustable delay and usable with drive levels as low as 1% Watt. We incorporate thermal shutdown protection and have remote control capability. All units are designed to ICAS ratings and meet FCC part 97 regulations. Approx. size is 2.8 x 5.8 x 10.5" and weight is 5 lbs.

Consult your local dealer or send directly for further product information.

TE SYSTEMS
P.O. Box 25845
Los Angeles, CA 90025
(213) 478-0591

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Model</th>
<th>Freq, MHz</th>
<th>Power Input</th>
<th>Power Output</th>
<th>NF-dB Preamp Gain-dB DC +Vdc Power RF Conn.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0510G</td>
<td>50-54</td>
<td>1</td>
<td>170</td>
<td>.6 15 13.6 28 UHF</td>
</tr>
<tr>
<td>1410G</td>
<td>144-148</td>
<td>10</td>
<td>170</td>
<td>.6 15 13.6 25 UHF</td>
</tr>
<tr>
<td>2210G</td>
<td>200-225</td>
<td>10</td>
<td>130</td>
<td>.7 12 13.6 21 UHF</td>
</tr>
<tr>
<td>4410G</td>
<td>420-450</td>
<td>10</td>
<td>100</td>
<td>1.1 12 13.6 19 N</td>
</tr>
</tbody>
</table>

Models also available without GaAs FET preamp (delete G suffix on model #). All units cover full amateur band – specify 10 MHz bandwidth for 420-450 MHz amplifier.

Amplifier capabilities: 100-200 MHz, 225-400 MHz, 1-2 GHz, Military (28V), Commercial, etc. also available – consult factory.

WORLD'S SMALLEST
WEATHER STATION

THE TW-2 MICRO WEATHER STATION INCLUDES:
- A COMPUTER MODULE, THE AN-2 Anerometer
- AND # OF LEAD IN CABLE, FOR ONLY $159.95

WIND SPEED AUTO SCAN
WIND DIRECTION METRIC STANDARDS
WIND CHILL FOUR WAY POWER
WIND GUST RECORD NICAD READY
TEMPERATURE MOUNTING OPTIONS
HUMID TEMP RECORD ONE YEAR WARRANTY

** SATISFACTION GUARANTEED **
MAGNAPHASE INDUSTRIES, INC.
105 PINE STREET N.W.
MADE IN U.S.A. AURORA, WY 83220
ORDERS ONLY: 800-322-1502
INFORMATION: 206-725-6074 FAX: 206-725-9644

COMPUTERIZE YOUR SHACK

YAESU 747, 757GX, 757GXII, 767, 9600.
KENWOOD TS 440, TS 940.
ICOM R71A, R7000, 735, 751A.

COMPLETE PROGRAM ENVIRONMENT MENU DRIVEN AND DESIGNED FOR EASE OF USE.
SCAN FUNCTION ADDED TO RADIOS THAT DO NOT SUPPORT IT.

MENUS FOR THE FOLLOWING:
- AMATEUR HF
- AMATEUR VHF
- AMATEUR UHF
- AM BROADCAST
- FM BROADCAST
- TELEVISION BROADCAST
- SHORT WAVE BROADCAST
- AVIATION HF SSB AVIATION VHF AVIATION UHF
- HIGH SEAS MARINE VHF MARINE
- MISCELLANEOUS HF, VHF, UHF
- MOST POPULAR FREQUENCIES ALREADY STORED
- ADDITIONAL LIBRARIES AVAILABLE COMPLETE LOGGING FACILITY ALL FREQUENCY FILES MAY BE ADDED TO, EDITED OR DELETED
- AVAILABLE FOR IBM PC XT XT AT 80386 256K RAM SERIAL PORT AND 1 FLOPPY MINIMUM
- PROGRAM WITH INITIAL LIBRARIES 99.95
- Interface allows 4 radios 99.95

SPECIALIZED COMMUNICATIONS
FOR TODAY'S RADIO AMATEUR!

Our 20th Year!

SPEC-COM Communications & Publishing Group
P.O. Box H
Lowden, Iowa
52255-0408

DATACOM, INT.
8081 W. 21ST. LANE
HIALEAH, FL 33016
AREA CODE (305) 522-6028
of most TV receiving antennas, used extensively in high-frequency work or as the feed antenna in microwave dishes. The world’s first loop antenna was the single turn of Hertz’s loop with spark-gap receiver. Today, virtually every AM broadcast-band receiver uses a loop antenna. Our contemporary microwave dielectric antenna is a spinoff of his early work on the quasi-optical properties of electric waves as they interact with dielectric materials.

On the other hand, the original Hertzian transmitter, the venerable induction coil with spark gap, has been outlawed since 1938. But I found reference as recently as 1971 to engineering research on the use of electrical spark to generate electromagnetic waves. The ghost of Henrich Hertz is everywhere!

references

*This happens to be the most recent reference to a spark transminer I’ve come across.

ham radio

AMATEUR TELEVISION

NOVICES: NOW YOU CAN TRANSMIT VIDEO WITH OUR NEW TX23-1

Did you know that you as well as all classes of licensed amateurs can easily transmit live action color and sound video just like broadcast TV with our TX23-1 transmitter. Use any home TV camera and/or VCR, computer, etc. by plugging the composite video and audio into the front 10 pin or rear phono jacks. Call or write now for our complete AT catalog including downconverters, transceivers, linear amps, and antennas for the 70, 33, & 23cm bands.

Only $299

TX23-1 one watt ATV transmitter crystalized for 1289.25 MHz runs on 12-14 Vdc @ .5A. PTL T/R switching, 7x7x2.5". Transmitters sold only to licensed amateurs for legal purposes verified in the latest Callbook or with copy of license sent with order.

(818) 447-4565 m-f 8am-5:30pm pst
P.C. ELECTRONICS
2522 Paxon Ln Arcadia CA 91006

The Ham Station
P.O. Box 6522
220 N. Fulton Ave.
Evansville, IN 47719-0522

Store Hours
MON-FRI: 9AM - 6PM
SAT: 9AM - 3PM
CENTRAL TIME
SUNDAY: CLOSED

SEND A SELF ADDRESSED STAMPED ENVELOPE (SASE) FOR NEW AND USED EQUIPMENT SHEETS

WARRANTY SERVICE CENTER FOR:
ICOM, YAESU, TEN-TEC
FOR SERVICE INFORMATION CALL
(812) 422-5325
MONDAY - FRIDAY
9:00 AM - 12:00 NOON

TERMS:
Prices Do Not Include Shipping, Price and Availability Subject to Change Without Notice
Most Orders Shipped The Same Day
7 Day Returns Policy

AEA PK-232
Data Controller with 6 Modes
Packet
AQIC
Mode Code
AMTOR
Baudot (RTTY): Weather Fax
List $129.95 Now Special Priced

MFJ 989B
3 KW Tuner
$295

SPECIAL

AEA PK-232
Data Controller with 6 Modes
Packet
AQIC
Mode Code
AMTOR
Baudot (RTTY): Weather Fax
List $139.95 Now Special Priced

For Orders and Price Checks Call 800-523-7731

Indiana and Information
Call 1-812-422-0231
Our Antenna & Tower Discounts Are Tops

Hy-Gain, Cushcraft, Rohn, Tri-Ex, and Alliance Package Specials Available

Call and Compare Our Prices

Orders & Quotes Toll Free 800-444-4799
One of the first things an Amateur learns is that the antenna impedance must be matched to the transmission line, and that the transmission line impedance must be matched to the output impedance of the transmitter. This is because maximum power transfer between a source and a load occurs when the system impedances are matched. In other words, more power is transmitted from the system when the load impedance (the antenna), the transmission line impedance, and the transmitter output impedance are all matched with each other.

Of course, the trivial case is where all three sections of our system have the same impedance. For example, you could have an antenna with a simple 75-ohm resistive feedpoint impedance (typical of a half-wave dipole) and a transmitter with an output impedance that will match 75 ohms. In that case, you need only connect a standard impedance 75-ohm piece of coax between the transmitter and the antenna. Job done!

But there are other cases where the job is not so simple. In the case of the standard antenna, for example, the feedpoint impedance is rarely what the books say it should be. That ubiquitous dipole, for example, is nominally rated at 75 ohms but even the simplest antenna book tells us that value is merely the theoretical free-space impedance. At locations closer to the earth's surface that impedance may vary over the approximate range of 30 to 130 ohms and may have a substantial reactive component; so much for standard coaxial cable.

There is a way out of this situation. You can construct a matching system that will marry the source impedance to the load impedance. This month we will examine several matching systems that might prove useful in a number of situations.

To match a complex load impedance like an antenna to a resistive source (the most frequently encountered situation in practical radio work), interpose a matching network between the load and the source (fig. 1). The matching network must have an impedance that is the complex conjugate of the complex load impedance. For example, if the load impedance is \(R + jX \), the matching network must have an impedance of \(R - jX \); similarly, if the load is \(R - jX \), the matching network must be \(R + jX \). In the sections that follow we'll take a look at some of the more popular networks that accomplish this job.

L-section network

The L-section network is one of the most used, or at least most published, antenna-matching networks in existence. It rivals even the pi-network. A circuit for the L-section network is shown in fig. 2A. The two resistors represent the source \(R1 \) and load \(R2 \) impedances. The elementary assumption of this network is that \(R1 < R2 \). The design equations are:

\[
R1 < R2 \text{ and } 1 < Q < 5
\]

\[
X_L = 6.28FL = Q \times R1
\]
\[X_c = \frac{j}{6.28FC} \quad (1) \]
\[Q = \left[\frac{R_2}{R_1} - 1 \right]^{1/2} \quad (2) \]
\[X_L = R_2 \cdot \frac{R_1}{\sqrt{(R_2-R_1)}} \quad (3) \]

Also,
\[Q = \frac{X_L}{R_1} = \frac{R_2}{X_c} \]

It's probable that you'll see this network published in conjunction with less than quarter-wavelength long-wire antennas. Those books and articles typically call for a "good ground" for the antenna to work properly. But they don't tell you what a "good ground" is or how you can obtain it. Unfortunately, at most locations a good ground means burying a lot of copper conductor — something that most of us can't afford. In addition, the person who is forced to use a long-wire instead of a better antenna often can't construct a good ground under any circumstances because of landlords and/or logistical problems. The very factors that prompt the use of a long-wire antenna in the first place also prohibit any form of practically obtainable good ground. But there is a way out — radials. A good ground can be simulated with a counterpoise ground constructed of quarter-wavelength radials. These radials have a length in feet equal to 246/FMHz, and as few as two of them will work wonders. I've used just one radial tacked to the baseboard of a student boarding house room at college and achieved superior results over the poor ground that I'd been able to obtain previously in my third floor abode.

Another form of L-section network is shown in fig. 2B. This circuit differs from the previous one in that the roles of L and C are reversed. As you might suspect, this switch brings about a reversal of the impedance relationships. In this circuit the assumption is that driving source impedance R1 is larger than load impedance R2 (R1 > R2). The equations are shown below:
\[R_2 > R_1 \]
\[X_L = R_2 \left[R_1/(R_2 - R_1) \right]^{1/2} \] or

\[X_c = \frac{R_1 R_2}{X_L} \]

A final form of L-section network is shown in fig. 2C. Again, assume that driving source impedance R1 is larger than load impedance R2 (R1 > R2).

In this circuit, the elements are arranged like those in fig. 2A, except that the capacitor is at the input rather than the output of the network. The equations governing this network are:
\[R_1 > R_2 \quad \text{and} \quad 1 < Q < 5 \]
\[X_L = 6.28FL = [(R_1 R_2) - (R_3)^2]^{1/2} \quad (4) \]
\[\text{or} \quad = \sqrt{(R_1 R_2) - (R_3)^2} \]
\[X_c = \frac{j}{6.28FC} = \frac{R_1 R_2}{X_L} \quad (5) \]
\[C = \frac{j}{6.28FX_c} \quad (6) \]
\[L = \frac{X_L}{6.28F} \quad (7) \]

So far, we have considered only matching networks that are based on inductor and capacitor circuits. But there is also a possibility of using transmission line segments as impedance-matching devices. Two basic forms are available: quarter-wave sections and the series matching section.
The **Kansas City Tracker** is a hardware and software package that connects between your rotor controller and an IBM XT, AT, or clone. It controls your antenna array, letting your PC track any satellite or orbital body.

The **Kansas City Tuner** is a companion product that is used in satellite work to provide automatic doppler shift compensation. It interfaces to your radio through its serial computer control port (RS232) or “mouse click” interface to update the receive and/or transmit frequencies once a second. It can be used in digital or analog modes. The **Tuner** is compatible with most rigs including the Yaesu 726 & 736, the ICOM 271/471, 275/475, and R-7000. Call regarding your specific rig.

The **Kansas City Tracker** and **Tuner** have several advantages over other products available today. They do not use your computer’s COMM ports or hardware interrupts. The software runs automatically, letting you run other programs at the same time. Several Kansas City products can be installed in one PC, letting you control up to 16 separate antenna arrays at the same time.

The **Kansas City Tracker** consists of an interface card that can be plugged into a PC short-card slot, a Terminate-And-Stay-Resident (TSR) rotor control program, and a TSR status “pop-up” program. The **Kansas City Tracker** can be connected directly to a Yaesu/Kenpro 5400/5600 rotor controller, or to any other rotor on the market today using our Rotor Interface Option. The rotor driver and status programs are TSR programs that attach themselves to DOS and “disappear.” You can run other DOS programs while your antenna tracks its target under computer control at the same time. This unique feature is especially useful for satellite and land digital work, as communications programs like PROCOMM can be run while the PC aims the rotors at the same time. The status “pop-up” allows the user to view and change the current antenna position and upcoming pass information. The **Kansas City Tracker** is compatible with DOS 2.00 or higher, and will run under DESO-VIEW.

Satellite and EME Work

The **Kansas City Tracker** and **Kansas City Tuner** are fully compatible with AMSAT’s QUIKTRAK (3.2) and with Silicon Solution’s GRAFTRACK (2.0). These programs can be used to load the **Kansas City Tracker**'s tables with more than 50 satellite passes. We also supply assembled & tested TAPR PSK modems with cases and 110v power supplies.

DX, Contests, and Nets

Working DX or contests and need three hands? Use the **Kansas City Tracker** pop-up to work your antenna rotor for you. The **Kansas City Tracker** is compatible with all DX logging programs. A special callsign aiming program is included for working nets.

Packet BBS

The **Kansas City Tracker** comes complete with special control programs that allow the packet BBS user or control-op to perform automated antenna aiming over an hour, a day, or a week. Your BBS or packet station can be programmed to automatically solicit mail from remote packet sites.

Vision-Impaired Hams

The **Kansas City Tracker** has a special morse-code sender section that will announce the rotor position and status automatically or on request. The speed and spacing of the code are adjustable.

The **Kansas City Tracker** and **Tuner** packages includes the PC interface card, interface connector, software diskette, and instructions. Each Kansas City unit carries a one year warranty.

- **KS Tracker package for the Yaesu/Kenpro**
 5400/5600 controller $169
- **Interface cable for Yaesu/Kenpro**
 5400/5600 .. $ 19
- **KC Tracker with Rotor Interface Option**
 (to connect to ANY rotors) $199
- **KC-Tracker and Tuner combination: Add to the price of the TRACKER version you need! Mike Click version** $ 59
- **RS232-Interface version** $ 79
- **Assembled & Tested TAPR PSK modem with case & 110v power supply** .. $199
- **AMSAT QUIKTRAK software** $ 75

Visa and MasterCard accepted. Shipping and handling: $5, $10 for 2nd day air, $15 for international shipments. Prices subject to change without notice.

L. L. Grace

Communications Products
41 Acadia Drive • Voorhees, NJ 08043
Call (609) 751-1018 evenings & weekends (EST) for more info
ASTRON POWER SUPPLIES

HEAVY DUTY • HIGH QUALITY • RUGGED • RELIABLE

SPECIAL FEATURES
- SOLID STATE ELECTRONICALLY REGULATED
- FOLD-BACK CURRENT LIMITING Protects Power Supply from excessive current & continuous shorted output
- CROWBAR OVER VOLTAGE PROTECTION on all Models except RS-3A, RS-4A, RS-5A.
- MAINTAIN REGULATION & LOW RIPPLE at low line input Voltage
- HEAVY DUTY HEAT SINK • CHASSIS MOUNT FUSE
- THREE CONDUCTOR POWER CORD
- ONE YEAR WARRANTY • MADE IN U.S.A.

PERFORMANCE SPECIFICATIONS
- INPUT VOLTAGE: 105-125 VAC
- OUTPUT VOLTAGE: 13.8 VDC ± 0.05 volts
 (Internally Adjustable: 11-15 VDC)
- RIPPLE Less than 5mv peak to peak (full load & low line)
- Also available with 220 VAC input voltage

INSIDE VIEW - RS-12A

RM SERIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN) H x W x D</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM-12A</td>
<td>9</td>
<td>12</td>
<td>5½ x 19 x 8³⁄₄</td>
<td>16</td>
</tr>
<tr>
<td>RM-35A</td>
<td>25</td>
<td>35</td>
<td>5½ x 19 x 12½</td>
<td>38</td>
</tr>
<tr>
<td>RM-50A</td>
<td>37</td>
<td>50</td>
<td>5½ x 19 x 12½</td>
<td>50</td>
</tr>
</tbody>
</table>

- Separate Volt and Amp Meters
 - RM-12M: 9, 12
 - RM-35M: 25, 35
 - RM-50M: 37, 50

RS-A SERIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN) H x W x D</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-3A</td>
<td>2.5</td>
<td>3</td>
<td>3 x 4 x 5 x 5%</td>
<td>4</td>
</tr>
<tr>
<td>RS-4A</td>
<td>3</td>
<td>4</td>
<td>3½ x 6 x 9</td>
<td>5</td>
</tr>
<tr>
<td>RS-5A</td>
<td>4</td>
<td>5</td>
<td>3½ x 6 x 9½</td>
<td>7</td>
</tr>
<tr>
<td>RS-7A</td>
<td>5</td>
<td>7</td>
<td>3½ x 6 x 9½</td>
<td>9</td>
</tr>
<tr>
<td>RS-7B</td>
<td>5</td>
<td>7</td>
<td>4 x 7 x 10%</td>
<td>10</td>
</tr>
<tr>
<td>RS-10A</td>
<td>7.5</td>
<td>10</td>
<td>4 x 7 x 10%</td>
<td>11</td>
</tr>
<tr>
<td>RS-12A</td>
<td>9</td>
<td>12</td>
<td>4½ x 8 x 9</td>
<td>13</td>
</tr>
<tr>
<td>RS-12B</td>
<td>9</td>
<td>12</td>
<td>4 x 7½ x 10%</td>
<td>13</td>
</tr>
<tr>
<td>RS-20A</td>
<td>16</td>
<td>20</td>
<td>5 x 9 x 10½</td>
<td>18</td>
</tr>
<tr>
<td>RS-35A</td>
<td>25</td>
<td>35</td>
<td>5 x 11 x 11</td>
<td>27</td>
</tr>
<tr>
<td>RS-50A</td>
<td>37</td>
<td>50</td>
<td>6 x 13¾ x 11</td>
<td>46</td>
</tr>
</tbody>
</table>

RS-M SERIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN) H x W x D</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
</table>
| Switchable volt and Amp meter
 - RS-12M: 9, 12

- Separate volt and Amp meters
 - RS-20M: 16, 20
 - RS-35M: 25, 35
 - RS-50M: 37, 50

VS-M AND VRM-M SERIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN) H x W x D</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VS-12M</td>
<td>@13.8VDC</td>
<td>9</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>VS-20M</td>
<td>@10VDC</td>
<td>16</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>VS-35M</td>
<td>@5VDC</td>
<td>25</td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>VS-50M</td>
<td>@13.8V</td>
<td>37</td>
<td>22</td>
<td>10</td>
</tr>
</tbody>
</table>

- Separate Volt and Amp Meters • Output Voltage adjustable from 2-15 volts • Current limit adjustable from 1.5 amps to Full Load

RS-S SERIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN) H x W x D</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-7S</td>
<td>5</td>
<td>7</td>
<td>4 x 7½ x 10½</td>
<td>10</td>
</tr>
<tr>
<td>RS-10S</td>
<td>7.5</td>
<td>10</td>
<td>4 x 7½ x 10½</td>
<td>12</td>
</tr>
<tr>
<td>RS-12S</td>
<td>9</td>
<td>12</td>
<td>4½ x 8 x 9</td>
<td>13</td>
</tr>
<tr>
<td>RS-20S</td>
<td>16</td>
<td>20</td>
<td>5 x 9 x 10½</td>
<td>18</td>
</tr>
</tbody>
</table>

- Built in speaker
Pi networks

The pi network shown in fig. 3 is used to match a high source impedance to a low load impedance. These circuits are typically used in vacuum tube rf power amplifiers that need to match low antenna impedances. The name of the circuit comes from its resemblance to the Greek letter “pi”. The equations for the pi network are:

\[Q > \left(\frac{R_2}{R_1} - 1 \right)^{1/2} \]

or \[Q > \sqrt{\frac{R_1}{R_2} - 1} \]

\[X_L = \frac{R_2}{Q} \]

\[X_{CIB} = \left[\frac{R_1 Q^2 + 1}{R_2} \right]^{1/2} \]

or \[X_{CIB} = \sqrt{\frac{R_1 Q^2 + 1}{R_2}} - 1 \]

\[X_{CIA} = \frac{R_2 Q}{Q^2 + 1} \left[I - \frac{R_1}{Q X_{CIA}} \right] \]

Transmatch circuit

One version of the transmatch is shown in fig. 5. This circuit is basically a combination of the split-capacitor network and an output tuning capacitor (C2). For the hf bands, the capacitors are on the order of 150 pF per section for C1, and 250 pF for C2. The roller inductor should be 28 μH. The transmatch is essentially a coax-to-coax impedance matcher, and is used to trim the mismatch from a line before it affects the transmitter.

Perhaps the most common form of transmatch circuit is the T-network shown in fig. 6. This network costs less than some of the others, but has a problem. While it does match impedance (and thereby “tune out” VSWR on coaxial lines), it also has a high-pass characteristic so does not reduce the harmonic output of the transmitter. The T-network, therefore, does not serve one of the main purposes of the antenna tuner — harmonic reduction.

Split-capacitor network

The split-capacitor network shown in fig. 4 is used to transform a source impedance that is less than the load impedance. In addition to matching antennas, this circuit is also used for interstage impedance matching inside communications equipment. The equations for design are:

\[R_1 > R_2 \text{ and } 5 < Q < 15 \]

\[X_C = \frac{R_2}{[R_2/(R_1 + Q^2) - 1)]^{1/2}} \]

or \[X_C = \frac{R_2}{\sqrt{(R_1 + Q^2) - 1}} \]

\[X_C = \frac{R_1}{Q} \]

\[X_L = \frac{(R_1 Q + (R_2/X_C))}{Q^2 + 1} \]

Coaxial cable baluns

A balun is a transformer that matches a BALanced load (like a dipole antenna) and an UNbalanced resistive source impedance (like a coaxial cable). With the circuit in fig. 8 you can make a balun that will transform impedance at a 4:1 ratio, with \(R_2 = 4 \times R_1 \). The length of the balun section coaxial cable is:

\[L_{ft} = \frac{492 V}{F_{MHz}} \]

Where:

\(L_{ft} \) is the length in feet
\(V \) is the velocity factor of the coaxial cable
\(F_{MHz} \) is the operating frequency in megahertz
Covers 27-54 MHz, 108-114 MHz, 406-512 MHz, and 801-950 MHz.

ARSOO

Scan Banks and 5 Search Banks.

TOW price.

5-25 Day Satisfaction Guarantee, Full Refund if not Satisfied.

$299.00

No Frequencies cut out.

Sue: 2" x SW" x 1Yz' wt: 12 oz.

matching stubs

You can build a shorted stub to produce almost any value of reactance. Use this information to make an impedance-matching device that cancels the reactive portion of a complex impedance. If you have an impedance of, say, \(Z = R + j30 \) ohms you need to make a stub with a reactance of \(-j30 \) ohms to match it. Two forms of matching stub are shown in figs. 9A and 9B. These stubs are connected exactly at the feedpoint of the complex load impedance, although they are sometimes placed further back on the line at a (perhaps) more convenient point. In that case, the reactance required will be transformed by the transmission line between the load and the stub.

quarter-wave matching sections

Figure 10 shows the elementary quarter-wavelength transformer section connected between the transmission line and the antenna load. This transformer is also sometimes called a Q-section. When things are designed correctly, this transmission line transformer is capable of matching the normal feedline impedance \(Z_L \) to the antenna feedpoint impedance \(Z_F \).

You must have a piece of transmission line available that has an impedance \(Z_0 \) of:

\[
Z_0 = \frac{Z_L Z_F}{2} \quad \text{or} \quad Z_0 = \sqrt{Z_L Z_F}
\]

(15)

Most texts show this circuit for use with coaxial cable. While it is certainly possible, and even practical in some cases, for the most part there is a serious flaw in using coax for this project. It seems that the normal range of antenna feedpoint impedances, coupled with the rigidly fixed values of coaxial cable surge impedance available on the market, combine to yield unavailable values of \(Z_0 \). While there are certainly situations that yield to this requirement, many times the quarter-wave section is not usable on coaxial cable antenna systems using standard impedance values.
On parallel transmission line systems, however, it is quite easy to achieve the correct impedance for the matching section. Use the equation above to find a value for \(Z_o \), and then calculate the dimensions of the parallel feeders. Because you know the impedance, and can more often than not select the conductor diameter from available wire supplies, use the equation below to calculate conductor spacing:

\[
S = \frac{D}{10^{3.26}}
\]

Where:
- \(S \) is the spacing, \(D \) is the conductor diameter (\(D \) and \(S \) in the same units),
- \(Z \) is the desired surge impedance.

The design of this transformer involves finding the correct lengths for \(L_1 \) and \(L_2 \). You must know the characteristic impedance of the two lines (50 and 75 ohms given as examples) and the complex antenna impedance. In the case where the antenna is non-resonant, this impedance is of the form \(Z = R + jX \), where \(R \) is the resistive portion, \(X \) is the reactive portion (inductive or capacitive) and \(j \) is the so-called “imaginary” operator, i.e., square root of -1. If the antenna is resonant, then \(X = 0 \), and the impedance is simply \(R \).

The first chore in designing the transformer is to normalize the impedances:

\[
N = \frac{Z_{L1}}{Z_o}
\]

and the line to the transmitter. Length \(L_1 \) and the line to the transmitter (which is any convenient length) have the same characteristic impedance, usually 75 ohms. Section \(L_2 \) has a different impedance from \(L_1 \) and the line to the transmitter, usually 75 ohms. Note that only standard, easily obtainable values of impedance are used here.

The physical length is determined from

\[
L_1' = \frac{L_1 \times 360}{984 \times \text{Frequency in Megahertz}}
\]

Although the sign of \(B \) may be selected as either + or - , the use of + is preferred because a shorter section is obtained. In the event that the sign of \(A \) turns out negative, add 180 degrees.

There are constraints on the design of this transformer. For one thing, the impedances of the two sections \(L_1 \) and \(L_2 \) can’t be too close together. In general, the following must obtain:

Either,

\[
Z_{L1} > Z_o \times \text{SWR}
\]

or,

\[
Z_{L1} < Z_o / \text{SWR}
\]

The physical length is determined from \(\text{ARCTAN}(A) \) and \(\text{ARCTAN}(B) \), divided by 360, and multiplied by the wavelength along the line and the velocity factor.

Although the sign of \(B \) may be selected as either + or - , the use of + is preferred because a shorter section is obtained. In the event that the sign of \(A \) turns out negative, add 180 degrees to the result.

There are constraints on the design of this transformer. For one thing, the impedances of the two sections \(L_1 \) and \(L_2 \) can’t be too close together. In general, the following must obtain:

Either,

\[
Z_{L1} > Z_o \times \text{SWR}
\]

or, \(Z_{L1} < Z_o / \text{SWR} \)
Analysis of multi-element arrays; all-driven-element design

the Quad antenna part 3, circular-loop and octagonal arrays

An array of two or more circular loops (like any other antenna) can have all elements driven, or some driven and the others self-excited, or parasitic. The special case of one driven element is sometimes called the Yagi-Uda configuration; this really applies only to the configuration of one parasitic reflector, a driven element, and one or more parasitic directors, all elements being dipoles.

Part 3 addresses circular-loop and octagonal arrays — initially with two elements, then with more. This is followed by a limited discussion of a particular all-driven-element design.

theory of two circular-loop arrays

The relationships between two circular loops, parallel and on a common axis, are shown in fig. 1. Compare this with the single-loop drawing in part 2, fig. 1. The important difference is that two loops contribute to the field, and in turn, to the induced currents. They have the same requirement that the component of the field along the wire be zero.

Computational complexity can be reduced if the current on each loop is assumed to be the sum of two currents, of the form:

\[I_1 = I_a + I_b \]
\[I_2 = I_a - I_b \]

Those with power-line engineering training will recognize this as a form of “symmetrical component” analysis used for multiphase power lines.

The assumed currents \(I_a \) and \(I_b \) are the same on both loops. This allows you to solve for the currents using Hallen’s method. Unfortunately, this simplification does not help much in practical calculation.

fig. 1. Geometry and nomenclature for a circular loop array. Two quantities are needed to describe each element, and another to specify the spacing, the letter \(C \) is used here. For octagons, an added descriptor for the number of sides is needed.

There is no easy way to use the ten curves prepared by Storer\(^1,3\) to derive the currents on the two elements. Theory application is beyond practical small computer use; a large computer is needed. But a number of published results of this theoretical analysis can be applied to practical antennas. These will serve as the basis for some further analyses, for comparison, and also provide some data on the performance of practical designs.

the basic two-loop array

As with the Yagi, the two-loop array with one loop parasitically excited is both a useful antenna and the basis for further array expansion. Practically, these

By R.P. Haviland, W4MB, 1035 Green Acres Circle North, Daytona Beach, Florida 32019
"The amateur world knows us well"

For more than 60 years we've been a world leader in amateur radio...selling the finest equipment at a fair price. We manufacture a quality line of high power linear amplifiers and we stand behind what we sell. That's why thousands of amateurs keep coming back.

★ Featuring a large inventory of fine equipment from the world's leading manufacturers ★ A knowledgeable staff dedicated to amateur radio ★ A complete line of accessories ★ A well stocked repair shop staffed by experienced technicians ★ We take trade-ins and sell used equipment ★ Generous discounts on cash purchases ★ We accept Visa, Mastercard and Discover and carry our own term financing

Some of the names we stock include: HENRY ★ TEMPO ★ KENWOOD ★ ICOM ★ YAESU ★ ACE ★ ADVANCED RECEIVER RESEARCH ★ AEA ★ ALINCO ★ AMECO ★ AOR ★ AMPHENOL ★ ANTRONIC ★ ARRL ★ ASTRON ★ B&K ★ B&W ★ BEARCAT ★ BECKMAN ★ BENCHER ★ BIRD ★ BUTTERNUT ★ CES ★ CETRON ★ CENTURIAN ★ COMM SPEC ★ CONNECT SYSTEMS ★ CUSHCRAFT ★ DAIWA ★ DIGIMAX ★ DOWKEY ★ EIMAC ★ FANON ★ GE ★ GRUNDIG ★ HAL ★ HUSTLER ★ HYGAIN ★ JABRO ★ JIL ★ KENPRO ★ LANDWEHR ★ LARSEN ★ LUNAR ★ MFJ ★ MICRO ★ NYE ★ PALOMAR ★ PIPO ★ SANGEAN ★ SIMPSON ★ SWITCHCRAFT ★ TRIEX ★ TRIPLITE ★ TX/RX ★ UNADILLA ★ VIBROPLEX ★ WINEGARD ★
No other repeaters or controllers match Mark 4 in capability and features. That's why Mark 4 is the performance leader at amateur and commercial repeater sites around the world. Only Mark 4 gives you Message Master, real speech, voice readout of received signal strength, deviation, and frequency error, 4-channel receiver voting, clock time announcements and function control, 7-helical filter receiver, extensive patch functions. Unlike others, Mark 4 even includes power supply and a handsome cabinet.

Call or write for specifications on the repeater, controller, and receiver winners.

MICRO CONTROL SPECIALTIES
Division of Kendecom Inc.
23 Elm Park, Groveland, MA 01834
(508) 372-3442

TELEX 4932256 Kendecom
FAX 508-373-7304

Affordable Packet

TINY-2 is our new low-cost high-performance standard for packet controllers. Thousands already in use worldwide. A perfect beginner's unit.

Complete, wired and tested, only $119.95

BENEFITS and features of both units:
- Convenvently portable size, 5x7 at only 18 oz.
- Tiny enough for briefcase/portable, yet large enough for easy experimentation or repair
- 1-year limited warranty, excellent customer support
- RS-232 and TTL compatible—all connectors supplied.
- Latest AX.25 software, TCP/IP (KISS) module included.

MICROPOWER-2 is our remarkably compact, 18-ounce unit using upgraded TAPR TNC-2 technology that requires less than 40 millamps! For very portable operation, solar or battery, you need not pay more for a TNC that's about the size of your HT! Was $179.95, now at a low $159.95.

- Fully compatible with ROSE & NET/ROM EPROMs
- 32K RAM, 32K ROM, 4.9 mhz CPU
- Xtal controlled modem, compatible with use on 10m HF/VHF/UHF

TO ORDER
- Toll free with major charge card: call 1-800-223-3511
- Technical support line: 813-874-2980

The entire back issue file of Ham Radio Magazine and Ham Radio Horizons is now available on easy to read, microfiche. The entire set (March 1968 thru December 1987, and March 1977 thru December 1980, respectively), is now available in one, easy to use format! Everything from front to back cover (ads too). Annual updates will be offered for $10.

Ham Radio - $150.00
HR Horizons - $35.00
($5 shipping per order, USA)

Your satisfaction guaranteed, or money back.

Send or call order to:
Buckmaster Publishing
Post Office Box Ten
Mineral, Virginia 23117
(800) 282-5628
(703) 894-5777

VISA/MC accepted
two-element arrays give the largest increase in performance for a given investment in size and weight.

All the performance data on the designs described here are derived from Ito, Inagaki, and Sekiguchi. Gain values are in dB above isotropic, unless otherwise noted.

gain performance

Figure 2 shows the forward gain performance with the parasitic element tuned as a reflector. The top curve shows the maximum gain possible by choice of reflector size and spacing. Gain of an isolated element is shown for comparison. Data from Ito et al.

For the two-element beam with reflector, the maximum gain is 8.1 dB. The gain is <3 to >5 dB higher than the gain of an isolated radiator of the same size. Over the range of radiator size from 1.0 to 1.25 wavelengths, the optimum gain varies only by 0.1 dB or so. Also, the gain does not vary greatly for changes in reflector size, typically by ±0.6 dB for a change from 1.1 to 1.3 wavelengths loop size. This means that the two-element loop with reflector is a good wideband antenna, with nearly constant forward gain over the wide frequency range of ±15 percent.

Forward gain performance with the parasitic element tuned as a director is shown in fig. 3. The top curve shows the maximum gain that can be developed for a given radiating loop size by tuning the director and choosing the best spacing. The nearly parallel curves give the gain for given sizes of the director. Also shown is the gain of a single isolated element.

The maximum two-element gain is 7.3 dB. This represents almost exactly a 3-dB increase over a single loop of the same size. This 3-dB increase is essentially independent of radiator size but is sensitive to director dimension.

The combination of nearly maximum gain and good gain stability led the developers of this data to recommend that the radiator loop be larger than resonant size. Their specific recommendation is 1.2 wavelengths circumference. Some consequences of this are discussed later.

The curves for a 1.2-wavelengths radiator in figs. 4 and 5 are also useful. The variable for these curves is radiator-parasitic spacing in wavelengths.

As we have seen, maximum gain with the parasitic element as a reflector is 8.1 dB, and for the parasitic element as director it is 7.3 dB. These values show on the curves. Maximum reflector gain occurs at 1.08 wavelengths loop circumference at a spacing of 0.15 wavelength. Maximum director gain occurs at 0.95 loop circumference and a spacing of 0.1 wavelength.

Minimum back radiation with a reflector is ~12.1 dB. This nearly occurs over the range of reflector sizes from 1.1 to 1.15 wavelengths circumference, and the range of spacing from 0.1 to 0.25 wavelength. Maximum front-to-back ratio occurs at a circumference of 1.1 wavelengths and a spacing around 0.1 wavelength.

The data in part 1 shows that the optimum director size for minimum back radiation varies markedly with spacing. Minimum back radiation with the parasitic as a director is ~3 dB, but this occurs for spacings around 0.6 wavelength, beyond the range of practical use. The forward gain is only 2 dB at this point. The practical minimum backlobe level is essentially 3 dB, occurring over the range 0.8-0.96 wavelength director circumference and a spacing of 0.1 wavelength. The front-to-back ratio is only 4 dB. A director of 0.9 wavelength circumference and 0.15 wavelength spacing will give nearly as good gain and front-to-back ratio.

These data show that the best design values for a two-element circular loop array, and for the radiator-reflector combination for larger arrays, are the same. Maximum performance is obtained from:

- Radiator circumference, 1.2 wavelengths.
- Reflector circumference, 1.1 wavelengths.
- Element spacing, 0.15 wavelength.

Radiator circumferences from 1.1 to 1.3 wavelengths give nearly the same performance.

drive impedance

The drive impedance of an isolated loop is a complex
NATIONAL SATELLITE SHOWS OF AMERICA
PRESENT
SBCA/STTI NASHVILLE SHOW '88!
WORLD'S LARGEST SATELLITE TELEVISION
SEMINAR/TRADE SHOW!
OPRYLAND HOTEL
SEPTEMBER 5-6-7, 1988!

- Over 450 Exhibit Booths!
- Hundreds of Operating Antennas!
- Major Manufacturers & Programmers!
- Prizes!
- Satellite Seminar Training!
- Exciting Announcements!
- Marketing Sales Opportunities!
- Star Entertainment At Banquet!
- Fun in the Music Capital!

JANIE FRICKE
Banquet Entertainment!
(Courtesy of HBO)

Twice winner of
"Female Vocalist of the Year"

FOR DETAILS: Call National Satellite Shows at 1-800-654-9276 or 702-367-1471 or Write National Satellite Shows, 4970 S. Arvill Suite 108, Las Vegas, Nevada 89118
function of loop and conductor diameter. These factors apply with a parasitic element present plus the added complexity of the changes introduced by the currents on that element. Because of this there is very little data on feed impedances in scientific or engineering literature. It is necessary to use the limited amount available to develop trends and then depend on measurements to design the antenna feed. Fortunately this is not difficult, given the wideband characteristics of loop antennas.

The paper by Ito, et al. includes a single set of curves that give useful information about the radiator-reflector combination. Data is for a reflector of 1.1 wavelengths circumference, with an element omega of 11, corresponding to a loop-to-conductor radius of 39. This is typical of a self-supporting UHF antenna.

The following values are developed from the curves; resonance, of course, means that the drive reactance is zero:

- **Isolated resonant loop**
 - Radiator circumference = 1.1 wavelengths.
 - Drive resistance = 153 ohms.

- **Resonant radiator with reflector**
 - Radiator circumference = 1.08 wavelengths.
 - Drive resistance = 139 ohms.

- **Resonant radiator with director**
 - Radiator circumference = 0.87 wavelength.
 - Drive resistance = 250 ohms.

- **Isolated 1.2-wavelengths loop**
 - Drive resistance = 215 ohms.
 - Drive reactance = 84 ohms.

- **1.2-wavelengths radiator with reflector**
 - Drive resistance = 158 ohms.
 - Drive reactance = 365 ohms.

- **1.2-wavelengths radiator with director**
 - Drive resistance = 33.5 ohms.
 - Drive reactance = -132 ohms.

The change in impedance is greater for the director and this behavior is much the same as for the two-element Yagi. The reason for the increase in drive resistance for the resonant element with director lies partly in the marked change in length needed to cancel the self- and induced reactances.

Remember that a standard method of matching is to change the length of the driven element, then add a stub to cancel the reactance, leaving the resistance at the value that matches the line impedance. You can also do this with loops, but it may require some loss in loop area and therefore loop gain. A gamma match, or stub-transformer sections, would be a better choice.

For most two-element arrays, a good feed is a 4:1 balun at the antenna, used with 50-ohm line. Solid-state transmitters will probably require a better match to obtain rated output, say by use of a transmatch. A possibility is a gamma match, used by at least one commercial design with good results. The simplest alternative is to use low-loss line, say 75-ohm Teflon™.
or foam, or 300-ohm twin lead, plus an appropriate transmatch. A transmatch is a necessity if you want the full advantage of the wideband loop characteristic.

patterns

There is a limited amount of theoretically derived pattern data in current literature. Figure 6A-C is replotted from the patterns in Ito et al. which are similar to the corresponding patterns of two-element Yagi antennas. The front-to-back ratio is reasonably good for reflectors in the 1.1-1.2 wavelengths circumference range. Directors of any size give poor front to back, although the forward gain is good, as described above.

None of the theoretical analyses found in the literature show patterns in other planes or for cross-polarization. These will be covered later by approximate analysis.

multi-element arrays

The theory above for two-element antennas has been used to examine the properties of multi-element circular-loop arrays, by Ito et al. and by Shoamanesh and Shafai. Experimental work has been reported by Appel-Hansen. Their work is summarized in figs. 7 and 8 and shows the gain versus array length. Also shown is the theoretical gain of Yagi antennas derived by Lawson.

The gain for the usual Yagi is determined primarily by array length. The first few directors add about 1 dB per director. Thereafter, the gain increases about 3 dB for each doubling of array length.

Information in table 1 is taken from Shoamanesh and Shafai's theoretical table. All of the entries are for a director spacing of 0.3 wavelength. This gives maximum gain for the number of elements used, and reasonable front-to-back performance. Gain, expected drive impedance, and minor lobe characteristics plus front-to-back ratio are tabulated.

Arrays constructed from the table values should be
The NEW Generation of T.T.& T. Hand Held Transceivers From Alinco Are Just Around the Corner!

Introducing The DJ-100T 2 Meter Hand Held Transceiver

- Tiny = 1-3/16" D x 2-3/8" W x 6-5/8" H
- Tough = 6.5 Watts (With Optional EBP-8NAZ Nicd Battery Pack)
- Terrific = Features and Benefits

- LCD with Switchable Backlighting
- 10 Memories
- BNC Antenna Connection
- 16 Button DTMF Pad
- Easily Accessible Dip Switches For Encoding Sub Audible Tones
- Battery Save Draws 15mA For Extended Battery Life
- .20uV Sensitivity
- 144.00 MHz to 147.995 MHz
- CAP and MARS Modifiable - Simplex only
- Standard Battery, EBP-9NAZ Has DC/DC Converter Built In
- Stores Standard Repeater Offsets In Memory
- Full Range of Accessories
- 220 MHz and 440 MHz To Follow Shortly

(Optional EBP-2NAZ Ni-Cd battery)

Alinco’s products are carried by these fine dealers

- A-Tech - Burbank, CA
- Amateur Comm. - Wappington, DE
- A.T.S. - San Antonio, TX
- AES - Milwaukee, WI
- AES - Orlando, FL
- AES - Clearwater, FL
- AES - Las Vegas, NV
- Ajax Amateur Radio Supply - Austin, TX
- Barry Electronics - New York, NY
- Blackburn Amateur Center - Waterford, SD
- Cope & Partners - Denver, CO
- Delaware Amateur Supply - New Castle, DE
- Doc's Communications - Roseville, GA
- El Original Electronics - Brownsville, TX
- EEB - Vienna, VA
- EGE, INC. - Woodbridge, VA
- EGE, INC. - Salem, NH
- Erickson Communications - Chicago, IL
- F&M Electronics - Greensboro, NC
- Floyd Electronics - Collierville, IL
- The Ham Station - Farmville, IN
- The Ham Hut - Amarillo, TX
- Harry Radio - Hartford, CT
- Henry Radio - Las Angeles, CA
- Hirsch Sales Co. - Williamsburg, NY
- HiFi Electronics - Mt. Kisco, NY
- HIQ - Anaheim, CA
- HIQ - Atlanta, GA
- HIQ - Burleygame, CA
- HIQ - Danville, CA
- HIQ - Eau Claire, WI
- HIQ - Fresno, AZ
- HIQ - San Diego, CA
- HIQ - Van Nuys, CA
- HIS - Santa Clara, CA
- HSC - Sacramento, CA
- HSC - Sunnyvale, CA
- International Radio Systems - Miami, FL
- J&M's Electronics - Culver City, CA
- Kennedy Associates - San Antonio, TX
- KJ Electronics - Houston, TX
- Keck Electronics - Houston, TX
- Maryland Radio Center - Laurel, MD
- Memphis Amateur Electronics - Memphis, TN
- Michigan Radio - Mt. Clemens, MI
- Mission Consulting - Houston, TX
- Missouri Radio Center - Kansas City, MO
- N&G Electronics - Miami, FL
- Omni Electronics - Laredo, TX
- Quemem Electronics - San Jose, CA
- RF Enterprises - Merrifield, VA
- R&L Electronics - Lebanon, OH
- Rana Radio, Reno, NV
- Riverdel Associates - Derry, NH
- Rogers Electronics - Southfield, CT
- Robin's Electronics - Williamsburg, VA
- Ross Distributing Co. - Pecos, TX
- Satelite City - Minneapolis, MN
- Tel-Com Electronic Co. - Lisle, IL
- Texas Com. Center - Houston, TX
- Texas Towers - Plano, TX
- VHF Communications - Jamestown, NY
- Williams Radio Sales, Falls, NC

CANADA:
- Canadian Distributor
- Telephone Sales Ltd. - Burlington, Ontario

(1416) 332-5644
easy to build in self-supporting form for frequencies in the VHF, UHF, and SHF ranges. By adopting the principle of the bicycle wheel, discussed in a later part of this series, you can build HF designs.

The design values in table 1 are known to be near optimum for maximum performance. A small increase in gain may be obtained by making some changes in element size and spacing. Unfortunately, there may be appreciable change in minor lobe structure if much retuning is attempted.

The only theoretical data relating to the gain of multi-element circular-loop arrays comes from the same source, and is summarized in fig. 8. This again shows gain versus boom length, but with individual curves for director spacing. A small but definite increase in gain is usually possible by adding directors, but the limit of improvement is not known. Retuning must be done carefully. Front-to-back ratios vary from about 10 to over 25 dB from one set of spacings to another, and there are probably changes in bandwidth as spacing changes. Shoamanesh and Shafai give some guidelines for design optimization.

The data in Chapters 2 and 3 of Lawson gives more information on results obtainable by optimization. Conversion of this data to loop design conditions is somewhat tedious. First calculate the self- and mutual reactances for the length and spacing data given by Lawson. Then transform these values to loop size and spacing, using the curves and tables given in this series or the references. The basic computational proc-
THE RPC-2000
TWO-CHANNEL RADIO PACKET CONTROLLER

- Menu driven – No commands to memorize
- Works on VHF or HF
- Built-in Modem and RS-232C I/O
- Exclusive HAL CALLpath programmable directory
- Software included

The RPC-2000 is a two-channel radio packet controller that adds fast, error-free data communications to radio links. It plugs into an expansion slot of the HAL DS-3200 Radio Data Communications Terminal or any fully compatible PC, PC-XT, or PC-AT computer. The RPC-2000 uses Packet Radio protocol based on AX.25 to provide data communications at rates from 45 to 4800 BPS. The standard configuration of the RPC-2000 uses an RS-232C I/O port (Channel A) for an external HF modem (such as the HAL ST-8000) and a 7910 modem for a VHF link (Channel B). The M2-RPC option converts Channel A to a second 7910 modem.

The RPC-2000 is driven entirely from disk-based software that provides on-screen menus to choose all features and modes, eliminating the need to memorize complicated commands and procedures.

DISCOVER HOW EASY PACKET RADIO CAN BE. CALL OR WRITE US FOR MORE SPECIFICATIONS.

HAL COMMUNICATIONS CORP.
P.O. BOX 365
URBANA, IL 61801
Phone 217-367-7373
In 1937, Stan Burghardt (WO1T), because of his intense interest in amateur radio, began selling and servicing amateur radio equipment in conjunction with his radio parts business. We stand proud of this long-lasting tradition of Honest Dealing, Quality Products and Dependable “S-E-R-V-I-C-E”.

Above all, we fully intend to carry on this proud tradition with even more new product lines plus the same “fair” treatment you’ve come to rely on. Our reconditioned equipment is of the finest quality with 30, 60 and even 90-day parts and labor warranties on selected pieces. And always remember:

** WE SERVICE WHAT WE SELL **

AEA
Belden

Alinco
Bencher

Ameritron
Bird

Amphenol
Butternut

Amp Supply
Centurion

Antenna
CFS

Specialists
Cushcraft

Astron
Dalwa

B & W
Hustler

Icom
Jerold/Delhi

Bunting
Kantronics

KDK/Encomm
Telex/Hygain

Larson
Mag

Moseley
Mitsubishi

Palomar
Radio Callbook

Rohn
Telix/Egyain

Trio-Kenwood
Unadilla/Reyco

Yaesu

Write today for our latest Bulletin/Used Equipment List.

SYNTHESIZED SIGNAL GENERATOR

MODEL SG-100F

$429.95 delivered

- Covers 100 MHz to 199.999 MHz in 1 kHz steps with thumbwheel dial
- Accuracy +/− 1 part per 10 million at all frequencies
- Internal FM adjustable from 0 to 100 kHz at a 1 kHz rate
- External FM input accepts tones or voice
- Spurs and noise at least 60 dB below carrier
- Output adjustable from 5-500 mV at 50 Ohms
- Operates on 12 Vdc @ ½ Amp
- Available for immediate delivery
- Add-on accessories available to extend freq range, add infinite resolution, AM, and a precision 120 dB attenuator
- Call or write for details
- Phone in your order for fast COD shipment.

BOOST THE RANGE OF HAND-HOLDS

Today's hand-held VHF/UHF scanners and handie-talkies from Bearcat, Regency, Cobra, and Radio Shack, ICOM, Yaesu, and Kenwood have excellent sensitivity and talk power, but their range is reduced by their short flex antennas.

Tip: To increase the range of your hand-held scanner or transceiver, connect a Grove ANT-8 extendable whip antenna, equipped with a 120 dB BCN base.

Grove Enterprises

140 Dog Branch Road
Brassstown, N.C. 28902

(704) 837-9200 or (MC, Visa & COD only) 1-800-438-8155
Table 1. Calculated performance of multi- and circular-loop arrays.

<table>
<thead>
<tr>
<th>No. directors</th>
<th>boom wavelengths (dB)</th>
<th>gain (dB)</th>
<th>F/B (dB)</th>
<th>H-B/W (Deg)</th>
<th>E-B/W (Deg)</th>
<th>drive:R (Ohms)</th>
<th>drive:dx (Ohms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>.7</td>
<td>10.70</td>
<td>15.20</td>
<td>59.00</td>
<td>54.00</td>
<td>58.50</td>
<td>156.70</td>
</tr>
<tr>
<td>4</td>
<td>1.30</td>
<td>12.50</td>
<td>25.80</td>
<td>48.00</td>
<td>44.50</td>
<td>44.20</td>
<td>168.00</td>
</tr>
<tr>
<td>6</td>
<td>1.90</td>
<td>13.50</td>
<td>14.20</td>
<td>40.50</td>
<td>38.50</td>
<td>36.00</td>
<td>179.80</td>
</tr>
<tr>
<td>8</td>
<td>2.50</td>
<td>14.40</td>
<td>14.20</td>
<td>35.00</td>
<td>32.50</td>
<td>31.00</td>
<td>163.30</td>
</tr>
<tr>
<td>9</td>
<td>2.80</td>
<td>14.80</td>
<td>16.40</td>
<td>32.50</td>
<td>30.50</td>
<td>30.00</td>
<td>17.50</td>
</tr>
<tr>
<td>10</td>
<td>3.10</td>
<td>15.20</td>
<td>23.00</td>
<td>30.50</td>
<td>30.00</td>
<td>45.60</td>
<td>163.10</td>
</tr>
</tbody>
</table>

Reflector = 1.1, radiator = 1.2, and all directors = 0.9 wavelength circumference. Reflector is spaced 0.15 and directors 0.3 wavelength. The nine-director array needs no matching, the others only a capacitive stub across the feedpoint. A balun is not necessary, but is probably helpful in avoiding feedline and tower radiation.

Figure 9 is for comparison and gives the gain and front-to-back ratio for a two-element octagonal array. It is very nearly the same as for the two-element circular array of fig. 2.

Figure 10 gives the mutual admittances between two 1.0-wavelength elements. Combined with the self-admittance values of table 1, these curves allow calculation of the currents in any multi-element array, and in turn the pattern as described by Kraus and used by Lawson. As mentioned above, these curves make the performance data calculated by Lawson useful as an approximation to circular-loop (and other shape) arrays.

patterns of octagonal arrays

Figure 11 shows the MININEC-calculated horizontal-plane pattern of a two-element, bottom-fed array with a parasitic director — an array with nominally horizontal polarization. Radiator and director circumferences are 1.0 and 0.9 wavelengths, and spacing is 0.15 wavelength. The pattern resembles that of an equivalent two-element Yagi, which also shows poor front-to-back ratio. Somewhat more gain could be obtained with a larger radiator and closer spacing.

Figure 12 shows the same calculation for a 1.1-wavelengths reflector. Gain is nearly maximum from this element combination, and the back lobe is reasonably small. This appears to be a good choice for a two-element beam or for the exciter section of a large array.

Figure 13 shows the same calculation for a three-element octagonal array, with 0.9, 1.2, and 1.1 director, radiator and reflector circumferences, with the director spaced at 0.2 and the reflector at 0.15 wavelength. The gain is close to but below the maximum attainable with this boom length. The front-to-back ratio is reasonable. Experience with 2, 10, 15 and 20-meter versions of this combination indicates that better front to back, up to about 30 dB, is possible.

octagonal arrays and loop approximations

Arrays of polygons are not common; circular elements are usually just as easy to build. There is also the matter of added resistance at the joints between segments, if present. The octagonal array data included here is primarily for use in approximating the performance of circular-loop arrays.
Horizontal plane pattern of the h-polarized component from a bottom-fed director-radiator combination. Circumferences are 0.9 and 1.0 wavelength. Spacing is 0.15 wavelength. Forward gain is reasonable, but the back lobe is large.

Horizontal plane pattern of a 1.1 wavelength reflector-radiator combination. Other conditions same as in fig. 11. Forward gain is excellent for a two-element antenna. The front-to-back ratio of about 13 dB is good.

Figure 11 shows the horizontal plane pattern of the h-polarized component from a bottom-fed director-radiator combination. Circumferences are 0.9 and 1.0 wavelength. Spacing is 0.15 wavelength. Forward gain is reasonable, but the back lobe is large.

Figure 12 shows the horizontal plane pattern of a 1.1 wavelength reflector-radiator combination. Other conditions same as in fig. 11. Forward gain is excellent for a two-element antenna. The front-to-back ratio of about 13 dB is good.

with element tuning. Figure 8 shows that the gain could be increased about 1 dB by a second director at 0.1-wavelength spacing.

Figure 14 shows another pattern for the same beam for the total radiation component. Because of the small cross-polarized component present in loops, the sides of the pattern are filled in, so the front-to-side ratio is poor.

It is my experience that the filled-in pattern is correct for high-angle or E-layer radiation. However, low-angle radiation, typical of F2-layer DX, shows the high front-to-side discrimination of fig. 13. Under good conditions, an S9+ signal can be dropped to the noise level if the signal is placed on the 90-degree null. This results in a reduction of 40 dB or more. The same characteristic is noted on 15 meters when E-layer skip is present. Published theoretical analyses shed no light on this performance difference. It appears to be associated with ground reflection. We will return to this subject later in this series.

all-driven arrays

As with dipole elements, loops can be used in driven arrays. Driven arrays are not common in Amateur use because of space requirements. The few occasionally encountered are typically two-element designs. These are also used in place of a single radiator element in some high-performance arrays, partly for gain and front-to-back improvement, but also to improve the effective bandwidth.

Figure 15 shows the MININEC-calculated gain for two 1.0-wavelength loops spaced 0.12 wavelength, with element tuning. Figure 8 shows that the gain could be increased about 1 dB by a second director at 0.1-wavelength spacing.

Figure 14 shows another pattern for the same beam for the total radiation component. Because of the small cross-polarized component present in loops, the sides of the pattern are filled in, so the front-to-side ratio is poor.

It is my experience that the filled-in pattern is correct for high-angle or E-layer radiation. However, low-angle radiation, typical of F2-layer DX, shows the high front-to-side discrimination of fig. 13. Under good conditions, an S9+ signal can be dropped to the noise level if the signal is placed on the 90-degree null. This results in a reduction of 40 dB or more. The same characteristic is noted on 15 meters when E-layer skip is present. Published theoretical analyses shed no light on this performance difference. It appears to be associated with ground reflection. We will return to this subject later in this series.

all-driven arrays

As with dipole elements, loops can be used in driven arrays. Driven arrays are not common in Amateur use because of space requirements. The few occasionally encountered are typically two-element designs. These are also used in place of a single radiator element in some high-performance arrays, partly for gain and front-to-back improvement, but also to improve the effective bandwidth.

Figure 15 shows the MININEC-calculated gain for two 1.0-wavelength loops spaced 0.12 wavelength,
fig. 15. Horizontal component pattern for two one-wavelength loops separated 0.12 wavelength and bottom fed 135 degrees out of phase. The antenna is related to the “ZL-Special” and is useful by itself. The technique is also useful as the feed of large arrays, to give better front-to-back and gain.

fig. 16. Calculated gain and front-to-back ratio of a two-element array designed for 14 MHz, but operated over the range 8-22 MHz. Forward lobe gain exceeds that of a dipole over the entire range. The back lobe can even be larger than the main lobe, but effective interference reduction is usually possible by rotating the antenna to place the interference in a null. Any antenna of the Quad family is a useful wide-band antenna for occasional operation on other than designated bands. Based on data from Ito et al.

and fed 135 degrees out of phase, like the “ZL-Special” antenna. The gain performance is good, but the back lobe is rather large. Antennas of this type will be studied further when we discuss rectangular loops.

super-wideband operation

Figure 16 shows the calculated performance of a 20-meter two-element array from 8.5 to 20 MHz. The gain curve shows that this parameter exceeds that of a dipole over the entire range. In fact, the performance is reasonable over 7 to 30 MHz, although there is lobe splitting on the higher bands, and main-lobe reversal on the lower ones. Front-to-back ratio is high only near the design frequency, however.

The secret of using this wide bandwidth lies in the transmission-line matching technique used. I prefer Teflon-insulated 75-ohm cable. Open-wire line or twin lead is also good. A matchbox is a necessity. (I think that a matchbox should always be used to simplify using the entire band and to reduce harmonic radiation.) One fact seems clear: if you are using a Quad, you can have multiband operation without a lot of real estate for an antenna farm.

Part 4 deals with the square or Quad loop and some of its close relatives.

references

*References 1-15 are found in part 1.

ham radio

LET THE SUN DO THE WORK

- Charge batteries on stored machinery
- Light your tent
- Run fans
- Run remote transmitters
- Light signs
- Pump water for your animals
- Power for your motor home
- Run your radio without batteries
- Light your home
- Yard lights
- Charge flashlight batteries
- Light your cabin
- Run electric fences
- Charge your boat battery
- Run appliances in your home
- Charge hand held radio batteries
- Fish shiny lights
- Charge your Camcorder battery pack

ALSO: OUTSTANDING PRICES ON IBM XT COMPATIBLE SYSTEMS!

SHIPPING INFORMATION: PLEASE INCLUDE 12% OF ORDER FOR SHIP-PING AND HANDLING CHARGES (MINIMUM $2.50, MAXIMUM $10). CANADIAN ORDERS. ADD 7% HSN US FUNDS. MICHIGAN RESIDENTS ADD 4% SALES TAX. FOR FREE FLYER, SEND 20¢ STAMP OR SASE.

HAL-TRONIX, INC. (313) 281-7773
12671 Dix-Toledo Hwy
P.O. Box 1101
Southgate, MI 48195

“HAL” HAROLD C. NOWLAND
W2XKH

August 1988 P 47
high-speed frequency entry for Kenwood transceivers

Kenwood rigs now feature the KW-QSY frequency-entry keypad. The QSYers provide a means for high speed and simple frequency selection.

The QSYer is a tiny computer terminal with its own internal 8-bit microprocessor and support circuitry. Its full-size telephone-type keypad is inclined at a 10 degree angle. The unit is housed in an all-metal enclosure measuring 3.1” x 3.5” x 2” and has an internal speaker that sounds a different tone for each key.

The KW-QSYer works with the TS-940 series (with the Kenwood IF-10B interface installed), TS-440 series (with IC-10 installed), and TS-140 series (with IC-10 installed), and TS-711/811 series (with IF-10A installed). It requires an 8-16 volt, 100 mA, external dc supply.

The KW-QSYer (and its sister models for the 757GX, 757GX-II, 767GX, and the IC-735) are available from Stone Mountain Engineering Company. All are priced at $89.50, plus $2.50 shipping. A companion 12-volt dc wall supply for the KW-QSYer is $10. For more information write to Stone Mountain Engineering Company, P.O. Box 1573, Stone Mountain, Georgia 30086. Circle 301 on Reader Service Card.

new twist to old antenna concept

DMQ offers an antenna designed to cover all frequencies between 13 MHz and 30 MHz, while maintaining a better than 2.1 SWR and handling up to 250 watts P.E.P. Targeted at the Amateur with limited space, it is a loop standing on end with an approximate diameter of 36 inches. The antenna is connected through a standard SO 239 fitting directly to your 52-ohm coax transmission line. No external matching unit, protected coax line, ground screen, or radial system is needed.

Frequency resonance is obtained by adjusting a special high-voltage vacuum variable capacitor. The antenna is made of high quality copper; the vacuum variable capacitor is a glass-type design. All metal surfaces are chemically cleaned and covered with two coats of exterior enamel paint.

The antenna has a bidirectional radiation pattern. The high-Q design is stable to frequency and provides a high level of harmonic suppression. Pattern gain is developed throughout the antenna’s frequency range.

The antenna has a mounting hook, nylon line, and tuning wand supplied. The antenna can be suspended from the ceiling of the Amateur’s apartment; outdoor installations are also feasible.

The antenna comes assembled and ready for use. It is factory adjusted for the 15-meter Novice portion of the band. The unit price is $349.50, plus shipping and handling in the continental U.S. For information contact DMQ Technology, 221 Slater Boulevard, Staten Island, New York 10305.

Circle 302 on Reader Service Card.

SIQ repeater controller

A-Tech Electronics announces the SIQ Repeater controller. Using the power of a microcomputer, the SIQ-2 provides basic repeater functions, voice ID, programmable Morse code ID, autopatch, reverse autopatch, audio mixing, linking, and more.

The SIQ controller comes with an r-f-proof rack mount box and all 16 I/O lines have r-f beads to prevent r-f problems. The manual contains detailed information on connecting your radios, programming the features, and user commands. The software listing is provided for making custom modifications.

An optional phone patch board is available. Up to five area codes can be programmed to help control long distance access.

The features are controlled by touch-tone commands. Courtesy tones, tail squelch length, CW ID, sleep/wake up mode, alarms, and other control commands are all remotely programmable. Sixteen I/O lines are provided.

The SIQ rack mount steel enclosure has D-style connectors. The user manual contains hookup and command instructions, an electronic schematic of the system, and source code listing.

The SIQ repeater controller retails for $349.95; the SIQ with phone patch is $449.95. Contact A-Tech Electronics, 1033 Hollywood Way, Burbank, California 91505 for more information.

Circle 303 on Reader Service Card.

new code and theory course audio cassettes

Amateur Radio School announces the addition of “The Video Novice” to their line of code and theory courses on audio cassettes.

The course material contains two VHS video cassettes, each two hours in length, one C90 audio cassette, and a manual study guide. Cassette No. 1 has two hours of theory; cassette No. 2 has one hour of theory and one hour of visual code class.

The course is aimed at the person who has limited understanding of electronics. It covers all the subjects that the person new to amateur radio needs to know with practical demonstrations and explanation. The Video Novice Course is just $39.95 plus $5.00 for postage and handling.

For more information, write to Jerry Ziliak, KB6MT, Amateur Radio School, 2350 Rosalia Drive, Fullerton, California 92635.

Circle 304 on Reader Service Card.
It's a lesson you learn very early in life. Many can be good, some may be better, but only one can be the best. The PK-232 is the best multi-mode data controller you can buy.

1 Versatility

The PK-232 should be listed in the amateur radio dictionary under the word Versatile. One data controller that can transmit and receive in six digital modes, and can be used with almost every computer or data terminal. You can even monitor Navtex, the new marine weather and navigational system. Don’t forget two radio ports for both VHF and HF, and a no compromise VHF/HF/CW internal modem with an eight pole bandpass filter followed by a limiter discriminator with automatic threshold control.

The internal decoding program (SIAM™) feature can even identify different types of signals for you, including some simple types of RTTY encryption. The only software your computer needs is a terminal program.

2 Software Support

While you can use most modem or communications programs with the PK-232, AEA has two very special packages available exclusively for the PK-232...PC Pakratt with Fax for IBM PC and compatible computers, and Com Pakratt with Fax for the Commodore 64 and 128.

Each package includes a terminal program with split screen display, QSO buffer, disk storage of received data, and printer operation, and a second program for transmission/reception and screen display of facsimile signals. The IBM programs are on 5-1/4” disk and the Commodore programs are plug-in ROM cartridges.

3 Proven Winner

No matter what computer or terminal you plan to use, the PK-232 is the best choice for a multi-mode data controller. Over 20,000 amateurs around the world have on-air tested the PK-232 for you. They, along with most major U.S. amateur magazines, have reviewed the PK-232 and found it to be a good value and excellent addition to the ham station.

No other multi-mode controller offers the features and performance of the PK-232. Don’t be fooled by imitations. Ask your friends, or call the local amateur radio store. We’re confident the PK-232 reputation will convince you that it’s time to order your very own PK-232.

Call an authorized AEA dealer today. You deserve the best you can buy, you deserve the PK-232.

Advanced Electronic Applications, Inc.
P.O. Box C-2160
Lynnwood, WA 98036
206-775-7373

AEA Brings you the Breakthrough!
Yaesu's FT-736R.
Because you never know who's listening.

The sky's no longer the limit.

Join thousands of VHF/UHF pioneers already scanning the cosmos with their FT-736Rs. The most complete, feature-packed rigs ever designed for the serious operator.

Versatile frequency coverage. The FT736R comes factory equipped for 2 meters and 70 cm (430-450 MHz), with two additional slots for optional 50 MHz, 220 MHz, or 1.2 GHz modules.

Multimode facilities. Every FT736R is equipped for LSB, USB, CW, and FM operation. Wide/narrow filters for both FM and CW are factory installed—not expensive options. There's even all-mode squelch, too!

Satellite ready. A truly turn-key satellite rig, the FT736R includes crossband full duplex capability. Plus VFO tracking for one knob tuning on both normal and inverted transponders. And with the optional 1.2 GHz module installed, you're QRV on Modes B, J, L, and JL. With one box.

Exceptional receiver design. The FT736R was designed with low noise figure and careful gain distribution, for industry-leading sensitivity for weak signal work. And in addition to the wide/narrow CW and FM filter selection, you get IF shift. An IF notch filter. Noise blanker. Audio tone shaping control. Three-position AGC selector. And a preamp switch for activating your tower-mount RX preamplifier.

Operate Fast-Scan TV! Install the optional TV-736 and 1.2 GHz modules, and you're ready to operate fast-scan double-sideband TV with FM audio subcarrier. Black-and-white or color!

Contester's dream! Versatility is a must in VHF contests, as openings are brief. For quick activity checks, use the separate "channel" selector for a speedy trip up the band in selectable steps (SSB or FM!). Use the two

Video camera and monitor not available from Yaesu and not supplied with TV-736.
Prices and specifications subject to change without notice. FT736R shown with 220 MHz option installed.
VFOs per band to watch different areas of the band. Keep your sked frequencies stored in any of the 100 memories, which retain frequency and mode. And let the RF speech processor get you through tough pile ups.

Ready for computer control. The FT-736R is equipped for CAT (Computer Aided Tuning) control via the rear panel 4800 baud serial data port (our command set is included in your owner's manual). Create your own software for Doppler-corrected satellite tuning, elaborate scanning routines, or complete frequency control and satellite/EME antenna tracking using our new G-5400B or G-5600B AZ-EL rotators.

Your total communications package. The FT-736R delivers 25 watts RF output on 2 meters, 220 MHz and 70 cm. And 10 watts on 6 meters and L2 GHz. With separate linear amplifier relay control lines for each band.

And to round out your FT-736R station, choose from these popular accessories: Iambic keyer module. FTS-8 CTCSS unit. FVS-1 voice synthesizer. FMP-1 AQS message display. E-736 DC cable. MD-1B8 desk microphone. And our super YH-55 headphones.

Discover the FT-736R at your Yaesu dealer today. But first make plenty of room for exotic QSL cards. Because the ultimate DX is out there. And you never know who's listening.
Measure Up With Coaxial Dynamics
Model 85A Termination Wattmeter

A direct-reading instrument for servicing 50 ohm communication systems and maintaining them at peak operation. The Model 85A features:

- Dry load no coolant required.
- Replaceable connectors, interchangeable without affecting instrument calibration.
- Four power ranges easily switchable — 0-3/15/50 and 150 watts full scale.
- Frequency Range: 20 to 512 MHz
- Accuracy: ± 5% OFS
- Temperature Compensated

Contact us for your nearest authorized Coaxial Dynamics representative or distributor in our worldwide sales network.

COAXIAL DYNAMICS, INC.
Service and Dependability... A Part of Every Product

15210 Industrial Parkway
Cleveland, Ohio 44135
216-267-2233 1-800-COAXIAL
Telex: 98-0630
new 2-meter mobiles from ICOM

ICOM has introduced the IC-228A, 25 watt, and IC-228H, 45 watt, 2-meter top-of-the-line mobiles. These compact models (5.5" wide by 2.0" high by 5.4" deep and 6.2" deep, respectively) have 13 front-panel controls for ease of operation. Both feature wideband Rx coverage of 138-174 MHz; Tx coverage is 140-150 MHz. Twenty memory channels with a lock-out function store the frequency. It has offset and subaudible tone for each memory. Both models feature programmable scan and memory scan, priority watch to monitor the call channel, a memory channel, or all memory channels every five seconds while operating on another frequency.

An optional UT-40 squelch unit emits a 30-second alarm when the frequency of a received tone equals the set tone frequency.

The suggested retail price of 25-watt IC-228A is $509.00; the 45-watt IC228H is $539.00. For more information contact ICOM America, Inc., 2380 116th Avenue, N.E., P.O. Box C-90029, Bellevue, Washington 98009-9029.

tools for coaxial users

Mouser Electronics offers a Simplex Coaxial Cable Stripper, Crimping Tool, and a Strip'n Crimp Tool Kit for working with coaxial cable. The cable stripper is 3.5" long and can strip most coaxial cable from 3.6 mm to 7.6 mm. It comes with three-bladed preset cassette providing up to 5000 strips per cassette. Use the stripper for precision cutting through sheath, braid, and dielectric simultaneously or separately. Ask for Part No. ME382-CS1/3CBR.

The crimping tool is made of heavy gauge material. It has a controlled cycle mechanism for complete crimp, dual apertures for greater cable range, and a built-in release catch. This tool, Part No. ME382-DCC, comes with instructions. The Strip'n Crimp Coaxial Tool Kit is a complete tool kit for coaxial users. Each kit contains a dual crimping tool, simplex cable stripper, ten plugs and cable sleeves for the following sizes: RG58, RG62, UR90, URM43, URM90, URM96, or 0.6/3.7 cables. Instructions are included with the kit. Ask for Part No. ME382-SNC5859.

A complete catalog is available free of charge. Contact Mouser Electronics, 2401 Highway 287 North, Mansfield, Texas 76063.

VR-1 voltage reference

The VR-1 is the latest product in the Sibex line of portable test equipment. The handheld precision voltage source is battery powered, and output is selectable from 10 mV to 10 V, in a 1-2-5 sequence, by the 11-position switch. Both + and – voltages are available at the output terminals. A low battery indicator is provided on the front panel. The unit is housed in a pocket-size plastic case; power is supplied by a standard 9-volt battery inside the case.

An optional UT-40 squelch unit emits a 30-second alarm when the frequency of a received tone equals the set tone frequency. The suggested retail price of VR-1 is $509.00; the 45-watt VR-1 is $539.00. For more information contact Sibex, Inc., 2380 116th Avenue, N.E., P.O. Box C-90029, Bellevue, Washington 98009-9029.

new mobile amplifiers and repeater controller

RF Concepts has two new all-mode solid-state rf power amplifiers and a new repeater controller. UHF amplifiers are: model RFC 4-310, 30 watts in = 100 watts out, maximum input 35 watts; and RFC 4-110, 10 watts in = 100 watts out, maximum input 15 watts. Both use a GaAsFET receive pre-amp with 15-dB gain and a noise figure of 1.75 dB. They require 13.8 VDC, current, 25 amperes. Measurements are 11.5" L x 6" W x 3" H. The RFC 4-310 is priced at $324 and the RFC 4-110 is $349.

The repeater controller RFC 8-RC has a control system capable of handling all the requirements for large multiple-site interconnected systems as well as the simple repeater. The list price is $395.

RF Concepts products can be purchased from Amateur Radio dealers. For details contact RF Concepts, 200 Humbolt Street, Reno, Nevada 89509.

AR-80LM logic monitor

American Reliance has added the AR-80LM logic monitor to their logic measurement product line.

The custom-IC design provides autodetection of both power and ground pins, making instrument usage an easy, clip-on-and-view operation. The unit also autodetects both TTL and CMOS logic levels. The unit provides indications for logic high, low, and pulsing inputs. For pulses with repetition rates over 8 Hz, the unit flashes the LED at an 8 Hz rate. This allows use of the unit at clock rates of up to 40 MHz.

The AR-80LM sells for a suggested user price of $79 and includes a storage case and opera-

Genius at Riverhead

Genius at Riverhead is the story of Harold H. Beverage, developer of the "Beverage Antenna".

This biography tells of Harold's travels and work with many of the leaders in the field of wireless and related sciences.

The 130-page book, with 35 photos, is available through the ham radio Bookstore for $15.95 plus $3.50 for shipping and handling.
remote base/simplex
phone patch controller

Control your station
locally
or from a distance

The terrain in my northern Alabama location is hilly and a large mountain blocks most of the targeted coverage area for 2 meters limiting my QSOs. I explored several solutions to the problem, including placing a repeater on a mountain top, and finally decided to use a box hooked to a simplex radio that can be remotely located and controlled from a standard touchtone telephone.

The box can be connected either to the Public Switched Telephone Network (PSTN) as in fig. 1, or at a local level with the circuit shown in fig. 2. It requires only the telephone and a few extra components. The station can be located in the garage, with the telephone the only radio “apparatus” in the family room. Add a speaker phone for general monitoring and use the handset for private conversation.

Making it secure

After completing the hardware design, I addressed the issue of security. Could I limit transmitter access to ham operators only and maintain a reasonable amount of control during operations involving non-hams?

I solved the first problem by using an access code to activate the transmitter. To control operations involving non-hams, I decided to limit all communications from the telephone line to a 30 second maximum transmission time. If the telephone line carrier keeps the transmitter on past this time, the transmitter drops out and allows no further transmissions from the telephone until the box receives instructions from the control operator.

Operation

Begin operation by calling the remote unit from a remote telephone. After the selected number of rings you will hear the remote unit activate. You are now in the receive or monitor mode. Always listen for traffic already in progress before transmitting.

To transmit, enter your access code then press the # key and then the 9 key. After transmitting, depress the 9 key and the transmitter will deactivate. To transmit again, you need only hit the 9 key.

Terminate the call by hanging up or hitting the #; the remote unit automatically shuts down. Time-out timers allow transmissions of only 30 seconds or less.

Once the access code is entered, you can go into vox mode at the remote site by entering # and 0. The transmitter keys whenever you speak into the telephone. If the transmitter is keyed for longer than the allowed time, the remote unit will deactivate it and prevent further transmissions until the carrier from the telephone drops out and instructions are received from the control operator. To exit this mode enter # and

By Roger Owens, AA4NX and Jeff Owens, KK4LA, P.O. Box 277, Owens Cross Roads, Alabama 35763

fig. 1. PSTN operating mode diagram.
wait for an answer. The remote unit automatically goes into the vox mode. The operator has control of the remote unit and can terminate the call. Calls are limited to 3 minutes; all long distance calls are prevented.

digital circuitry

A microprocessor reduces the number of components (see the block diagram in fig. 3 and circuit in fig. 4). I used the 80C31 because of its timers, onboard RAM, interrupt structure, and special function

0 from the local site. This returns the remote to monitor mode.

status indicators

Several indicators built into the software routines determine the status of the remote unit:

- **CD**—Main carrier detect.
- **RADCD**—Carrier detected is from the radio receiver.
- **TELECD**—Carrier detected is from the telephone line.
- **OH**—Remote unit is in the off-hook condition.
- **PTT**—Remote unit has the transmitter keyed.
- **ACCESS**—Remote unit has accepted access code.

Table 1 lists commands which activate specific output port pins. They are used to turn on NPN switching transistors that drive external control relays. These relays in turn activate additional functions through touchtones (DTMF) from a telephone or radio.

Mobile operation requires a touchtone generator. To call, enter your access code then send the * and 0 command to the remote unit. This takes the unit off hook and keys the transmitter for 3 seconds to acknowledge the dial tone. When the transmitter drops out, dial your number, listen for ring back and

![fig. 2. Private line operating mode diagram.](image)

![fig. 3. Functional block diagram.](image)

Table 1. User defined port definitions.

<table>
<thead>
<tr>
<th>Port A</th>
<th>Output bit-function</th>
<th>Output bit-function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1—TELCAR</td>
<td>5—SPARE</td>
<td></td>
</tr>
<tr>
<td>2—RADCD</td>
<td>6—SPARE</td>
<td></td>
</tr>
<tr>
<td>3—PTT</td>
<td>7—SPARE</td>
<td></td>
</tr>
<tr>
<td>4—OH</td>
<td>8—SPARE</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Port B</th>
<th>Output bit-function</th>
<th>Output bit-function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1—#1</td>
<td>5—#5</td>
<td></td>
</tr>
<tr>
<td>2—#2</td>
<td>6—#6</td>
<td></td>
</tr>
<tr>
<td>3—#3</td>
<td>7—#7</td>
<td></td>
</tr>
<tr>
<td>4—#4</td>
<td>8—#8</td>
<td></td>
</tr>
</tbody>
</table>

(User defined)

registers. The 80C31 also has various op-code instructions which operate on internal and external bytes and bits for programming ease.

The microprocessor is configured as follows: Port 0 is used as a multiplexed port in conjunction with the 74HCT373 eight-bit latch to separate the lower order address from data. This occurs each time address latch
Look at our MOBILE MARK ™

"ON WINDOW" Line

PATENTED

VHF (140-175)
- No Hole
- Easy to Mount
- Rugged
- Superior Performance
- Radiator Snaps On and Off
- Competitively Priced

UHF (420-520)
- 3 db gain
- No Hole
- Easy to Mount
- Rugged
- Superior Performance
- Radiator Snaps On and Off
- Competitively Priced

○ 220 MHz NOW Available! ○

MOBILE MARK INC.

COMMUNICATIONS ANTENNAS

9001 Exchange Ave • Franklin Park, IL 60131 • 312-671-6690

brings imagination and innovation to antennas and has been since 1948 !!

fig. 4. "Brain" of controller is 80C31 microprocessor.

fig. 5. Dallas Semiconductor DS1232 is used as reset and watch dog timer.

enable (ALE) goes high. Port 2 serves as the higher order program address lines.

I selected this microprocessor, driven by a 12-MHz crystal, for its proper timer operation (which I will describe later). Port 1 serves as both the input and output port for the system. Port 1 bits, 0 through 3, are used as input data from the DTMF receiver. Port 1 bit 4 is used for an output pin for the 1-kHz clock, generated by the real-time clock routine in the software.
A Great New ARRL Antenna Book

Twice the size of the previous edition
Over 700 pages
987 figures
Edited by Gerald L. Hall, K1TD
QST Associate
Technical Editor

Available in August

The 15th Edition of The ARRL Antenna Book has been dramatically expanded in a similar fashion to recent editions of the ARRL Handbook and the ARRL Operating Manual. We've drawn on material produced by the ARRL Technical Department and from 16 well-known outside authors who have done much to contribute to the state-of-the-art in antenna and transmission line design. Available in softcover only for $18 at your dealer or directly from ARRL (shipping and handling: $2.50, $3.50 for UPS)

CHAPTER LINEUP:
The number of pages appears in parentheses after the chapter title. Page counts may vary slightly. Safety First (18), Antenna Fundamentals (42), The Effects of the Earth (14), Selecting Your Antenna System (30), Loop-Antennas (16), Multielement Arrays (42), Broadband Antennas (12), Log Periodic Arrays (24), Yagi Arrays (26), Quad Arrays (14), Long Wire and Traveling Wave Antennas (18), Direction Finding Antennas (26), Portable Antennas (10), Mobile and Maritime Antennas (30), Repeater Antenna Systems (20), VHF and UHF Antenna Systems (44), Antennas for Space Communications (32), Spacecraft Antennas (8), Antenna Materials and Accessories (20), Antenna Supports (22), Radio Wave Propagation (26), Transmission Lines (26), Coupling the Transmitter to the Line (18), Coupling the Line to the Antenna (28), Antenna and Transmission-Line Measurements (36), Smith Chart Calculations (16), Topical Bibliography on Antennas (32), Glossary and Abbreviations (4), Contents, Index, etc (16).
Port 1 bit 5 is used as an output control pin to make the off-hook (OH) relay active. This signal is generated when the unit is in private line (no dc), has detected the correct amount of ring cycles, or senses telephone line current. The tone generator is used for warning beeps and CW signal; Port 1 bit 6 is used to turn it on and off. Port 1 bit 7 is used as the push-to-talk (PTT) signal to the radio transmitter whenever a transmission is requested.

Port 3 provides the system's interrupt scheme. Input pin 2 is an edge-triggered interrupt used for main carrier detection. Input pin 0, in conjunction with the main carrier detect bit, tells the microprocessor that the carrier is from the telephone lines. Input pin 1, along with the main carrier detect bit, tells the microprocessor that the carrier is from the radio.

Input Port 1 pin 3 is an edge-triggered interrupt that indicates the presence of a ring signal or telephone off-hook current.

Input Port 1 pin 4 tells the microprocessor that the carrier is a valid DTMF signal.

Input Port 1 pin 5, the input to a timer interrupt, generates a 1-second interrupt to drive the time-out timers and long delays. The remaining bits of Port 3 generate the system read and write signals.

The microprocessor reset is input on pin 9. A Dallas Semiconductor DS1232 is used as the reset and watchdog timer in this system. To prevent a reset signal from being generated, this reset circuit (fig. 5) must be written to by software at a periodic rate. A reset signal is also generated if the power drops below a predetermined level. This chip can save you trips to your remote site, but is not necessary for this application. A simple RC network can also be used to generate a reset signal on power-up.

The program memory used is a 16K x 8 EPROM (27C128A), as seen in fig. 3, chosen to allow for expansion.

I needed extra input and output ports to provide for the input and output of control signals. The 74HCT138 is used to decode external addresses for these ports. Only four ports are used; four more are held in reserve for expansion. All input and output ports (see fig. 6) use an eight-bit latch (74HCT373). Ports A and B are used for output; Ports C and D are for input.

The write signal for the output ports (see fig. 7) is generated by the selection of an address, NOR'ed with the system write signal. This scheme is used for all

NOTE: THE SYMBOL V REPRESENTS A 10K PULL-UP RESISTOR TO +5V A2 AND A3 ARE THESE RESISTOR ARRAYS.
Catch of the day!

Have you been trawling the bounding main for a new product? We have just netted it—the TP-38 microprocessor controlled community repeater panel which provides the complete interface between the repeater receiver and transmitter. Scuttle individual tone cards, all 38 EIA standard CTCSS tones are included as well as time and hit accumulators, programmable timers, tone translation, and AC power supply at one low price of $595.00. The TP-38 is packed like a can of sardines with features, as a matter of fact the only additional option is a DTMF module for $59.95. This module allows complete offsite remote control of all TP-38 functions, including adding new customers or deleting poor paying ones, over the repeater receiver channel.

Other features include CMOS circuitry for low power consumption, non-volatile memory to retain programming if power loss occurs, immunity to falsing, programmable security code and much more. The TP-38 is backed by our legendary 1 year warranty and is shipped fresh daily. Why not set passage for the abundant waters of Communications Specialists and cast your nets for a TP-38 or other fine catch.

$595.00 each
$59.95 DTMF module
$149.95 Digital CTCSS module

Now available with
Digital CTCSS
EXPANDABLE REPEATER SYSTEM

Hi Pro ‘E’

A new concept in repeater design, the Hi Pro ‘E’ is an expandable repeater with the following features: a basic repeater which would include a complete receiver, transmitter, cop, front panel controls and indicators, local speaker and mic jack and capable of future expansion. All housed in an extremely rugged, enclosed, 19-inch rack mountable cabinet.

This system can be expanded at time of purchase or can be an after-purchase add on. The add ons are:
- Lower Power, 110VAC power supply, identifier, auto patch, or computer controllers. In addition to these add ons an additional receiver and transmitter can be mounted internally for use as control links, remote base or dual band operation, etc.

An extension panel is available for local monitoring of the repeater and contains all necessary metering, status lights and indicators. All add ons are available from the company and are complete including instructions.

Hi PRO VHF-UHF Repeaters

Superior receiver and transmitter specifically designed for repeater service.

Adjustable transmitter power, from 1 to 25 watts minimum output with extremely cool operation.

Automatic battery back up system capability with battery charging and reverse polarity protection.

Now with a full compliment of indicators and status lights.

100% duty cycle—advanced repeater squelch no chopping, popping, or annoying repeater key ups during lightning storms.

Die cast aluminum R.F. enclosures—small size 5½ x 19 x 13”—high quality long life design.

Amateur discounts available

Hi Pro Transmitter and Receiver

Used in all Hi Pro Repeaters

Maggiore Electronic Laboratory
600 Westtown Rd., West Chester, PA 19382

WRITE OR CALL FOR OUR COMPLETE CATALOG
fig. 8. A GTE 8870 is used as a CMOS DTMF chip.

fig. 9. Analog circuitry part of controller.
external output ports. The read signal for the input ports is generated by OR'ing with the system read signal. Each input port bit is activated by opening the appropriate switch. The port pin is then pulled high by a pull-up resistor, telling the microprocessor it needs servicing.

DTMF signal decoding is done by the GTE 8870 CMOS DTMF chip (see fig. 8). Command signals may be entered into the system via the telephone line or radio receiver. When a valid DTMF signal is received, four bits are sent to the microprocessor input along with a strobe signal (std) telling the processor that the detected carrier is due to a DTMF signal. The processor then decodes this signal and performs the commanded task.

The tone generator consists of a 555 timer chip, set for a frequency of 1 kHz. The generator is turned on by a signal from the processor. The signal is capacitively coupled and the level set by a 10-k pot — one of the inputs to a summing amplifier that supplies audio to the radio transmitter.

analog circuitry

A description of the telephone interface circuitry (see fig. 9) begins with the ring and off-hook current components. The telephone network has a 600-ohm impedance, so transformer T1 is 600 to 600 ohms and meets FCC rules part 68: *this box does not have FCC registration.*

In an on-hook configuration, the dc path is broken by the off-hook relay. When a ring signal is applied across tip and ring, it is coupled through R33 and C17 from the ring side of the telephone line. The signal is then applied to the input of the H11G3 opto-isolator and CR8, and the ac circuit is completed through these components and tip side of the telephone line. When the ring signal goes positive H11G3 turns on, pulling resistor R26 low, generating an interrupt to the processor during each positive portion of the ring cycle. The processor requires a count of ten cycles out of every cycle for a good ring. Once the accumulated rings reach the count, selected by ring 1 through ring 3 dip switches on Port D, the processor sends a signal to the off-hook relay closing the dc path. This causes current to flow through the 61.9-ohm resistor, generating a voltage drop which turns the H11AA1 opto-coupler on. A signal is then sent to the processor indicating that line current is present. This signal is sampled continuously, and if line current disappears for a certain length of time the processor sends a deactivate signal to the off-hook relay.

The telephone line side of the interface has a device to protect it from the possibility of over-voltage spikes. The secondary side of the telephone circuit has both transmit and receive signal currents. The GTE 8912 PCM filter splits the signal into either a receive or transmit path. Two zener diodes prevent the PCM filter from overloading.
The receive signal enters through C_{14} and R_{30}, with the gain resistor being R_{31}. The telephone output exits on pin 16 of the PCM filter. The radio receive signal enters the PCM filter on pin 10, and drives T_1 through a differential amplifier in the PCM filter.

The DTMF receiver input is taken from the secondary side of T_1, allowing command signals to be decoded from either the telephone or the radio receiver.

The PCM filter requires a 2-MHz clock signal to provide necessary filter characteristics. This signal is generated by first NAND'ing the system read and write signals, then OR'ing the result with the system ALE. As a result, the microprocessor clock frequency is divided by 6.

audio and carrier detect

The telephone signal to be transmitted leaves the PCM filter at pin 16 and then enters through R_{22} into a summing amplifier, where the CW tones are also mixed when required (see fig. 10). The amplifier’s output goes to the radio microphone input through a 604-ohm resistor serving as an impedance-matching.
BEVERAGE ANTENNA HANDBOOK
by Vic Misek, W1WCR New Edition

W1WCR has spent countless hours developing new antenna ideas and optimizing the SWA (Steerable wave antenna.) Misek delves deep into the secrets of the single wire Beverage with helpful hints and tips on how to maximize performance based upon wire size, height above ground, overall length and impedance matching. Also includes information on center fed Beverages constructed out of several wire types. SMALL LOT OWNERS – Beverage for you too! Called the Micro-SWA, it is just 60 ft long. You get excellent directivity and null steering capabilities. Transformer design information for both termination and feedline matching is completely revised. © 1987 80 pages
VM-BAH Softbound $14.95

Please enclose $3.50 shipping & handling

ham radio BOOKSTORE
GREENVILLE, NH 03048 603-878-1441

“The ’850 Found a New Friend”

The industry standard RC-850 Repeater Controller can now talk with your computer.

And there’s so much for them to say!

The ‘850 computer interface improves the management of your voice repeater system. It allows you to command and program interactively from your terminal or personal computer using a MODEM or packet TNC. Even preview and edit repeater messages by typing words from the controller’s vocabulary directly into message slots.

Retrieve and catalog data relating to your site measurements, equipment status, and repeater and command activity. Download and print out the information programmed into your controller. And view your system “front panel” on your computer screen.

You’ll find the RC-850 controller on the leading voice repeaters around the world. ACC pioneered remote programming of repeaters – and continues to pioneer with remote computer access. While the rest of the world just talks about catching up, ACC continues to lead the way in advanced repeater technology.

Now, with its computer interface, the ’850 can be best friends with your computer.
device. This op-amp can be either an amplifier, attenuator, or buffer, depending on the ratio of R_{22} and R_{23}. In my application it was a buffer.

The telephone carrier detect circuitry has three parts: signal amplifier, rectifier, and comparator. The amplifier takes the incoming signal and amplifies it to a level sufficient for rectification. The gain is then set by the R_{27} and R_{28} ratio. Diode CR$_6$ half rectifies the signal allowing a positive voltage to be applied to the filter capacitor C$_4$. Voltage is applied to the input on a voltage comparator, U$_{15}$. When the voltage of the input signal rises above the voltage reference at pin 6, the output goes to a high state generating an interrupt through an OR gate. A signal is sent to the processor pin (described earlier) indicating the carrier is from the telephone. Resistor R$_{17}$ provides a hysteresis effect in the comparator stage, preventing output chatter if the incoming signal received is close in level to the reference. Diode CR$_5$ and R$_4$ are used to forward bias CR$_5$. This discharges filter capacitor C$_4$ which removes the signal from the processor. Carrier detection has a fast attack and a slow decay. CR$_7$
The New England ARRL Convention at Boxboro, Massachusetts
Take the Mass. Pike to Rte I-495. The convention is at exit 28.

OCTOBER 1 & 2

Make DEALS with the Dealers! Meet the Manufacturers! WIN the Contests!
- FCC Exams
- Hidden Transmitter Hunts
- AMSAT Satellite & Net Meetings
- Giant Flea Market
- Wouff Hong Ceremony
- YL Programs
- DX

Early Bird Registration $6

For tickets write: Art Tomkinson, W1THT, 9 Oliver Ter., Revere, MA 02151
prevents a negative voltage greater than 0.6 VDC from being applied to the comparator input. This will happen if the carrier stays off long enough — the circuit goes negative.

Radio receive signal path enters the system through C11 into a summing amplifier U19. This amplifier takes the signal from the radio and amplifies it to a -9 dBm output on the telephone line. Be sure your audio input level doesn’t go above this level — it is the highest level permitted on the public switched system.

Approximately 35 mV is all that is required to achieve this level. I found the audio input to the volume control was the best method of obtaining audio from the radio receiver. This level should not be varied during normal operation.

The radio carrier detect circuit is identical to the telephone carrier detect circuit.

strap option

Next select the parameters. Look over the functions of the Port C and D dip switches, and choose the ones for your application. (See Table 2.)
construction

Construction isn’t critical; I’ve included the artwork double-sided pc board (figs. 11 and 12) and the component layout (fig. 13). I used components that were easy to obtain. You can order a printed circuit board or any major parts directly from me. I would be interested in any comments or ideas you may have; for a reply please enclose a SASE. I hope you have as much fun with this project as I’ve had.

<table>
<thead>
<tr>
<th>Port C (SW-1)</th>
<th>Port D (SW-2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch No./Function</td>
<td>Switch No./Function</td>
</tr>
<tr>
<td>1—First digit of access code 0-9</td>
<td>1—Test of 1-kHz tone</td>
</tr>
<tr>
<td>2—Expansion</td>
<td>2—Expansion</td>
</tr>
<tr>
<td>3—Private line (no dc)</td>
<td>3—Private line (no dc)</td>
</tr>
<tr>
<td>4—Expansion</td>
<td>4—Expansion</td>
</tr>
<tr>
<td>5—Second digit of access code 0-9</td>
<td>5—Expansion</td>
</tr>
<tr>
<td>6—Ring count 0 (LSB)</td>
<td>6—Ring count 0 (LSB)</td>
</tr>
<tr>
<td>7—Ring count 1 binary coded</td>
<td>7—Ring count 1 binary coded</td>
</tr>
<tr>
<td>8—Ring count 2 (MSB)</td>
<td>8—Ring count 2 (MSB)</td>
</tr>
</tbody>
</table>
the joys of TVI or, were you on the air last night?

Radio frequency interference (RFI) and television interference (TVI) have been around for years. In the last decade they have been joined by VCR, telephone answering machine, stereo, and cable TV interference along with other irritants that can drive an active Amateur crazy.

More and more household gadgets are susceptible to nearby rf energy. One cause of the proliferation of RFI problems is the deregulation of the telephone companies. Hundreds of new telephone gadgets are on the market, and many of them are poorly designed by manufacturers who know nothing of interference problems. A lot of the gadgets are so small and tightly packaged that there is no room inside them to install filtering.

Most of the VCRs, TV sets, and good AM/FM stereo systems built after 1984 seem to be more rf resistant than their ancestors; this is good news. However, it must be emphasized that the unwanted signal rejection varies between manufacturers and models and it is risky to assume a particular TV set or stereo is TVI resistant! This month's column concerns RFI problems associated with TV/VCR combinations and cable TV hookups.

One of the areas in the TV/VCR/cable field that bears close examination is common mode interference. John Norback, W6KFV, a technical consultant in the field of RFI, provided information on this subject.

common mode interference

The term "common mode current" originated with the computer industry. Before this the power and communication industries called the phenomenon "longitudinal line current" or "parallel line current".

Common mode interference is caused by parallel line current induced in a circuit normally carrying out-of-phase current. The unwanted current can be induced from a nearby Amateur transmitter. The signal is picked up by the TV feedline or cable system. The offending line serves as a good antenna for high-frequency signals.

In a balanced two-wire system (like a 300-ohm TV transmission line) the induced currents in the two wires are in the same phase. The ribbon line responds to the induced current as if the two conductors were tied in parallel to operate as one.

In an unbalanced system, like a coaxial line, the common mode picture is more complex. This is because the induced parallel line currents are not the same in both conductors (the center conductor and the shield). The induced current is much higher on the coax shield than it is on the center conductor (fig. 1).

In either case, the induced line current must go somewhere. Unfortunately, it goes into the TV tuner or VCR circuitry, through the various receiver stages, and then via capacitors to ground through the ac power cord of the receiver. Elimination of common mode interference must involve filtering, or breaking, both conductors of the TV signal lead-in.

Common mode interference is particularly bothersome on TV sets that are connected to cable TV systems. Even though the main cable system may be buried, it surfaces in the homes and acts as a pickup antenna for nearby, strong rf signals. Ground loops or poor joints in the system complicate the problem.

a practical approach to common mode interference

Television interference from receiver fundamental overload and transmitter harmonics has been well covered in the literature. The cures, too, are well known: a low-pass filter for the transmitter, a high-pass filter for the TV receiver, and a good ground for the...
verter is used to offer greater program
selection. Figure 3 shows an installa-
tion involving a VCR.

arrangement where a cable TV con-
to antenna. A power line filter may
shield of the coax line from transmit-
ter to antenna. A power line filter may
be required for the TV set as well as
the transmitter. Unfortunately, these
cures do not affect common mode in-
terference to any substantial degree.

Figure 2 shows, in simplified form,
the basic home equipment involved in
a typical cable TV system. The first
drawing shows a simple arrangement
where the cable TV converter is built
into the TV set; the second shows an
arrangement where a cable TV con-
verter is used to offer greater program
selection. Figure 3 shows an installa-
tion involving a VCR.

The cooperation of the TV owner is
essential. First determine what ham
band frequencies and TV channels are
affected. Do not be fooled by interfer-
ence on harmonically related TV chan-
nels. Normally, common mode TVI will
affect all TV channels, whether har-
monically related to the ham signal or
not, but the number of disturbed chan-
nels depends on the strength of the
parallel line currents and how well the
manufacturer has designed the TV set.
(Note that a vertical transmitting an-
tenna will cause a stronger common
mode signal than will a horizontal an-
tenna. Common mode interference
can also exist on 40, 80 and 160 meters
— bands not usually subject to har-
monically related interference.)

Once you’ve determined which
radio frequencies are causing the TVI,
note the affected channels. It may be
all of them, or just one or two. Discon-
nect the TV receiver from the input sig-
nal lead to the antenna or cable system
and recheck the channels where there
was interference. Normally, the chan-
nels will be clear. If interference still ex-
ists, a power line filter for the TV
receiver may be needed, or external
speaker lines of the receiver must be
filtered. Solve the interference problem
first.*

Once the TV set and/or cable TV
converter are free from interference
with the TV signal input lead discon-
ected, place a balun/high-pass filter/
balun arrangement in the signal lead
(fig. 4). The interconnecting leads
should be as short as possible. A parts
list is given in the drawing. Radio Shack parts were selected because
they are widely available. Parts specifi-
cations are listed in case you select
components from other manufac-
turers.

If everything’s been done correctly
up to this point, there should be no in-
terference on the TV set regardless of
transmitter frequency and TV channel
selected. If you’re still experiencing in-
terference, install a coaxial high-pass
filter between the cable TV converter
and the TV set, as shown.

when a VCR is involved

The procedures for eliminating TVI
in a cable TV system apply equally well
when a VCR is involved, but the final
solution may be more complex. There
are many makes of VCRs and many
different ways of connecting them into
the cable TV system. They can be in
series with the cable TV converter or
TV set, or split off the cable TV input
lead. Figure 5 shows some typical ar-
rangements involving VCRs along with
the correct method of eliminating com-
mon mode interference.

With the cooperation of the TV
owner, first disconnect the cable TV

*For detailed information on all aspects of interference
including interference to Amateur operation the Inter-
ference Handbook by William R. Nelson, WA8FOQ, an
RFI investigator with 33 years experience, is available
from the ham radio Bookstore for $11.95 plus $3.50 ship-
ning and handling.
input signal lead from the circuit. Place a tape in the VCR and let it play, observing the picture on the TV set. Operate your transmitter on all hf bands, one at a time, and note any interference on the VCR picture. Also check all channels with the VCR inoperative but in the circuit. Identify any TV channels experiencing interference. If there is interference with the VCR operative, or unoperative but still in the circuit, install the balun/high-pass filter/balun arrangement discussed earlier between the cable TV signal input lead of the cable TV converter. If interference continues, disconnect the VCR from the circuit and repeat the tests with the TV converter in the circuit. You may need to insert a coaxial high-pass filter between the cable TV converter and the TV set.

These arrangements should solve
the interference problem with the VCR either on or off. If the problem continues, the interference may be in the VCR circuitry associated with the recording or playback heads, or it may be due to improper grounding or faulty connectors in the cable TV circuit. It's a good idea to contact the cable TV company involved and ask them to inspect their equipment for proper connections. Don’t be surprised if the cable TV company inspects your station with a spectrum analyzer. If the cable company finds transmitter harmonics, you need to do more work on your installation, or you must investigate the possibility of external rectification. If the cable TV circuit is “clean”, the problem lies in the VCR.

Because sensitive circuits of the VCR operate in the low-frequency portion of the 80-meter band, it is wise to restrict operation to the upper portion of the band until you solve the problem. Check with servicers of the VCR in question to see if any TVI corrective measures are available for that model. The VCR is a complicated electromechanical device and probing its “innards” is not recommended!

the Faraday solution

I received a note from Wayne Coop-
er, AG4R, outlining a system which "breaks" a TV coaxial line for protection against fundamental overload and common mode interference. The idea was sent to him by Z6GAUB, who got it from G3LLL. It consists of a 1:1 transformer in the antenna lead which will pass the VHF signal but will reject a lower frequency interfering signal. The idea is simple and inexpensive (fig. 6). The coax is cut about a foot from the TV receiver and two tightly coupled 2-inch diameter loops are formed. Each coax center conductor is soldered to the outer braid and cable ties or vinyl tape hold the loops together. This comprises an electrostatic shield. The coupling scheme has some loss and may make a weak channel more "fuzzy", but works okay when the picture is good to begin with.

another interesting quotation

Last month I intimated that radio hams are well-read, well-rounded individuals. As of this writing, the July column hasn’t seen daylight, so I haven’t received any response to my request for identification of a well-known quotation. Even so, I’m going to try again to see how alert my readers are. I suspect only the old-timers will identify the following; the book first came out in 1923. It created a sensation and is still a first-rate story (available in paperback). So, here’s the quotation, which took the form of a telegram.

STORY TRUE. AWAIT ME ALGIERS. (signed) BURROUGHS

If you know the book and can identify the situation, drop me a note on your QSL to Box 7508, Menlo Park, California 94025 and I'll publish the calls of the erudite "winners" in this column!

ALL BAND TRAP "SLOPER" ANTENNAS!

[Diagram of antenna system]

fig. 6. Tightly coupled loops break coax to cut fundamental overload and common mode currents.

ham radio

We stock a full line of Motorola & Toshiba parts for amateur, marine, and business radio equipment.

Partial Listing of Popular Transistors

<table>
<thead>
<tr>
<th>P/N</th>
<th>Rating</th>
<th>Net Es</th>
<th>Match Pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRF421</td>
<td>Q</td>
<td>100W</td>
<td>$24.00</td>
</tr>
<tr>
<td>MRF422</td>
<td>A</td>
<td>150W</td>
<td>78.00</td>
</tr>
<tr>
<td>MRF454</td>
<td>A</td>
<td>80W</td>
<td>14.50</td>
</tr>
<tr>
<td>MRF455</td>
<td>A</td>
<td>60W</td>
<td>11.75</td>
</tr>
<tr>
<td>MRF492</td>
<td>Q</td>
<td>90W</td>
<td>16.00</td>
</tr>
<tr>
<td>SRF2072</td>
<td>Q</td>
<td>65W</td>
<td>12.75</td>
</tr>
<tr>
<td>SRF3662</td>
<td>Q</td>
<td>110W</td>
<td>24.00</td>
</tr>
<tr>
<td>SRF3775</td>
<td>Q</td>
<td>75W</td>
<td>13.00</td>
</tr>
<tr>
<td>SRF3795</td>
<td>Q</td>
<td>90W</td>
<td>15.00</td>
</tr>
<tr>
<td>SRF3800</td>
<td>Q</td>
<td>100W</td>
<td>17.50</td>
</tr>
<tr>
<td>2SC2909</td>
<td>Q</td>
<td>80W</td>
<td>16.75</td>
</tr>
<tr>
<td>2SC2679</td>
<td>Q</td>
<td>100W</td>
<td>22.00</td>
</tr>
</tbody>
</table>

Q Selected High Matched Quadts Availale

PARTIAL LISTING OF MISC. TRANSISTORS

BFR96 | 32.75 | MRF465 | 2.75 |
CD2545 | 16.00 | MGR1402 | 3.75 |
MR134 | 16.00 | NE4137 | 2.50 |
MR136 | 21.00 | PT8547 | 21.00 |
MR137 | 24.00 | SDR278 | 17.75 |
MR138 | 35.00 | 2N1522 | 11.95 |
MR139 | 87.00 | 2N3929 | 2.25 |
MR147 | 80.00 | 2N3771 | 3.50 |
MR208 | 11.50 | 2N3868 | 1.25 |
MR212 | 16.00 | 2N4408 | 11.95 |
MR211 | 16.00 | 2N4427 | 1.25 |
MR224 | 13.50 | 2N5199 | 1.75 |
MR226 | 14.50 | 2N5770 | 1.00 |
MR237 | 3.00 | 2N5589 | 7.25 |
MR238 | 2.70 | 2N5590 | 10.00 |
MR228 | 12.50 | 2N5641 | 13.50 |
MR239 | 14.00 | 2N5641 | 9.50 |
MR240 | 15.00 | 2N5642 | 13.75 |
MR245 | 27.50 | 2N5643 | 15.00 |
MR247 | 26.00 | 2N5945 | 11.00 |
MR260 | 7.00 | 2N5946 | 12.00 |
MR262 | 8.75 | 2N6069 | 6.25 |
MR264 | 12.50 | 2N6081 | 8.00 |
MR317 | 56.00 | 2N6082 | 9.50 |
MR326 | 12.00 | 2N6083 | 9.75 |
MR433 | 20.00 | 2N6084 | 11.50 |
MR450 | 13.50 | 2SC730 | 1.25 |
MR453 | 15.00 | 2SC1307 | 3.00 |
MR456 | 20.00 | 2SC1964A | 5.50 |
MR457 | 3.30 | 2SC1964 | 6.00 |
MR459 | 17.75 | 2SC1965 | 3.00 |
MR479 | 10.00 | 2SC2007 | 28.00 |
MR485 | 11.75 | 2SC2186 | 3.50 |
MR485 M.P. | 18.00 | 2SC2312 | 4.95 |
MR492A | 18.75 | 2SC2509 | 9.00 |
MR497 | 14.25 | 2SC2630 | 28.00 |
MR515 | 2.50 | 2SC2640 | 15.00 |
MR555 | 3.00 | 2SC2641 | 16.00 |
MR607 | 2.50 | 2N204 | 2.00 |
MR630 | 4.25 | 40582 | 7.50 |
MR641 | 18.00 | OUTPUT MODULES |
MR644 | 21.00 | SAU4 ret. 55.00 |
MR646 | 25.00 | SAU17A 95.00 |
MR648 | 31.00 | SAV6 136.50 |
MR649 | 10.75 | SAV7 ret. 42.50 |
MR677 | 2.25 | SAV15 112.50 |
MR686 | 43.50 | M57712, M57733 util. |
MR689 | 1.75 | M5720, SC1019, SAV7 |
MR911 | 2.00 | SC1027 use SAU4 |

Hi-Gain, Matched, and Selected Parts Available

We stock RF Power transistors for Atlas, KLM, Collins, Yaesu, Kenwood, Cubic, Mirage, Motorola, Heathkit, Regency, John, Inc, Drake, TWC, Wilson, GE, etc. Cross-reference on CD. PT, SD, SRF, JO, and 25C PNs. Quantity Pricing Available. Foreign Orders Accepted. Shipping Handling USA $5.00 COD VISA MC. Orders received by 9 PM PST shipped UPS same day. Next day UPS delivery available.

PARTS ORDERS ONLY — NO TECHNICAL (800) 854-1927

ORDER LINE empoteselp (619) 744-0728
FAX 619-744-1943
Every preamplifier is precision aligned on ARR's Hewlett Packard HP870A/HP3425A state-of-the-art noise figure meter. RX only preamplifiers are for receive applications only. Inline preamplifiers are not switched for use with transceivers and handle 25 watts transmitter power. Mount inline preamplifiers between transceiver and power amplifier for high power applications. Other amateur, commercial and special preamplifiers available in the 1-1000 MHz range. Please include $2 shipping in U.S. and Canada. Connecticut residents add 7% tax. O.D.O. orders add $2. Air mail to foreign countries add 10%. Order your ARR RX only or start hearing like never before!

Box 1242 • Burlington, CT 06013 • 203 582-9409
Convert an unregulated high-voltage power supply into a regulated adjustable voltage source.

I have built a short-circuit proof, RFI resistant, solid-state precision regulator that converts an unregulated, high-voltage power supply into a stable, adjustable voltage source.

There are three prerequisites this unregulated power supply must meet:
- The minimum, full-load, unregulated voltage (including ripple) must exceed the regulated output voltage by \(\approx 45\) volts*.
- The unregulated supply must be capable of providing the additional 2.2 mA consumed by sampling resistor \(R_2\) (fig. 1).
- The voltage difference between the unregulated supply and the regulated output must not exceed the voltage capability of the pass element.

Applications
- Adjustable screen supply for tetrode or pentode class AB-1 grid-driven linear amplifiers (using a suitable (−) screen current bleeder resistor).
- Klystron and traveling wave tube amplifier power supplies.
- Backward wave and klystron oscillator power supplies.
- Plate supply for a linear amplifier.
- Any requirement for a regulated voltage up to 6 kV. 1000 amperes or more is possible if enough pass FETs and heat sinks are available.

Limitations and design considerations

The output voltage capability of the regulator is indirectly set by the maximum voltage dropping capability of the FET pass element. The voltage difference between the unregulated supply and the regulated output voltage is wasted as heat by the pass element. Since only a small part of the input voltage appears across the pass element, the maximum output voltage capability of the regulator is about five to six times the maximum output voltage rating for the pass element. The Motorola MTM6N60 is rated at 6 amperes, 600 volts, 150 watts maximum. The highest regulated voltage with this pass element is about 3 kV. Similar FETs with ratings up to 1 kV at 150 watts (before thermal derating) per device are available. A 1-kV pass element can be used to regulate 6 kV. Current capability may be increased by paralleling pass elements.

Paralleling FETs is somewhat easier than paralleling bipolar transistors because the FET's control element (gate) consumes no power. Since \(0 + 0 = 0\), two or three FETs use the same driving power as one — exclusive of the gate capacitance and charge bleeder resistors from the gates to the sources. Driving the gate capacitances is a problem. Each gate adds about 1800 pF. If more than two MTM6N60s are to be paralleled, use an NPN emitter follower driver to drive the bank of FETs in the pass element. The pass FET source leads should have current equalizing resistors as paralleled, bipolar transistor emitters do.

A common reason for paralleling FETs is to obtain increased power dissipation instead of more current. Although a dissipation rating of 150 watts may look good, it is only true at 25 degrees C case temperature. One way to keep the case \(\leq 25\) degrees C, while dissipating 150 watts would be to immerse it in circulating distilled ice water. Because this is impractical, the device is derated according to the manufacturer's data sheet. An educated guess would be about 50 percent.

By R.L. Measures, AG6K, phone: 805-482-3034
or 75 watts per device with a heat sink that keeps the
FET case below 85 degrees C in a worst-case situation.

The greatest heat dissipation in the pass element
usually occurs at about half the maximum current load.
At full-load current the unregulated input voltage
usually sags, and there is little remaining voltage drop
in the pass element. So, even though the current is
maximum, the pass voltage drop is minimum, and the
heat dissipation is less than maximum.

circuit description

Series-pass regulators work on the principle that
regulation will be achieved if they can be made to auto-
matically waste the difference between the varying
unregulated input and the desired regulated output
voltages. The regulating process is a working exam-
ples of Kirchhoff's Law: The sum of all the voltage drops
(pass voltage plus the output voltage) are equal
to the voltage source (the unregulated high-voltage
power supply). If more voltage is dropped across
the pass element, less voltage is left over for regulated
output. If less is dropped across the pass element, the
regulated output voltage increases. The missing piece
is the brain that tells the pass element's gate what
to do.

The circuit's brain is a 723 precision regulator in-
tegrated circuit in the upside-down and backward posi-
tive floating regulator configuration. In this regulator
configuration, the positive output lead is the circuit
common, or zero reference. The positive floating reg-
ulator uses its own power supply. In this circuit it
furnishes about +20 volts at 0.05 A to a 15-volt zener
to regulate the voltage that runs the 723 and the nega-
tive lead of the 723's supply is connected to (+) circuit
common.

If the regulator is operated with the negative out-
put terminal grounded, the 723 regulator, its power
supply/transformer, voltage-adjust pot (R1), and pass
FET/heat sink will be elevated to the (+) output vol-
tage. All elements must be properly insulated from
ground. If the output is operated with the positive lead
grounded, only the heat sink need be insulated. More
on this later.

The 723 has a temperature compensated 7.1-volt
reference, a differential error amplifier, and its own
pass transistor. Access to the non-inverting and the
inverting input of the differential error amplifier is
provided. This gives the circuit designer freedom to
create unconventional circuits like the positive float-
ing regulator. 723s are sensitive amplifiers with a vol-
tage gain of about 1000 and an open-loop current gain of about one million.

High gain is essential if a regulator is to accurately sense small deviations in the desired output voltage, make the necessary correction at the gate of the pass transistor, and maintain precise regulated output voltage. It is a problem to keep the regulator regulating and not deregulating by receiving radio signals at the same time. External rf energy allowed to enter a critical terminal on the 723. C4, C5, and C7 are rf bypasses. C1 and R10 reduce the rf gain of the differential amplifier. The input terminals of the differential amplifier are rf-isolated by the resistors that deliver the dc signals. Radio frequency has a hard time passing through high-value resistors.

Several commercial power supplies ignore the RFI problem and let the users figure it out. The 723 gained an undeserved bad reputation from those who did not understand the nature of rf and the amplifying ability of the 723.

current limiting

Most regulated supplies include some form of current limiting. I left it out of this design because the pass FET could not withstand the full, unregulated voltage during a short-circuit/zero voltage output condition. A type of current limiting practical here is a fuse, or circuit breaker, in the primary of the HV transformer. Ordinary 3AG fuses should never be used in the secondary circuit of a high-voltage supply if the fault voltage is above their 250-volt rating. A 3AG fuse acts like an arc lamp instead of a predictable current limiter above 250 volts during a fault, before it eventually explodes.

Fuses are cheap, power FETs are not and are very unforgiving of too much drain-to-source voltage. A crowbar thyristor circuit (Q2) will automatically fire if the voltage across the FET is close to the breakdown voltage. This protects the FET(s) in this circuit from an unregulated voltage too high for a specific regulated output voltage. It takes about 1.5 µs for Q2 to fire. During this time, the FET is protected by R3/C6, an R/C delay circuit.

If the pass-protect crowbar fires, the output voltage temporarily rises to the same level as that of the unregulated supply. The regulated voltage will return if the load is removed and excessive voltage is lowered. If there is a short across the output, the stored energy from the unregulated supply’s filter capacitor is dumped into R1 for a few milliseconds, until the primary fuse opens. R1 must be a wire-wound power resistor because the peak dumping current is about 100 amperes. The value of R1 is increased, as the voltage capability of the supply is increased, to keep the dumping current around 100 amperes. For a 3-kV power supply, R1 should be a 30-ohm/30-watt unit.

polarity etiquette

Remember that less positive and more negative are interchangeable terms, as are less negative and more positive. For example: +4 volts is more negative, and also less positive, than +5 volts. While −6 volts is more positive than −7 volts, neither voltage is positive with respect to circuit common. The reference “than” is the key.

N channel, enhancement mode, power FET rules

A more positive (than the source) gate voltage makes the FET conduct more heavily. If the gate voltage of the FET becomes less positive/more negative, the conductance of the FET will decrease (like a triode vacuum tube). The gate (control) of a FET resembles the grid in a triode vacuum tube, the source (of current carriers) is like a cathode, and the drain (of current carriers) is like a plate. The big difference between the vacuum tube and the FET is that the FET’s control voltage is always positive (usually in the range of +2 to +4 volts) and the (+) gate draws no current — unlike a (+) grid in a vacuum tube.

the 723

The 723 differential error amplifier has two inputs. For the DIP package, Pin 5 is the noninverting input; pin 4 the inverting input. Pin 6, the internal 7.1-volt reference, is passed through a 2:1 voltage divider (R6/R8) and the resulting stable 3.55 volts are connected to pin 4, the inverting input. When the system is in balance, 3.5503 volts are applied to the noninverting input by an opposing-polarity voltage divider: R7, R8, and the output-voltage sampling resistor R6. R7/R8 connects to the (+) 7.1 volt reference and R2 connects to the (−) output terminal. If the output voltage is correct the differential error amplifier is balanced, as there is almost no voltage difference between the two input terminals. Therefore, the 723 output is steady and the regulator system is in a state of equilibrium.

Two situations could unbalance the system: too much or too little output voltage. Either situation will develop if the line voltage or the load current changes. A successful regulator must be able to restore balance.

if there is too much (−) output voltage with respect to the (+) common reference

It is safe to assume that the pass FET is conducting too much. The excessive, more negative/less positive output voltage causes more current to flow in R2. This makes the voltage at the noninverting input more negative than the constant +3.55 volts on the other input. The difference voltage is amplified and the more negative output drives the gate of the pass FET more
negative. This reduces the conductance of the FET, increasing the FET’s voltage drop, leaving less voltage for the output and the output voltage decreases to the correct level.

if there is too little (−) output voltage with respect to the (+) common reference

It is safe to assume that the pass FET is not conducting as much as it should.

The insufficient, less negative/more positive voltage at the (−) output causes a decrease in current through R2. This causes the voltage at the noninverting input to also become less negative/more positive than the constant +3.55 volts on the other input. The more positive signal is amplified by 723, driving the gate of the pass FET more positive. This increases the conductance of the FET and lowers the voltage drop across it. Consequently, more voltage is delivered to the output and the output voltage increases to the correct level.

performance

I built a 615 to 1000 volt, 0.31-ampere adjustable power supply observing the following performance parameters. Voltage regulation: ≤ 1 volt change, no load to full load. Ripple and noise: ≤ 150 peak-to-peak mV at 200 mA load, with a 0.02 μF speed-up capacitor across 90 percent of R2. Without the speed-up capacitor on R2 peak-to-peak ripple and noise were ≤ 500 mV. Line voltage regulation: ≤ 1 volt change for ± 10 percent line voltage change. These measurements were taken on a Fluke 8022 digital voltmeter and a Hewlet-Packard 1706A oscilloscope.

Changes were made to the regulator circuit and unregulated supply to increase the maximum output voltage to 1900 volts and, with more modifications, to 6100 volts. There was similar performance at the increased voltage levels.

In no case was I able to detect even a one-digit voltage change, from no load to full load, on my Fluke DVM, with its maximum count of 1999.

heat sink caveats

The FET’s drain is connected to its case structure. If the case is insulated from the heat sink with a properly installed 1000-volt mica insulating washer, the thermal transfer between the FET and the heat sink will be compromised. It’s better to fasten the FET case directly to the heat sink with a thin coating of thermal grease and then insulate it from ground with G10 Fiberglas™ or acrylic, or some other nonhygroscopic material. A high-voltage warning label should be placed on or near it. (We, at ham radio, do not recommend having a heat sink at high voltage. If you choose to use this method, provide an obvious label and accord the heat sink the same “respect” you would any other high-voltage component.)

paralleling FETs

FETs are fast. They oscillate at VHF — just like triode vacuum tubes — unless parasitic suppressor resistors are used at the output and input terminals. Each FET in a bank of paralleled pass FETs should have its own gate-to-source, charge bleeder resistor; a drain, parasitic suppressor resistor; a gate, parasitic suppressor resistor; and a source current equalizing resistor. Mount the suppressor resistors close to the FET(s). The resistor values can be juggled considerably to accommodate different current requirements.

FET selection

A wide range of power FETs are available from Motorola and other manufacturers. For Amateur Radio applications, the Motorola MTM3N95 and the MTM3N100 are probably the most versatile; a 6-kV regulator can be built with either. MTM means it has a standard TO-3 case (now called TO-204). The numeral 3 stands for 3 amperes; the N means that it has an N-type channel, and (−) electrons carry the current. The letter P would indicate that it had a P-type channel and that the current carriers were (+) “holes,” and all polarities are reversed. The number to the right of the N or P gives the source to drain, maximum voltage rating, less one zero. So, these two devices would handle 950 and 1000 volts, respectively. The rated dissipation on a good heat sink is 125 watts each during a blizzard, or roughly 70 watts indoors.

A good crowbar thyristor (SCR) for protecting a 1000-volt FET is the Motorola MCR225-12 rated at 1000 volts, 300 amperes peak, and ≤ 2μs turn-on time. The series zener trigger for this crowbar can be made from six 150-volt or 160-volt 5-watt zeners. The crowbar-thyristor does not need a heat sink.

resistor R2 ratings

Resistors have maximum voltage ratings that take precedence over power ratings. Example: A 2-watt, 5.1-megohm composition resistor requires 3193 volts to reach the 2-watt dissipation level. So, although this may look like the right choice for a high-voltage sampling resistor, there is a 500-volt maximum rating that must be observed at all times. Using Ohm’s law: \(P = E^2/R \); at maximum rating, the “2-watt” resistor should only be used to dissipate 0.049 watts.

Special resistors are available for high voltages. They have a metal oxide, spiral deposited film, but are expensive and hard to find. The 0.5-watt 1 percent variety metal oxide film resistors are easier to locate and have a maximum voltage rating of 350 volts each. You
can place as many as you need in series on a perf-board. I use 100 k, 0.5 watt, 1 percent resistors in series for R2. They will stand 2.2 mA or 220 volts per unit at 0.5-watt dissipation and cost about eight cents apiece in quantities of 100.

modifications

If necessary, the regulator circuit can be modified to use a different sampling current. However, it probably should not be reduced below 1 mA.

construction

I built the circuit on a piece of perfboard, using a wire-wrap IC socket with the pins bent flat. You can also use a pc board if the traces used to carry the 100 ampere short-circuit current are made of sufficient cross section.

unregulated power supply considerations

Keep in mind that the unregulated voltage needs to be only slightly higher than the full-load, regulated voltage. Extra voltage will be wasted as heat, increasing the burden on the pass element. A wide range high-voltage supply should use a multi tapped power transformer.

W6SAI BOOKS

published by Bill Orr, W6SAI and Stu Cowan, W2LX

BEAM ANTENNA HANDBOOK

IRP-BA Softbound $11.95

SIMPLE LOW-COST WIRE ANTENNAS

IRP-WA Softbound $11.95

ALL ABOUT CUBICAL QUAD ANTENNAS

Simple to build, lightweight, and high performance make the Quad a DX'er's delight. Everything from the single element to a multi-element monster. A wealth of information on construction, feeding, tuning and installing the quad antenna. 112 pages. ©1982. 3rd edition.

IRP-CQ Softbound $9.95

THE RADIO AMATEUR ANTENNA HANDBOOK

A wealth of projects that covers verticals, long wires, beams as well as plenty of other interesting designs. It includes an honest judgement of gain figures, how to site your antenna for the best performance, a look at the Yagi Quad controversy, baluns, slopes, and delta loops. Practical antenna projects that work! 196 pages. ©1978. 1st edition.

IRP-AH Softbound $11.95

Please enclose $3.50 for shipping and handling.

STV GUIDE

The new STV Guide contains valuable information on zoning regulations, scrambling, plus technical tips for installing or updating a satellite system—and now a precise monthly guide to satellite TV with the latest program listings for over 90 channels!

All this in each complete issue of STV Guide!

- Only $48.00 per year (12 monthly issues)
- $2.00 for a sample copy

*NC Residents must add 5% sales tax

Subscribe Today!

call toll free 1-800-234-0021

Visa® and MasterCard® accepted

STV Guide PO Box 2384 Shelby, NC 28151-2384

America's Weekly Guide to Satellite TV

- Only $45.00 per year (52 weekly issues)
- 2 Years $79.00 (104 weekly issues)
- $1.00 for sample copy

*NC Residents must add 5% Sales Tax

Subscribe Today!

call toll free 1-800-234-0021

Visa® and MasterCard® accepted

OnSat PO Box 2347 Shelby, NC 28151-2347

STV Guide PO Box 2384 Shelby, NC 28151-2384

[Image of a page from a book or magazine]
$100 Price Reduction

V-212
NOW $379
was $475
List $550

Plus 'Free' 9600 Function Generator
All Hitachi scopes include two 1x, 10x probes
and have a 3 year guaranty on parts and labor

ELENCO PRODUCTS AT Discount Prices!

$349
MD-1251
- 6" CRT
- Built in component
- TV Sync
- Much More

Scope Probes
P-1 65MHz, 1x, 10x $19.95
P-2 100MHz, 1x, 10x $23.95
with 5 accessories
10 megohms input impedance
Fits most scopes
TL-3 BNC Mini-grabber $3.49

$498
MD-1252
- High Luminance 6" CRT
- 1mV Sensitivity
- 6KV Acceleration Voltage
- 10ns Rise Time
- X-Y Operation • 2 Axis
- Delayed Triggering Sweep
- Much More

Top quality scopes at a very reasonable price. Contains all desired features. Two 1x, 10x probes, diagrams and manual.

True RMS 4½ Digit Multimeter
$135 M-7000
.5% DC Accuracy
.1% Resistance with Freq. Counter
& Deluxe Case

10MHz Oscilloscope
S-3000 $239
10MHz DC & AC
Triggered Sweep
Calibrated Vert. & Hor
Reads Volts & Freq

Decade Blox
#610 or #620 $14.95
9610 BNC
duplex

Low Cost
Multimeter
M-1600 $25
3½ Digit LCD
10k DC Accuracy
10A Scale
Auto zero/polarity

Digital LCR Meter
LC-1800 $138
Measures
Cap (1µH-200µH)
Resistors (1 ohm-20M ohms)

Digital LCR Meter
LC-1800 $138

Breadboard
9436 Shown
9430 1.100 pins $15
9434 2.170 pins $25
9436 2.860 pins $35

Multimeter with Capacitance
and Transistor Tester
$55 CM-1500A
Reads Volts, Ohms,
Current, Capacitance,
Transistors and
Diodes w/case

Solderless Breadboard
$24.95
Provides sine, tri, sq wave
From 1Hz to 1MHz
AM or FM capability

IC Test Clips
$9550
556 tie pts
including 2 power
bus lines

Temperature Probe
M-1100 $19.95
19 ranges
High Accuracy
10A reading
Mirrored scale
K, Th, C

Solderless Breadboard
$24.95
Provides sine, tri, sq wave
From 1Hz to 1MHz
AM or FM capability

Regulated P.S. Breadboard
$99.95 XX-400
- Fully regulated
- Short circuit protection
- 3550 test points
- 3 power supplies

Digital Triple Power Supply
XP-765 $239
0-20V @ 1A
0-20V @ 1A
5V @ 5A

Quarter Power Supply
XP-580 $59.95
2-20V @ 2A
12V @ 1A
5V @ 3A
5V @ 3A

Digital 3 Amp Power Supply
XP-750 $175
0-40V @ 1.5A
0-2V @ 3A

XP-650 with Analog Meters $129.50

Fully Regulated, Short Circuit Protected with
2 Limit Cont., 3 Separate Supplies
XP-660 with Analog Meters $169.50

CF-8016 Function Generator
with Freq. Counter
$239
- Sine, Square, Triangle
- Pulse, Ramp, 2 to 2MHz
- Frequency 1 thru 20MHz

C & S SALES INC.
1945 Rosewood, Deerfield, IL 60015
Add 5% for Postage ($10 Max) IL Res., 7% Tax
(800) 292-7711 15 Day Money Back Guarantee
(312) 541-0710 2 Year Warranty
ASK FOR FREE CATALOG

WE WILL NOT BE UNDERSOLD!
propagation basics

One of the great mysteries to most Amateur Radio newcomers is how DX signals get from place to place around the globe. To a casual or uninformed listener, there is no apparent reason for some bands to be “dead” while others are booming with activity. And why does a band full of very strong signals fade out suddenly sometimes, but at other times slowly and incompletely?

There are reasons for this behavior, and an experienced Amateur soon learns to take advantage of the mechanism that provides a path to that distant station.

It all has to do with the ionosphere — that layer of gases that makes up the atmosphere we live, breathe, and fly in. Under the influence of radiation from the sun, this shell that protects life on earth takes on some strange properties that provide life on our Amateur bands.

layer after layer

Fortunately for us, the entire atmosphere does not react in the same way to solar radiation. There are “layers” of reaction at well-defined heights above ground; these layers change their characteristics daily and seasonally. Normal ultraviolet radiation from the sun causes most of the action, with help from periodic outbursts of radiation like Extreme Ultraviolet (EUV) and X-rays, and both high- and low-energy particles.

When ultraviolet and other solar radiation reaches the atmosphere, it reacts with the air molecules in such a way that they become “ionized”. Some electrons are knocked loose from their parent atoms, and some molecules gain an extra electron or two. The result is a layer of particles that have an electrical charge, either positive or negative. Such a layer reacts with radio waves as they travel upward from the surface. Layers of different densities occur at different levels in the atmosphere. The lowest layer, approximately 45 to 55 miles above the surface, is called the “D” layer. There is also an “E” layer at about 65 to 75 miles high. It has a wandering cousin called “sporadic E” that creates some interesting conditions. (More about this one later.)

Things get more active at heights of 90 to 250 miles. There are two layers up there, called “F1” and “F2.” These have an unusual property in that they are separate, distinct layers during the daylight hours, but combine after sunset to form just one “F” layer. Figure 1 shows these layers as they might appear during a normal daylight period.

the D layer

This lowest layer is not really of much use to Amateurs. In fact, it usually works against our desire to QSO on the lower frequency bands (1.8, 3.5, and sometimes 7 MHz) by absorbing the waves as they travel outward from the...
Barry Electronics Commercial Radio Dept. offers the Best in two-way communications for Businesses, Municipalities, Civil Defense, Broadcasting Companies, Hospitals, etc. Sales and Service for all brands; Maxon, Yaesu, Icon, Tad, Octagon, Regency/Wilson, Midland, Standard, Uniden, Shinway, Fujitsu, Seas, Spilbury, Neutec, etc. Call or write for information. 212-925-7000.

A RACE ON THE EDGE OF TIME
Radar — The Decisive Weapon of WW II by David E. Fisher

A Race On The Edge Of Time reads like a thriller but is based upon painstaking and comprehensive research by the author. In fact, Fisher argues rather convincingly that radar was the crucial factor that allowed the allies to know war and that radar has played the same important role in our current military and political environment. Filled with fascinating twists and turns of history that could have changed the war’s outcome, anecdotes about the personalities involved in the development of radar and other military insights. Also includes radar development post WW II and how it will influence future battles. Illustrated with rare vintage photographs and diagrams.

HAM $19.95

ham radio BOOKSTORE

GIVE YOUR EARS A BREAK ON HF!

A NEW SOFTWARE REPEATER CONTROL SYSTEM

For all Brand: Maxon, Yaesu, Icon, Tad, Octagon, Regency/Wilson, Midland, Standard, Uniden, Shinway, Fujitsu, Seab, Spilbury, Neutec, etc. Call or write for information. 212-925-7000.

A RACE ON THE EDGE OF TIME
Radar — The Decisive Weapon of WW II by David E. Fisher

A Race On The Edge Of Time reads like a thriller but is based upon painstaking and comprehensive research by the author. In fact, Fisher argues rather convincingly that radar was the crucial factor that allowed the allies to know war and that radar has played the same important role in our current military and political environment. Filled with fascinating twists and turns of history that could have changed the war’s outcome, anecdotes about the personalities involved in the development of radar and other military insights. Also includes radar development post WW II and how it will influence future battles. Illustrated with rare vintage photographs and diagrams.

HAM $19.95

ham radio BOOKSTORE

GIVE YOUR EARS A BREAK ON HF!

A NEW SOFTWARE REPEATER CONTROL SYSTEM

For all Brand: Maxon, Yaesu, Icon, Tad, Octagon, Regency/Wilson, Midland, Standard, Uniden, Shinway, Fujitsu, Seab, Spilbury, Neutec, etc. Call or write for information. 212-925-7000.
antenna. The density of the D layer is such that wavelengths below a certain frequency (called the LUF, or Lowest Usable Frequency) are simply absorbed on the way through. Talk about a big dummy load! The D layer dissipates after sunset.

You can hear the effects of this dissipation on the AM broadcast band. Throughout the day, only nearby stations can be heard. But not long after sunset, DX starts to come in at ever increasing distances until you can often tune in stations half a continent away. That’s why so many AM broadcast stations have to sign off at sunset — they would create unbelievable QRM when the D layer dissipates and allows better propagation. The same change takes place on the 1.8, 3.5, and 7 MHz bands; the densities that can be worked on 3.5 and 7 can span the globe. Of course, our high-flying friend, the F layer, is what provides all this DX on these lower bands at night.

the F layer(s)

No one is exactly sure why there are two F layers, but they definitely exist. Layer height and density are determined by sending a radio-frequency pulse straight up and recording the reflections as they return; the instrument used is called an ionosonde. Not only does this locate the height of the layers, but it can determine the point at which nothing is reflected when the radio frequency of the pulse is varied. This is the Maximum Usable Frequency (MUF). Frequencies higher than this will just keep going out into space, and those between the LUF and MUF will be bent (refracted) so that they return to earth.

The F1 layer seems to have very little to do — just a small amount of refracting except in times of very high solar activity. The F2 layer provides the bending that creates most of the DX openings during the day and most of the night. The density of the F2 layer is directly affected by the sun’s activity, and can provide DX signals that vary from being just readable to pinning the S-meter. The higher the activity, the higher the MUF will be. This means that during periods of high solar activity the MUF will often climb up beyond 30 MHz, even reaching above 50 MHz in very good years. We are just starting a period of increasing activity, so get ready now for some spectacular openings on 28 MHz during the next 4 or 5 years. Peaks of activity can’t be pinned down precisely, but the peak for this cycle should occur in the early 1990s. After that, there will be a gradual decline to the next minimum. The cycle from high to high (and low to low) runs approximately 11 years.

E and sporadic E

This layer was once called the “Kennelly-Heaviside layer” after some early investigators who theorized about its properties. It provides relatively short-hop propagation by bending signals back to a point 600 to 1200 miles away.

Its cousin, “sporadic E” (E_s), is not consistent enough to provide much excitement on the Amateur bands below 21 MHz. Its effects would be masked by F-layer reflection and by noise levels. The E_s layer begins to be evident above 28 MHz when it is active; at 50 and 144 MHz the activity can provide amazingly strong signal paths. E_s signals have often been heard as high as 220 MHz, but it was not until early 1988 that two-way contact was made via this medium at 220 MHz.

The theory of E_s propagation that seems to fit is that it is a “cloud” or “patch” of ionization that wanders erratically about at heights of 65 to 75 miles. The most common locations for these clouds in the United States seem to be the southeastern part of the country. They often start near the Gulf coast in Louisiana or Mississippi, and travel northward toward Arkansas and Missouri. In some instances, a second cloud appears over the southwest. When this happens, VHF enthusiasts can experience the thrill of “double-hop” DX, with contacts possible out to 2,000 miles or more.

These E_s clouds have appeared farther east and north as well, and there are reports of European E_s propagation on 144 MHz. Signals can be very loud and stay with you for several minutes, or
Check the advantages to you, the DX'er, by using one or more of our Network Series 1000 Rotoroots:

- Now possible: 1 tower - Multiple rotating antennas
- Yet retain - individual rotation
- I - Beam ring construction for strength
- 24VDC gearmotor - steel gear drive for power
- 1 degree position feedback for accuracy
- Lower rotor position on tower for fewer lightning strikes
- A serious product for serious users.

YOU MAY ORDER NOW BY CALLING
TIC General
P.O. Box 1, 302 E. 3rd
Thief River Falls, MN 56701
Phone: Toll-free 1-800-423-8417
or 218-681-1291

fig. 2. Ionized layers bend radio waves back to earth at distances depending on their height. Waves reflected from the ground can re-enter the atmosphere to be returned again for multiple-hop DX paths.

they can disappear in the middle of a QSO. In E₅ QSOs it's wise to trade vital information first (QTH, signal strength, name, etc.), then chat about other things before the signal drops out. The points of reflection seem to move rapidly, and this creates somewhat of a contest atmosphere for the VHF enthusiast. The game is to see how many stations you can work before the cloud dissipates.

short path, long path

Another quirk of the F2 layer is its ability to fool us by not taking the shortest path between two points. Stations that are 6,000 miles apart, for instance, can sometimes work each other by pointing their antennas in the opposite direction for a path length of 18,000 miles. This happens because the amount of ionization can sometimes be greater in that direction than over the shorter path, or the short path may be noisy or have high absorption. Follow this procedure: if you feel that a path should be open but you're not hearing anything in that direction, turn your antenna around 180 degrees and try the other way. It often works surprisingly well.

multihop propagation

It doesn't take a great mathematician to figure out that a layer only 170 to 250 miles high can't reflect a radio wave to a point on the other side of the globe. In order to be line-of-sight at both ends of the path, the layer would have to be almost as high as the moon. As things work out, the radio energy returned to earth from the F₂ (or other) layer strikes the ground and is reflected skyward again, to be bent back to reach the ground a second time or more (see fig. 2). Each time it does this, some signal strength is lost, but there's usually enough left for a solid QSO.

“Backscatter” is another interesting happening. In this mode, a signal strikes the ground at the end of the first hop, and enough of it is scattered back in the same direction to produce a signal near the starting point. On 28 MHz, for example, you might hear a station 100 or so miles away when you are both trying to work stations to the west, but if you turn your beam in his direction, you don't hear the signal. Backscatter signals are usually not very strong, but QSOs have been made this way. Sometimes this is the only way to get nearby contacts for a Worked All States (WAS) certificate.

the “greyline”

A mode that many Amateurs are learning to appreciate is the “greyline DX path.” This is a band of good propagation that follows the twilight zone around the world. If you are in the twilight area just after sunset, chances are very good that you can work someone who is in a similar zone just before sunrise at his location. The opposite is also true — as long as both of you are in
THE MOST AFFORDABLE REPEATER
ALSO HAS THE MOST IMPRESSIVE PERFORMANCE FEATURES
AND GIVES THEM TO YOU AS STANDARD EQUIPMENT!

KIT, ONLY $675
WIRED $975
VHF OR UHF

FEATURES:
• SENSITIVITY SECOND TO NONE! GaAsFET front end on vhf models gives 12dB SINAD of 0.12uV (vHF), 0.15uV (220). UHF model 0.25uV std, 0.1uV with optional helical resonator preamp.
• SELECTIVITY THAT CAN'T BE BEAT! Both 8-pole xtal filter & ceramic filter for >100dB at 0.12kHz. Helical resonator front end to combat desense & intermod.
• CLEAN, STABLE TRANSMITTER, up to 18W for vhf with accessory power amplifier.
• FCC TYPE ACCEPTED for commercial high band and uhf.
• Courtesy beep, field-programmable CWS, flutter-proof squelch, automatic frequency control to compensate for off-frequency transmitters (all standard features).
• Full range of options available, such as autopatch, phone line or radio remote control, sub-audible tones, duplexers.

HIGH PERFORMANCE TRANSMITTERS & RECEIVERS FOR REPEATER AUDIO & DIGITAL LINKS, TELEMETRY, ETC.

• FM EXCITERS:
 Kits $93, w/t $179. 2W continuous duty. TCXO & xtal oven options available.
 • TA51 for 10M, 6M, 2M, 150-174, 220 MHz.
 • TA451 for uhf.
 FCC type accepted for commercial bands.
 • Call for latest information on 900 MHz transmitters.
 • VHF & UHF AMPLIFIERS. For FM, SSB, ATV. Output from 10 to 50 Watts. Several models, kits starting at $79.

• R144/R220 FM RECEIVERS for 2M, 150-174, or 220 MHz. GaAs FET front end, 0.12uV sensitivity! Both crystal & ceramic filters plus helical resonator front end for exceptional selectivity: >100dB at ±12kHz (best available anywhere)! Flutter-proof squelch. AFC tracks drifting transmitters. Kit $149, w/t $229.

• R451 UHF FM RCVR. Similar to above. Tuned line front end, 0.25uV sens. (0.1uV with optional hel. res. preamp). Kit $149, w/t $229.

• R981 FM RCVR FOR 900 MHZ. Triple-conversion, GaAs FET front end, 0.2uV sens. Kit $169, w/t $259.

• R76 ECONOMY VHF FM RCVR for 10M, 6M, 2M, 220. Without hel res or afc. Kits only $129.

• Weather satellite & AM Aircraft receivers also avail.

FCC TYPE-ACCEPTED TRANSMITTERS & RECEIVERS AVAILABLE FOR HIGH BAND AND UHF. CALL FOR DETAILS.

SEND $1 FOR 36 PAGE CATALOG BY RETURN MAIL.
(SEND $2.00 or 4 IRC's for overseas mailing)

ORDER BY PHONE OR MAIL • MIN $3 S & H per order

USE VISA, MASTERCARD, CHECK, OR UPS COD.

GaAs FET PREAMPS
at a fraction of the cost of comparable units!

LNG -(*)
GaAs FET PREAMP
ONLY $59!
Wired/tested

FEATURES:
• Very Low Noise: 0.7dB VHF, 0.8dB UHF
• High Gain: 13.2dB, depending on frequency
• Wide Dynamic Range: to resist overload
• Stable: new-type dual-gate GaAs FET
 * Specify tuning range desired: 25-35, 35-55, 55-60, 90-120, 120-150, 150-200, 200-270, or 400-500 MHz.

LNW -(*)
MINIATURE GaAs FET PREAMP
ONLY $24/kit,
$39 Wired/tested

GaAs FET Preamp similar to LNG, except designed for low cost & small size. Only 58/"W x 1 1/8/" L x 3/4/" H. Easily mounts in many radios.
 * Specify tuning range desired: 25-35, 35-55, 55-60, 90-120, 120-150, 150-200, 200-270, or 400-500 MHz.

DUAL CONVERSION RF ENHANCEMENT

HELIACAL RESONATOR PREAMPS
Low noise preamps with helical resonators reduce intermod & cross-band interference in critical applications.

MODEL HRA -(*), $49 vhf, $54 uhf.
 * Specify tuning range desired: 143-150, 150-158, 158-162, 162-174, 213-233, 430-450, 450-465, or 465-475 MHz.

NEW!
HIGH-SPEED DIGITAL RF LINKS
You've waited a long time for a simple, reliable, low-cost 9600 baud PACKET NETWORKING system. Now you've got it! Our new M0-96 MODEM accepts FSK Transmitters and Receivers for 220 or 440 MHz interfaces with most TNC's. Fast diode switched PA's output 15 or 50W. Call for complete info on the right system for your application.

ACCESSORIES

• COR-3 Kit. Control cts and audio mixers needed to make a repeater. 10W & time-out timers, local spkr amp, courtesy beep...
 $49

• CWID Kit. Field programmable timers, the works...
 $59

• TD-2 DTMF DECODER/CONTROLLER Kit. Full 16 digits, switches 5 functions, toll call restriction, programmable, much more! Great for selective calling tool...
 $79

• AP-3 AUTOPATCH Kit. Use with above for repeater autopatch. Reverse patch and phone line remote control std...
 $79

• AP-2 SIMPLEX AUTOPATCH TIMING BOARD Kit. Use with above for simplex autopatch...
 $39

• M0-202 FSK DATA MODULATOR Kit. Run up to 1200 baud digital signals through any fm transmitter with full handshakes. Radio link computers, telemetry gear, etc...
 $39

• DE-202 FSK DATA DEMODULATOR for received link...
 $39

RECEIVING CONVERTERS

łącz grows our 25th Anniversary
hamtronics, inc.
65-H MOUL ROAD•HILTON NY 14468-9535
Phone: 716-392-9430 Hamtronics is a registered trademark
There are many other modes of propagation that help us make QSOs on various frequencies and at varying distances. Those I've outlined are responsible for 99 percent of all DX QSOs. Many articles and books have been written about the ionosphere and its effects on radio propagation, and some are fascinating reading. A serious DXer will learn all he can about this tool and use it for greater achievements. The rest of us can simply listen and learn to be at the right frequency at the right time by developing our own feel for openings. The column by Garth Stonehocker, K0RYW, in this magazine is a great help. Also, you can learn to eavesdrop on the sun's activity by tuning in WWV and using their sunspot and solar activity information.

However you go about it, DXing is great fun (and often contagious). Enjoy!

ham radio
LOW BAND DX-ING CLUTER Programs
by John Devoldere, ON4UN, for
Apple IIe/c, MS-DOS, Commodore
C-128 Apple Macintosh and Kaypro
CPM Computers

Here's a collection of 30 super programs
written by ON4UN. Just about every interest
or need is covered—from antenna design
and optimization to general operating pro-
grams. Antenna programs include: shunt
and series input, network design, feedline
transformer, shunt network design, SWR
calculation, plus 11 more! General Ham pro-
grams include: sunrise/sunset, great circle
distances, grayline, vertical antenna design
program, sunrise calendar plus 9 more!
Phew. When you sit down to use these pro-
grams, you'll be amazed at what you have.
The best value in computer software avail-
able today. © 1986:
□ UN-Apple II/e/c $39.95 ea.
□ UN-MS (MS-DOS) $39.95 ea.
□ UN-CPM/Kaypro $39.95 ea.
□ UN-C-128 (COMMODORE) $39.95 ea.
□ UN-MAC (MACINTOSH) $49.95

LOW BAND DX'ING
by John Devoldere ON4UN

Now Available! The new, 2nd edition of
the definitive book on Low Band DX-ing. Based
upon years of practical on-the-air
experience, learn the secrets of how
ON4UN has been so successful on the low
bands. Extensive coverage is given to trans-
mit, and receive antennas with clear concise
explanations and plenty of illustrations—
dipoles, inverted V's, loops, phased arrays
and Beverages—they're all in this book.
Also covered: propagation, transmitters,
receivers, operating software and an exten-
sive Low Band bibliography. Going to be a
best seller! Get yours today. © 1987 2nd
Edition 200 pages
□ AR-UN Softbound $9.95

BUY’EM BOTH
SPECIAL OFFER
Book & Software Reg. $49.90
($59.90 for Mac), $39.90 ea. ($49.90 ea.
for Mac). $44.90
□ UN-50 (specify computer) $44.90
□ UN-MSO Macintosh Special $54.90

SAVE $5

Please enclose $3.50 shipping & handling

ham radio BOOKSTORE
GREENVILLE, NH 03048 603-878-1441

R-7000 Widespan Panadapter
Panadapter especially designed for the
R-7000 receiver. For use with a standard scope. Variable
span width from 1 to 10 MHz.
Uncover unknown elusive signals. Complete with all cables, & 90 day
warranty. $349.95 Shipped. Pa.
res. add 6%.

GTL Electronics
RD 1 BOX 272
Lehighton, Pa. 18231
717-386-4032

VHF-UHF POWER DIVIDERS
RF power dividers provides the best
way to feed in-phase source
for antennas or multiple
source to a single system
gain and at the same time reduce
losses to a minimum. Covering 144
MHz to 1220 MHz, this series of VHF
UHF power dividers are premill RF
devices designed for a long service
life with low SWR and low op-
perating bandwidth.

Stridberg Engineering, Co.
P.O. Box 7973 ~ Shreveport, LA 71110 ~ USA
Phone: (318) 865-0823

Generate
Your Own Electric

Hundreds of satisfied owners
are now using the WINDSTREAM WIND
GENERATOR to provide power for their
weekend cottages, boats, workshops, remote
locations, emergency back up power and much
more. Portable—weighs only 20 lbs—easily installed with
our comprehensive installation manual—minimum main-
tenance—full warranty.

Thermex Corporation
P.O. Box 3128, Burlington, VT 05401-3128

MADISON SHOPPER

CALL FOR ORDERS
1 (800) 231-3057
1-713-520-7300 OR 1-713-520-0550
TEXAS ORDERS CALL COLLECT
FAX 1-713-771-7759
ALL ITEMS ARE GUARANTEED OR
SALES PRICE REFUNDED

New Icom IC-911
Kenwood TH212A, TH214AT
Trade-in or new
New Kenwood TM-221A 144/220 Mhz FM

CALL FOR ORDERS
1 (800) 231-3057
1-713-520-7300 OR 1-713-520-0550
TEXAS ORDERS CALL COLLECT
FAX 1-713-771-7759
ALL ITEMS ARE GUARANTEED OR
SALES PRICE REFUNDED

New Icom IC-761
Kenwood TH212A, TH214AT
Trade-in or new
New Kenwood TM-221A 45W mobile

Cambin Electronics Supply
3621 Fannin, Houston, Texas 77004

CALL FOR ORDERS
1 (800) 231-3057
1-713-520-7300 OR 1-713-520-0550
TEXAS ORDERS CALL COLLECT
FAX 1-713-771-7759
ALL ITEMS ARE GUARANTEED OR
SALES PRICE REFUNDED

New Icom IC-761
Kenwood TH212A, TH214AT
Trade-in or new
New Kenwood TM-221A 45W mobile

August 1988
summer signal levels

With the summer sunshine and warmer weather comes the annual decrease in signals levels.

Signal strength is lost as its energy travels away from the transmitter. The largest loss is called free space loss, and it decreases all signals with distance. The amount of additional loss depends on the transmission mode and signal origin conditions. Examples of modes are: groundwave, line of sight, and skywave. Two originating conditions are launch angle and polarization of the launch from the antenna.

For hf skywave propagation the losses of the ionospheric transit, its reflection, and the ground reflection in between hops must be included.

Most ionospheric loss comes from signal energy colliding with ions on its path through the D region, 60-80 miles (100-120 km) above the earth. The level of energy absorbed per transit of the D region depends on the location of the sun and is a function of cosine X, the zenith angle to the sun. Maximum absorption occurs at the subsolar point, directly under the sun; absorption decreases as the signal path moves away from the subsolar point in any direction. It is the next largest signal loss — 10 to 30 dB between night and day or midlatitude one-hop paths. Seasonal absorption in the D region increases as the sun’s subsolar point moves to 23 degrees north for the United States’ summer. This seasonal loss can amount to 18 dB more in summer than winter for midlatitude single hops. Absorption in the D region changes about 8 dB for a one-hop midlatitude path between sunspot numbers 20 and 120 during the 11-year sunspot cycle. It is rising fast this year.

The statistics above are given for the one-hop path as it is the easiest in which to see changes. When the signal travels three or more hops, the changes get blurred between them. There is more absorption with a larger number of hops, but the effect of absorption per hop is not linear additive. Multiple hops cross into the night for the winter hemisphere, blurring additional losses. Ground reflections between hops are also lossy; loss varies with ground roughness and conductivity. On the average this loss is around 5 dB. All together, the losses amount to 120 dB of signal loss of transmitted power when received on summer days. Absorption is inversely proportional to frequency. However, this frequency dependency is hard to assess because as the frequency changes so does the extent of layer penetration. As a rough estimate, 10-MHz signals tend to incur twice as much signal absorption as 20-MHz signals.

What can DXers do to enhance their effectiveness during summertime operations? Review the chart on the next page for the highest band available to the DX area you wish to contact. Operate during the evening, taking advantage of its lower absorption, but before the maximum usable frequency drops off. Make sure your antenna radiates substantial energy at that low TOA for the best chance of contacting the desired DX station. Keep up on current conditions (in terms of signal absorption and variability, QSB) by listening to radio station WWV on 5, 10, and 15 MHz at 18 minutes after the hour. If the solar flux has just increased, absorption will be above normal. Absorption and fading conditions (QSB) are associated with an A figure of greater than 15 or a K figure greater than 4.

last-minute forecast

Higher frequency DX bands will have the most and longest long-skip openings in the first week or so of August (because of expected higher solar flux) and again the last week. Short-skip sporadic E openings will also be available, but spread out through the month and emphasizing different times of day between the higher and lower bands. The lower bands should be best the third week due to the expected lower solar flux; lower absorption during the day affects daytime short skip and creates better nighttime signals toward sunrise and sunset. Expect some disturbances 1 to 2 days long, 1 to 2 days after solar flares are announced over WWV. These disturbances will be more likely July 29th-August 1st, August 4-6th, and 24-27th. The VHF/UHF enthusiast will note that the moon’s perigee and the full moon appears on the 27th. The Perseids meteor shower will occur from the 10th to the 14th, with a maximum rate of better than 50 meteors per hour expected on the 11th and 12th. This is an excellent shower to work with for meteor burst.

band-by-band summary

Six-meter paths will open for a half hour to a couple of hours some days around local noon. Sporadic E propagation will make this short-skip path possible out to nearly 1200 miles (2000 km) per hop.

Ten and 15 meters will have a few short-skip Eₘ openings and some long-skip openings to southern areas of the world during daylight. Some transequatorial (TE) openings associated with mildly disturbed geomagnetic- ionospheric conditions may occur in the evening hours toward the end of the month.

Twenty and 30 meters will support DX propagation from most areas of the world during daylight and into the evening, with a lengthened skip out to 2000 miles (3000 km) per hop. The amount of daylight is still near the maximum, providing many hours of good DXing.

Thirty, 40, 80, and 160 meters are the right DXer’s bands. On many nights 30 or 40 meters will be the only usable bands because of thunderstorm QRN, but signal strengths via Eₘ short skip may overcome the static, when Eₘ is available. Try the predawn hours for less QRN.

ham radio
FREE Heathkit CATALOG

- Send NOW for your FREE Heathkit Catalog.
- Send to: Heath Company, Dept. 122-682, Benton Harbor, Michigan 49022

NILAM TECHNOLOGY, Div. of WI-COMM ELECTRONICS INC.

P.O. Box 5174, MASON, N.Y. 11362

(315) 769-8334

5-1000 MHZ PREAMPLIFIERS

<table>
<thead>
<tr>
<th>Style</th>
<th>NF G P(1dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WLA21m 3dB</td>
<td>133B 8dBm</td>
</tr>
<tr>
<td>WLA22m 4</td>
<td>11 12</td>
</tr>
<tr>
<td>WLA23m 4</td>
<td>23 12</td>
</tr>
<tr>
<td>WLA24m 3</td>
<td>20 18</td>
</tr>
</tbody>
</table>

430/50MHZ CONVERTER

RCA431 150V $100

<table>
<thead>
<tr>
<th>Style</th>
<th>NF G P(1dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCA431</td>
<td>150V</td>
</tr>
</tbody>
</table>

NEMAL ELECTRONICS

- Complete Cable Assembly facilities MIL-STD-45388
- Commercial Accounts welcome - Quantity pricing - Same day shipping most orders
- Factory authorized distributor for Alpha, Amphenol, Belden, Kings, Times Fiber

HARDLINE 50 OHM

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>F742</td>
<td>2/2" Aluminum Black Jacket</td>
<td>$9.95</td>
</tr>
<tr>
<td>F1212</td>
<td>1/2" Cables corr. copper blk jkt 1/2"</td>
<td>$1.18</td>
</tr>
<tr>
<td>F1210</td>
<td>1/4" Cables corr. copper blk jkt 1/4"</td>
<td>$0.49</td>
</tr>
<tr>
<td>F1212</td>
<td>3/4" Cables corr. copper blk jkt 3/4"</td>
<td>$2.50</td>
</tr>
<tr>
<td>F1212</td>
<td>1/2" Cables corr. copper blk jkt 1/2"</td>
<td>$4.95</td>
</tr>
</tbody>
</table>

COAXIAL CABLES

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1180</td>
<td>BELDEN 9913 very low loss</td>
<td>$6.95</td>
</tr>
<tr>
<td>1182</td>
<td>BELDEN 9913 very low loss</td>
<td>$6.95</td>
</tr>
<tr>
<td>1110</td>
<td>RG-8X 50'</td>
<td>$8.95</td>
</tr>
</tbody>
</table>

GROUND STRAP-GROUND WIRE

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>GS36</td>
<td>3/0" stranded copper</td>
<td>$1.00</td>
</tr>
<tr>
<td>GS200</td>
<td>1/2" heavy stranded copper</td>
<td>$1.00</td>
</tr>
</tbody>
</table>

ROTOR CABLE-8 CONDUCTOR

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>90182</td>
<td>2-29ga and 6-22ga</td>
<td>CALL</td>
</tr>
<tr>
<td>90182</td>
<td>2-29ga and 6-22ga</td>
<td>CALL</td>
</tr>
</tbody>
</table>

Shipment? Call 310-100 Connectors $3.00, Visa/Mastercard $5.00, Call 310-200 with order for complete price list. Nema's new 3/0" CABLE AND CONNECTOR SELECTION GUIDE is available at no charge with orders of $50 or more, or at a cost of $4 with credit against next qualifying order.

- NEMAL ELECTRONICS, INC. 12240 NE 14th Ave. N, Miami, FL 33161
- (305) 893-3924 Telex 695873 24hr FAX (305)959-8178

August 1988
AR501
BACK TO BASICS...
But far more advanced...

Model AR501 Telegraph Terminal
$229.00
(California res. add $13.74 tax.)

Visa and MasterCard orders are welcomed. Price includes shipping & handling. Purchase orders accepted from Government agencies

AR-501 covered by One Year Limited Warranty. Extended warranty service available at the following rates:
$25.00 – 3 Years $15.00 – 2 Years

AR501 is a compact triple mode CW terminal in a small package (4.5" x 6.25" x 2.25") but a powerful gear to practice and play with. As a CW decoder, it detects morse code between 5 to 30 WPM. For practice?, it activates and displays the code. More?, it operates as an electronic keyer both standard and iambic. More yet?, How about a print-out function? The AR501 does just that. We offer a stand alone thermal printer as an option.

Butternut Verticals
Butternut's HF verticals use highest-Q tuning circuits (not lossy traps!) to outperform all multiband designs of comparable size!

Model HF6V
- 40 80 30 20 15 and 10 meters
- Automatic bandswitching
- Add-on kit for 17 and 12 meters
- Only 26 ft. tall

Model HF2V
- Designed for the low-band DXer
- Automatic bandswitching on 80 and 40 meters
- Add-on units for 160 and 30 and 20 meters
- 32 feet tall, may be top loaded for additional bandwidth

For more information see your dealer or write for a free brochure.

THE MULTIPLE RECEIVER SOLUTION

4 Channel Signal-to-Noise Voter
- Expandable to 32 channel by just adding cards
- Continuous Voting
- LED indicators of CDR and CDR status
- Built-in Calibrator
- Remote Voter Indicators Placed Out
- 4" x 6" Double-Sided Gold Plated 44 Pin Card
- Remote Double Inputs
- More

Built, tested and calibrated with manual
$350.00

Telephone interface now available
For more information call or write:

DOUG HALL ELECTRONICS
Voter Department
815 E. Hudson Street
Columbus, Ohio 43211
(614) 261-8871

EASY TO READ SOFTWARE
QUADRUPLE-SIZED CHARACTERS
FAST, REAL-TIME DISPLAY

KIDSVIEWWrite and run your own programs in large clear characters. (Apple II, $49.95)

KIDSWORDA full-function large character word processor with double-size print. Very easy to use. (Apple II, $49.95)

MOUNT MURDOCHAn exciting large character text adventure and authoring system. (Apple II 1128R, IBM/DEC $49.95 and $69.95)

SPECIAL INTRODUCTORY PRICE
$34.95 EACH or TWO for $59.95

KIDSVIEW SOFTWARE, Inc., P.O. Box 98-H
Waverly, NH 03278, USA (603) 927-4428

As PREVIEWED in the MAY 1988 ISSUE

1988 CALL DIRECTORY
(on microfiche)

Call Directory $8
Name Index $8
Geographic Index $8
All three — $20 Shipping per order $3

BUCKMASTER PUBLISHING
Mineral, Virginia 23117
703-944-5717
800-282-5628
The italicized numbers signify the bands to try during the transition and early morning hours, while the standard type provides MUF during "normal" hours. Look at next higher band for possible openings.

<table>
<thead>
<tr>
<th>AUGUST</th>
<th>0000</th>
<th>0400</th>
<th>0500</th>
<th>0600</th>
<th>0700</th>
<th>0800</th>
<th>0900</th>
<th>1000</th>
<th>1100</th>
<th>1200</th>
<th>1300</th>
<th>1400</th>
<th>1500</th>
<th>1600</th>
<th>1700</th>
<th>1800</th>
<th>1900</th>
<th>2000</th>
<th>2100</th>
<th>2200</th>
<th>2300</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASIA</td>
<td></td>
</tr>
<tr>
<td>EUROPE</td>
<td></td>
</tr>
<tr>
<td>OCEANIA</td>
<td></td>
</tr>
<tr>
<td>JAPAN</td>
<td></td>
</tr>
</tbody>
</table>

The italicized numbers signify the bands to try during the transition and early morning hours, while the standard type provides MUF during "normal" hours. Look at next higher band for possible openings.

*Look at next higher band for possible openings.
California

<table>
<thead>
<tr>
<th>A-TECH ELECTRONICS</th>
<th>1033 HOLLYWOOD WAY</th>
<th>BURBANK, CA 91505</th>
<th>(818) 845-9203</th>
<th>New Ham Store and Ready to Make a Deal!</th>
</tr>
</thead>
<tbody>
<tr>
<td>JUN'S ELECTRONICS</td>
<td>2819 SEPULVEDA BLVD.</td>
<td>CULVER CITY, CA 90230</td>
<td>213-390-8003</td>
<td>800-882-1343 Trades Habla Espanol</td>
</tr>
</tbody>
</table>

Colorado

| COLORADO COMM CENTER | 525 EAST 70th AVE. | DENVER, CO 80229 | (303) 288-7373 | COLORADO COMM CENTER 525 EAST 70th AVE. SUITE ONE WEST DENVER, CO 80229 (303) 288-7373 (800) 227-7373 Stocking all major lines Kenwood Yaesu, Encomm, ICOM |

Connecticut

| HATRY ELECTRONICS | 500 LEDYARD ST. (SOUTH) | HARTFORD, CT 06114 | 203-527-1881 | HATRY ELECTRONICS 500 LEDYARD ST. (SOUTH) HARTFORD, CT 06114 203-527-1881 Call today. Friendly one-stop shopping at prices you can afford. |

Delaware

| AMATEUR & ADVANCED COMMUNICATIONS | 3206 CONCORD PIKE | WILMINGTON, DE 19803 | (302) 478-2757 | Delaware's Friendliest Ham Store. |
| DELAWARE AMATEUR SUPPLY | 71 MEADOW ROAD | NEW CASTLE, DE 19720 | 302-328-7728 | 800-441-7008 800-441-7008 Icom, Ten-Tec, Microlog, Yaesu, Kenwood, Santos, KOK, and more. One mile off I-95, no sales tax. |

Florida

<table>
<thead>
<tr>
<th>AMATEUR ELECTRONIC SUPPLY</th>
<th>1898 DREW STREET</th>
<th>CLEARWATER, FL 33755</th>
<th>813-461-2467</th>
<th>West Coast's only full service Amateur Radio Store. Hours M-F 9-5:30, Sat. 9-3</th>
</tr>
</thead>
</table>

Georgia

| DOC'S COMMUNICATIONS | 702 CHICKAMAUGA AVENUE | ROSSVILLE, GA 30741 | (404) 886-2302 / 881-5610 | ICOM, Yaesu, Kenwood, Bird... 9AM-5:30PM |

Hawaii

| HONOLULU ELECTRONICS | 819 KEEAUMOKU STREET | HONOLULU, HI 96814 | (808) 949-5564 | Kenwood, ICOM, Yaesu, Hy-Gain, Cushcraft, AEA, KLM, Tri-Ex Towers, Fluke, Beiden, Astron, etc. |

Illinois

| ERICKSON COMMUNICATIONS, INC. | 5456 N. MILWAUKEE AVE. | CHICAGO, IL 60630 | 312-681-5181 | Hours: 9:30-5:30 Mon, Tu, Wed & Fri; 9:30-8:00 Thurs; 9:00-3:00 Sat. |

Indiana

<table>
<thead>
<tr>
<th>THE HAM STATION</th>
<th>220 N. FULTON AVE.</th>
<th>EVANSVILLE, IN 47710</th>
<th>(812) 422-0231</th>
<th>ICOM, Yaesu, Kenwood, Bird...</th>
</tr>
</thead>
</table>

Maryland

| MARYLAND RADIO CENTER | 8576 LAURELDALE DRIVE | LAUREL, MD 20707 | 301-725-1212 | Kenwood, Ten-Tec, Kantronics. Full service dealer. M-F 10-7 SAT 9-5 |

Massachusetts

Missouri

| MISSOURI RADIO CENTER | 102 NW BUSINESS PARK LANE | KANSAS CITY, MO 64150 | (816) 821-7323 | Missouri: (816) 741-8118 ICOM, Kenwood, Yaesu Same day service, low prices. |

Nevada

| AMATEUR ELECTRONIC SUPPLY | 1072 N. RANCHO DRIVE | LAS VEGAS, NV 89106 | 702-647-3114 | Dale Porray "Squeak," AD7K Outside Nev: 1 (800) 634-6227 Hours M-F 9:30-8:00, SAT. 9:30-8:00 |

New Hampshire

| RIVENDELL ELECTRONICS | 8 LONDONDERRY ROAD | DERRY, N. H. 03038 | 603-434-5371 | Hours M-S 10-5; THURS 10-7 Closed Sun/Holidays |

Television

| AMATEUR ELECTRONIC SUPPLY | 621 COMMONWEALTH AVE. | ORLANDO, FL 32803 | 305-894-3238 | Fla. Wats: 1 (800) 432-9424 Outside Fla: 1 (800) 327-1917 Hours M-F 9:30-5:30, Sat. 9-3 |

Ham Radio's guide to help you find your local

Dealers: YOU SHOULD BE HERE TOO! Contact Ham Radio now for complete details.
New Jersey

ABARIS SYSTEMS
276 ORIENTAL PLACE
LYNHURST, NJ 07071
201-939-0015
Don WB2GPU
ARRL, Astatic, Astron, B&W, Belden, Bencher, Hustler, Kenwood, Larsen, RF Concepts, Tonna and much, much more!

Tuesday-Friday 10 am-7:30 pm
Thursday 10 am-9:00 pm
Saturday 10 am-4:00 pm

VISA/MC

KJI ELECTRONICS
56 SKYTOP ROAD
CEDAR GROVE, NJ 07009
(201) 239-4389
Gene K2KJI
Maryann K2RVH

New York

BARRY ELECTRONICS
510 BROADWAY
NEW YORK, NY 10012
212-925-7000
New York City's Largest Full Service Ham and Commercial Radio Store.

VHF COMMUNICATIONS
915 NORTH MAIN STREET
JAMESTOWN, NY 14701
716-664-6345
Call after 7 PM and save! Supplying all of your Amateur needs. Featuring ICOM "The World System." Western New York's finest Amateur dealer.

Ohio

AMATEUR ELECTRONIC SUPPLY
28940 EUCLID AVE.
WICKLiffe, OH 44092 (Cleveland Area)
216-585-7388
Ohio Wats: 1 (800) 362-0290
Outside Ohio: 1 (800) 321-3594
Hours M-F 9:30-3, Sat. 9-3

DEBCO ELECTRONICS, INC.
3931 EDWARDS RD.
CINCINNATI, OHIO 45209
(513) 531-4499
Mon-Sat 10AM-9PM
Sun 12-6PM
We buy and sell all types of electronic parts.

Pennsylvania

HAMTRONICS,
DIV. OF TREVOSE ELECTRONICS
4033 BROWNSVILLE ROAD
TREVOSE, PA 19047
215-357-1400
Same Location for over 30 Years

Texas

MADISON ELECTRONICS SUPPLY
4285 S. TAMALPAIS
SAN ANTONIO, TX 78238
210-442-4200
Now in Southwest Houston — full line of equipment. All the essentials and extras for the "ham."

Wisconsin

AMATEUR ELECTRONIC SUPPLY
4828 W. FOND DU LAC AVE.
MILWAUKEE, WI 53216
414-442-4200
Wisc. Wats: 1 (800) 242-5195
Outside Wisc: 1 (800) 556-0411
M-F 9:30-3, Sat. 9-3

Universal Amateur Radio, Inc.
1280 AIDA DRIVE
REYNOLDSBURG (COLUMBUS), OH 43068
614-866-4267

Antennas West
3621 FANNIN
HOUSTON, TX 77004
713-887-7300
Christmas?? Now??

K COMM dba THE HAM STORE
5707A MOBUD
SAN ANTONIO, TX 78238
512-680-6110
Stocking all major lines. San Antonio's Ham Store. Great Prices — Great Service. Factory authorized sales and service.

Hours: M-F 10-6, SAT 9-3

Mission Communications
11903 ALEIF CLODINE
SUITE 500 (CORNER HARWIN & KIRKWOOD)
HOUSTON, TEXAS 77082
(713) 879-7764

Now in Southwest Houston — full line of equipment. All the essentials and extras for the "ham."

Foreign Subscription Agents for Ham Radio Magazine

<table>
<thead>
<tr>
<th>Country</th>
<th>Address</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>Send orders to Ham Radio Magazine</td>
<td>(416) 774-2600</td>
</tr>
<tr>
<td>Canada</td>
<td>Greenville, SC 29611</td>
<td>(803) 765-8425</td>
</tr>
<tr>
<td>Germany</td>
<td>Send orders to Ham Radio Magazine</td>
<td>(801) 373-8425</td>
</tr>
<tr>
<td>Germany</td>
<td>Greenville, SC 29611</td>
<td>(803) 765-8425</td>
</tr>
<tr>
<td>Italy</td>
<td>Send orders to Ham Radio Magazine</td>
<td>(513) 531-4499</td>
</tr>
<tr>
<td>Italy</td>
<td>Greenville, SC 29611</td>
<td>(803) 765-8425</td>
</tr>
<tr>
<td>Japan</td>
<td>Send orders to Ham Radio Magazine</td>
<td>(513) 531-4499</td>
</tr>
<tr>
<td>Japan</td>
<td>Greenville, SC 29611</td>
<td>(803) 765-8425</td>
</tr>
<tr>
<td>Netherlands</td>
<td>Send orders to Ham Radio Magazine</td>
<td>(513) 531-4499</td>
</tr>
<tr>
<td>Netherlands</td>
<td>Greenville, SC 29611</td>
<td>(803) 765-8425</td>
</tr>
<tr>
<td>Russia</td>
<td>Send orders to Ham Radio Magazine</td>
<td>(513) 531-4499</td>
</tr>
<tr>
<td>Russia</td>
<td>Greenville, SC 29611</td>
<td>(803) 765-8425</td>
</tr>
<tr>
<td>Spain</td>
<td>Send orders to Ham Radio Magazine</td>
<td>(513) 531-4499</td>
</tr>
<tr>
<td>Spain</td>
<td>Greenville, SC 29611</td>
<td>(803) 765-8425</td>
</tr>
<tr>
<td>Sweden</td>
<td>Send orders to Ham Radio Magazine</td>
<td>(513) 531-4499</td>
</tr>
<tr>
<td>Sweden</td>
<td>Greenville, SC 29611</td>
<td>(803) 765-8425</td>
</tr>
</tbody>
</table>

August 1988
cient associated with a teenager asking his parents to finance a new transceiver!

A comprehensive market survey would reveal that not all hams are affluent enough to afford such luxuries as $6,000 transceivers. The active-Amateur statistics clearly indicate that a large portion of the fraternity consists of retirees who must exist on fixed incomes. A properly equipped, modern Amateur station is frequently beyond their means. Although I am semi-retired, and am not by any means destitute, I rebel against the cost of the new Amateur equipment. I have countless associates who share this sentiment. This represents an untapped market. An astute manufacturer would recognize this vast potential.

What has been needed in the United States for a long time is a no-frills transceiver. It should have a quality design for CW and SSB operation. A maximum output power of 100 watts is adequate. It would not contain a speech processor, i-f shift or width circuit, nor would it need to have computer interface capability. A noise blanker is by no means a necessity, since most blankers are ineffective for the more common types of QRN, and they degrade the receiver dynamic range when activated. I also question whether or not a basic rig needs memory channels and two internal VFOs. Getting rid of the frills can bring the price of a good transceiver within the reach of those who can’t, or don’t, wish to invest several thousands of dollars in a hobby they use one or two days a week.

Joe nibbled at the edges of the problem in his HR editorial. I admire his tact and understand his limitations. But, someone needs to take the initiative toward encouraging the United States and foreign manufacturers to develop a practical transceiver that can serve our basic operating needs — especially those of the Novice and other new Amateurs. If a fancier rig is desired later on, rest assured they will buy it. But for now we need to get them started with the minimum of economic stress. What ever happened to the concept of high volume and reduced per-unit-profit (shades of Henry Ford)? Small volume and high markup is not in the best interests of Amateur Radio.

Doug DeMaw, W1FB, Luther, Michigan 49656

generation gap in Amateur Radio

Dear HR:

Your editorial in the June issue reminded me of a similar request by Rich Rosen, regarding how to make Amateur Radio more accommodating and attractive. I remember some of the replies, both appropriate and absurd. At that time, the respondents felt that 1) it was up to the FCC to make it easier to obtain licenses, 2) the equipment manufacturers were not supplying sophisticated or inexpensive enough gear, 3) the technical challenges for Amateur Radio were diminishing, 4) there was an insufficient number of contests and prizes. The list went on.

I believe that Amateur Radio is experiencing the same phenomena that affects the entire country: a generation gap. Yes, I know that term is outdated but the application is here. The country has two (or more) generations of "wanna-bes" and "gimmes". Working couples spend more and more time away from home to provide more and more for their families. Their offspring are accustomed to essentially getting everything that they want.

Amateur Radio has and always will provide the kinds of challenges that people desire. I can’t really fault anyone or anything for the decreasing number of ham operators. Society is changing rapidly. Societal expectations are changing just as quickly. Ham radio presents a kind of stable environment. I believe we are all caught up in changes, whether or not we like it or know it.

I would appreciate your printing this letter, and I encourage responses from the readers.

Larry Caracciolo, N3CCW
QUALITY TEST GEAR YOU CAN COUNT ON.

$369.95*
INCLUDES 2 HOOK-ON PROBES
20 MHZ DUAL TRACE
Features component testing circuit for resistors, capacitors, digital circuits and diodes—TV sync filter—high sensitivity—2000 test points per second—4X horizontal magnification.

$499.95*
INCLUDES 2 HOOK-ON PROBES
35 MHZ DUAL TRACE
Wide frequency bandwidth—optimal sensitivity—delayed triggering switch—all trigger types—simple sweep—TV sync axes—X cavity—XY or X-Y operation—HF LF noise reduction.

$2495.00 *
THE COMMUNICATIONS SERVICE MONITOR THAT WORKS HARDER FOR LESS.
Introducing COM-3...the new service monitor designed by service technicians for service technicians. Works harder for less, giving you advanced testing capabilities at a very affordable price. FEATURES: Direct entry keyboard with programmable memory & Audio & Video parameter frequency counter. LED bar graph frequency/error display. 0.1-1.000 kHz input levels. High receiver sensitivity, false from 0.1 kHz to 999,999 MHz. Continuous frequency coverage. Transmit protection, up to 100 watts. CTS tone encoder, 1 kHz and external modulation.

MINI-100 COUNTER
CHASSIS-WOAC BATTERIES, AC ADAPTER INCLUDED
MODEL W/ FREQUENCY SENSITIVITY ACCURACY DIGITS RESOLUTION PRICE
MINI-100 $19.95
CT-70
10 to 300 MHz
Less than 2500
1 PPM
1 Hz. 10 Hz. 100 Hz.
19.95
CT-50
1 to 50 MHz
Less than 1000
1 PPM
1 Hz. 1 Hz. 10 Hz.
9.95
CT-125
10 to 125 MHz
Less than 500
1 PPM
1 Hz. 1 Hz. 10 Hz.
14.95
CT-90 WITH DUAL OPTION 1 to 90 MHz
Less than 250
0.1 PPM
1 Hz. 0.1 Hz. 10 Hz.
22.95

RAMSEY FREQUENCY COUNTERS

$999.50
PR-2 COUNTER PREAMP
The PR-2 is ideal for measuring weak signals from 1 to 100 MHz—flat 25-db range—BNC connectors—expandable I.R.—ideal receiver/TV preamp.

$699.50
PS-2 AUDIO MULTIPLIER
The PS-2 is handy for high resolution audio resolution measurements. Multiplies UP in frequency—great for PL tone measurements—multiplies by 10 or 100 MHz resolution & built-in signal preamp/conditioner.

MINI KITS—EASY TO ASSEMBLE—FUN TO USE—FOR BEGINNERS, STUDENTS AND PROS

$29.95
RAMSEY D-4100 COMPACT DIGITAL MULTITESTER
Includes test leads and battery included.

$69.95
RAMSEY D-5100 HANDHELD DIGITAL AUTORANGING METER
Includes Probes 1 Year Warranty

$49.95
Includes BNC Connector for terminal block.

ACCESSORIES FOR RAMSEY COUNTERS

$8.95
Telescopic whip antenna—BNC plug

$6.95
High impedance probe, light loading

$6.95
Low pass probe, audio use

$6.95
Direct probe, general purpose use

$6.95
Tilt handle, for CT-70, 90, 125

PHONE ORDERS CALL
716-586-3950
TELEX 466735 RAMSEY CI
FAX 716-586-4754

RAMSEY ELECTRONICS, INC.
2575 East Bard Rd.
Patchou, N.Y. 14526

TERMS: Satisfaction guaranteed! Examine for 10 days, freight prepaid. Warranty on Ramsey 90-day parts and labor. 1-year parts and labor on Ramsey 100-series (bar code 90) 90-day parts and labor, 1-year parts only for Ramsey 120-series (bar code 125). 1-year parts only for Ramsey 175-series (bar code 110). 1-year parts only for Ramsey 180-series (bar code 185). 1-year parts only for Ramsey 190-series (bar code 195). Sales tax (if any) and freight extra. Use MC, VISA, AMERICAN EXPRESS. Fax 716-586-4754.
HAM RADIO FREEMIE: On a space available basis, we are going to offer you, our subscriber, a chance to sell your used, old equipment. Please send us a short description of what you want to sell along with price, name, address and phone number. We will run it once in the next available issue of HR. Please limit your entry to 20 words or less.

WANTED: Smith Chart transmission line calculator made and sold by HW Radio. WR/V, 1,328 East Mead, Eaton, OH 45320.

MACINTOSH SATELLITE Tracking and Propagation Software. MacTrak™ displays graphic maps (rectangular, polar, great circle), tracks satellites, predicts passes. Light gray, black or white text on black or gray monitor. Compatible with KLM/MIRAGE motor interface. Shows gray line, sunrise/sunset, bearing/distance m uri vs time, areas of “world open”. SATS do not detect nor record passes from R. Stegemeyer, PO Box 1990, Fort Worth, OX 83966.

TEKTRONIX 540 Oscilloscope, 50 MHz-80 P/ 136, Tek (1A) 1460, Tek-1441A, Tek-1230 Spectrum Analyzer, 0.5-10 GHz (851) Hewlett-Packard 606A Signal Generator, 0.5-85 MHz, 100kHz. Collins 72W-7, 751A, 10p, 455 kHz radio. Collins 72W-7, 751A, 10p, 455 kHz radio. Collins 72W-7, 751A, 10p, 455 kHz radio. Collins 72W-7, 751A, 10p, 455 kHz radio.

SEND MESSAGES TO: Flea Market, Ham Radio, Greenville, N. H. 03048.

HAM RADIO FREEMIE: On a space available basis, we are going to offer you, our subscriber, a chance to sell your used, old equipment. Please send us a short description of what you want to sell along with price, name, address and phone number. We will run it once in the next available issue of HR. Please limit your entry to 20 words or less.

WANTED: Smith Chart transmission line calculator made and sold by HW Radio. WR/V, 1,328 East Mead, Eaton, OH 45320.

MACINTOSH SATELLITE Tracking and Propagation Software. MacTrak™ displays graphic maps (rectangular, polar, great circle), tracks satellites, predicts passes. Light gray, black or white text on black or gray monitor. Compatible with KLM/MIRAGE motor interface. Shows gray line, sunrise/sunset, bearing/distance m uri vs time, areas of “world open”. SATS do not detect nor record passes from R. Stegemeyer, PO Box 1990, Fort Worth, OX 83966.

TEKTRONIX 540 Oscilloscope, 50 MHz-80 P/ 136, Tek (1A) 1460, Tek-1441A, Tek-1230 Spectrum Analyzer, 0.5-10 GHz (851) Hewlett-Packard 606A Signal Generator, 0.5-85 MHz, 100kHz. Collins 72W-7, 751A, 10p, 455 kHz radio. Collins 72W-7, 751A, 10p, 455 kHz radio. Collins 72W-7, 751A, 10p, 455 kHz radio. Collins 72W-7, 751A, 10p, 455 kHz radio.

SEND MESSAGES TO: Flea Market, Ham Radio, Greenville, N. H. 03048.
Uncle Bill's Commodore C-64 Computer Software
by Bill Clarke WA4BLC

CODE COURSE
This computer program is broken into three user friendly parts. Part one introduces to the beginner the different morse characters. The student simply presses a key and the character is sent and displayed on the screen. Part two generates the morse character and the student is required to press the correct key on the computer. If the student answers incorrectly, the character is automatically repeated. Part three sends morse characters in random groups of five. The student can tailor what is sent to their particular needs; numbers only, letters only or a combination of both. Speeds are from 5 to 20 groups per minute. The computer can also be configured to send the Farnsworth method (high speed/slow spacing code) V 2.2

UB-CC (For C-64) $9.95

CODE MASTER (for Novice, General or Extra Class students)
Prepare for your next code exam using computer generated QSO's. Each QSO contains callsigns, names, QTH's, equipment info plus many of the other exchanges commonly found in Ham QSO's. The QSO's can be displayed on the screen by one character at a time, by each sentence or after the completion of the QSO for checking. With a printer you can print out a hard copy. Available in 5 wpm for Novices, 13 wpm for Generals and 20 wpm for Extra class students:

UB-KN Novice Class (for C-64) $14.95
UB-KG (for C-64) $14.95
UB-KE Extra Class (for C-64) $14.95

ANTENNA SYSTEM
This nifty antenna modeling and development program will help you get the most from your antenna projects while eliminating much of the drudgery of antenna calculations. Part one covers standard design antennas—dipoles, verticals and Yagi designs. Part two designs shortened dipole antennas for space limited hams. Great for shortened 160/80 meter antennas. All dimensions are listed. At this price it's not an engineering program but a neat program to have around:

UB-AS (for C-64) $9.95

RADIO AMATEUR CALLBOOK SUPPLEMENT
(both NA and International calls)
Invaluable operating aid to all classes of Radio Amateur. Includes all calls issued since publication of the 1988 edition of the North American and International editions. The ONLY way to be fully up-to-date is to have the Callbook supplement in your shack. 296 pages © 1988
CB-SUP 88 Softbound $9.95

Please enclose $3.50 shipping & handling

For Errors or Change of Address CALL ham radio direct at (603) 878-1441 8-5 EST

Ham Radio Magazine
August 1988
Please contact this advertiser directly.

Please use before September 30, 1988.

READER SERVICE NUMBERS

Listed below are the page and reader service number for each advertiser in this issue. For more information on their products, select the appropriate reader service number make a check mark in the space provided. Mail this form to

ham radio Reader Service, I.C.A., P.O. Box 2558, Woburn, MA 01801.

Name

Address

City

State

Zip

READER SERVICE # PAGE #

166 - Ace Communications, IN 32
165 - Ace Communications, Inc. CA 90
164 - Advanced Computer Controls 85
134 - Advanced Research Research 74
158 - AEA 49
165 - Alincro Electronics, Inc 41
145 - All Electronics Corp 82
131 - AMC Sales, Inc 83
119 - AMSAT 86
112 - Antennas West 62, 84
151 - ARFL 57
106 - ARFL 98
171 - Astron Corp 30
128 - ATFAB Computers and Electronics 92
121 - Barker & Williamson 20
121 - Barry Electronics 82
121 - Bittal Company 86
121 - Boxboro '88 67
127 - Buckmaster Publishing 84
118 - Buckmaster Publishing 90
160 - Burghardt Amateur Center 44
133 - Call Corp 86
170 - CIE 32
154 - Coaxial Dynamics, Inc 52
179 - Command Technologies 20
150 - Communications Specialists 59
120 - Computeradio 86
186 - Connect Systems Inc 1
136 - Cygnus-Quasar Books 74
177 - Databox, International 24
180 - DMQ Technology 21
116 - Doug Hall Electronics 90
142 - Down East Microwave 65
174 - EGE, Inc 26
171 - Engineering Consulting 69
161 - Falcon Communications 52
173 - L.L. Grace 29
169 - Grove Enterprises 44
141 - GTI 65
122 - GTI 67
164 - HAL Communications Corp 43
159 - Hal Tronix 47
162 - Ham Radio Outlet 47
166 - Ham Radio's Bookstore 65, 78, 82, 87, 97
168 - Henry Radio 35
167 - ICOM America, Inc CII
107 - Jan Crystals 98
184 - JDR Instruments 8
172 - Junt's Electronics 28
113 - KSCFI 89
185 - Kentronics 6, 7

PRODUCT REVIEW/NEW PRODUCTS

303 - A-Tech Electronics 48
304 - Amateur Radio School 48
302 - American Reliance 53
301 - American Reliance 53
302 - DMQ Technology 48
202 - DigiComm Electronics 53
305 - Mouser Electronics 53
300 - RF Concepts 53
306 - Silicon Inc 53
301 - Stone Mountain Engineering Co 48

FOR FREE CATALOG, CALL OR WRITE:

JAN CRYSTALS
PO. BOX 6017
FORT MYERS, FL 33906
(813) 936-3297

TOLL-FREE: 1-800-237-3063
IN FLORIDA: 1-800-226-XTAL
FAX ORDERS: 1-813-936-3750

RELY ON JAN FOR 3-WAY HELP:

1. TECHNICALLY
 CORRECT CRYSTALS
 TO YOUR SPECS.
2. QUICK TURNAROUND
 WITH HUGE
 INVENTORY, PROMPT
 SERVICE, AND OUR
 EMERGENCY ORDER
 PLAN.
3. LOW PRICES.

QUARTZ CRYSTALS FOR
 TWO-WAY—INDUSTRY
 MARINE—AMATEURS
 SCANNERS—CBs
 MICROPROCESSORS

THE 1988
ARRL HANDBOOK
FOR THE RADIO AMATEUR

NEW EDITION

The 1988 ARRL Handbook For
The Radio Amateur carries on the tradition of the previous editions
by presenting 1200 pages of comprehensive information for
the radio amateur, engineer, technician and student. Clothbound
only $21 in the U.S., $23 in Canada and elsewhere.

THE AMERICAN RADIO RELAY LEAGUE
225 MAIN STREET
NEWINGTON, CT 06111
<table>
<thead>
<tr>
<th>KENWOOD</th>
<th>YAESU</th>
<th>ALINCO</th>
<th>iCOM</th>
<th>ASTRON</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS440S</td>
<td>FT-767GX</td>
<td>IC-761</td>
<td>ALD-24T</td>
<td>IC-736R</td>
</tr>
<tr>
<td>"DX-CITING"</td>
<td>HF/VHF/UHF BASE STATION</td>
<td>NEWEST HF SUPER RIG</td>
<td>DUAL BAND MOBILE</td>
<td>COMPACT HF TRANSCEIVER</td>
</tr>
<tr>
<td>- 100% Duty Cycle</td>
<td>- Add Optional 8m, 2m & 70cm Modules</td>
<td>- 160-10M/General Coverage Receiver</td>
<td>- 140-149.995 MHz/440-450 MHz</td>
<td>- All HF Band/General Coverage Receiver</td>
</tr>
<tr>
<td>- 100 Memories</td>
<td>- Dual VFO's</td>
<td>- 25 Watts on Both Bands</td>
<td>- 12 Memories/Frequency and Mode</td>
<td>- 12 Memories/Frequency and Mode</td>
</tr>
<tr>
<td>- Direct Keyboard Entry</td>
<td>- Full CW Break-In</td>
<td>- Crossband Full Duplex</td>
<td>- Mode</td>
<td>- Mode</td>
</tr>
<tr>
<td>- Optional Built-in AT</td>
<td>- Lots More Features</td>
<td>- 21 Memory Channels</td>
<td>- USB, LSB, AM, FM, CW</td>
<td>- USB, LSB, AM, FM, CW</td>
</tr>
<tr>
<td>On Sale Now, Call for Price!</td>
<td></td>
<td>Includes HM-12 Scanning Mic</td>
<td>Includes AT</td>
<td>Includes AT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KENWOOD</th>
<th>YAESU</th>
<th>iCOM</th>
<th>ASTRON</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS-140S</td>
<td>FT-736R</td>
<td>IC-735</td>
<td>IC-900</td>
</tr>
<tr>
<td>AFFORDABLE DX-ing!</td>
<td>VHF/UHF BASE STATION</td>
<td>COMPACT HF TRANSCEIVER</td>
<td>SIX BANDS IN ONE MOBILE</td>
</tr>
<tr>
<td>- HF Transceiver With General Coverage Receiver</td>
<td>- SSB, CW, FM on 2 Meters and 70 cm</td>
<td>- All HF Band/General Coverage Receiver</td>
<td>- Remote Controller, Interface A Unit, Interface B Unit, Speaker, Mic and Cables</td>
</tr>
<tr>
<td>- All HF Amateur Bands</td>
<td>- Optional 50 MHz, 220 MHz or 1.2 GHz</td>
<td>- 12 Memories/Frequency and Mode</td>
<td>- Six Band Units to Choose</td>
</tr>
<tr>
<td>- 100 W Output</td>
<td>- 25 Watts Output on 2 Meters, 220 and 70 cm</td>
<td>- Mode</td>
<td>- 10 Memories Per Band</td>
</tr>
<tr>
<td>- Compact, Lots of Features</td>
<td>- 10 Watts Output on 6 Meters and 1.2 GHz</td>
<td>- Programmable Band Scan</td>
<td>- Programmable Band Scan</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KENWOOD</th>
<th>YAESU</th>
<th>iCOM</th>
<th>ASTRON</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM-221A</td>
<td>FT-212RH</td>
<td>IC-900</td>
<td>PK-64/HFM</td>
</tr>
<tr>
<td>2m FM Mobile Transceiver</td>
<td>THE "ANSWERING MACHINE" MOBILE</td>
<td>SIX BANDS IN ONE MOBILE</td>
<td>Morse, Baudot, ASCII, AMTOR and Packet</td>
</tr>
<tr>
<td>- 45W Output w/HiLo Switch</td>
<td>Rx: 138-174 MHz</td>
<td>- Remote Control, Interface A Unit, Interface B Unit, Speaker, Mic and Cables</td>
<td>Operates VHF and HF</td>
</tr>
<tr>
<td>- 14 Multi-Function Memories</td>
<td>Tx: 144-148 MHz</td>
<td>- Six Band Units to Choose</td>
<td>You Need Only Your Transceiver and a Commodore 64 or 128</td>
</tr>
<tr>
<td>- TM-421A Available For 440 MHz</td>
<td>45W Output</td>
<td>- 10 Memories Per Band</td>
<td>SPECIAL! FINAL CLEARANCE</td>
</tr>
<tr>
<td>- 440 MHz</td>
<td>- Digital Voice Recorder</td>
<td>- Programmable Band Scan</td>
<td>$149.95 Limited Supply</td>
</tr>
<tr>
<td>- 2m FM Mobile Transceiver</td>
<td>- FT-122 RH for 70cm</td>
<td>- Fiber Optic Technology</td>
<td></td>
</tr>
</tbody>
</table>
NEW
POCKET SIZE
SIZE: 4” H x 3.5” W x 1” D
MADE IN USA

FREQUENCY COUNTERS
TO 2.4 GHZ

#TA-100S

8 LED DIGITS • 2 GATE TIMES
ALUMINUM CABINET
INTERNAL NI-CAD BATTERIES INCLUDED
AC ADAPTER/CHARGER INCLUDED

EXCELLENT SENSITIVITY & ACCURACY

AC-DC • PORTABLE OPERATION

Small enough to fit into a shirt pocket, our new 1.3 GHz and 2.4 GHz, 8 digit frequency counters are not toys! They can actually out perform units many times their size and price! Included are rechargeable Ni-Cad batteries installed inside the unit for hours of portable, cordless operation. The batteries are easily recharged using the AC adapter/charger supplied with the unit.

The excellent sensitivity of the 1300H/A makes it ideal for use with the telescoping RF pick-up antenna; accurately and easily measure transmit frequencies from handheld, fixed, or mobile radios such as: Police, firefighters, Ham, taxi, car telephone, aircraft, marine, etc. May be used for counter surveillance, locating hidden “bug” transmitters. Use with grid dip oscillator when designing and tuning antennas. May be used with a probe for measuring clock frequencies in computers, various digital circuitry or oscillators. Can be built into transmitters, signal generators and other devices to accurately monitor frequency.

The size, price and performance of these new instruments make them indispensible for technicians, engineers, schools, Hams, CBers, electronic hobbyists, short wave listeners, law enforcement personnel and many others.

STOCK NO:
#1300H/A Model 1300H/A 1-1300 MHz counter with preamp; sensitivity, < 1mV, 27 MHz to 450 MHz includes Ni-Cad batteries and AC adapter $169.95
#2400H Model 2400H 10-2400 MHz microwave counter includes Ni-Cad batteries and AC adapter $299.95
#CCA Model CCA counter/counter, for debugging, ultra sensitive, < 50 micro volts at 150 MHz; 1-600 MHz with adjustable threshold, RF indicator LED. Includes Ni-Cad batteries and AC adapter $299.95

ACCESSORIES:
#TA-100S Telescoping RF pick-up antenna with BNC connector $12.00
#P-100 Probe, direct connection 50 ohm, BNC connector $20.00
#CC-12 Carrying case, gray vinyl with zipper opening. Will hold a counter and #TA-100S antenna $10.00

ORDER FACTORY DIRECT
1-800-327-5912

AVAILABLE NOW!

OPTOELECTRONICS INC.
5821 N.E. 14th Avenue
Ft. Lauderdale, Florida 33334

Orders to US and Canada add 5% of total ($2 min, $10 max)
Florida residents add 8% sales tax. COD fee $2.
Foreign orders add 15%

Because the FT-757GX/II packs all its HF performance into one highly compact, action-ready case. A case so small, it even fits under airplane seats.

Of course, you've probably noticed a similarity to its predecessor, the FT-757GX. That's purely intentional. And now its performance is even better.

With new features like memory storage of operating mode, slow/fast tuning selection, automatic step-change according to mode, IF notch filter, 10 memories, and VFO to VFO scan.

Plus you get an iambic electronic keyer, Woodpecker noise blanker, 600-Hz CW filter, AM and FM modes, AF speech processor, and 25-kHz marker generator. All at no extra charge.

Three microprocessors. Dual VFOs. Single-button VFO/memory swap. Receive coverage from 500 kHz to 30 MHz. Transmit coverage from 10 to 160 meters, including WARC bands. All-mode coverage (LSB, USB, CW, AM and FM). 100-watt RF output.

QSK operation. Massive heatsink and duct-flow cooling system for continuous RTTY operation for up to 30 minutes.

Computer Aided Transceiver (CAT) System for computer control via optional interface (software is available from your Yaesu dealer).

Of course, the FT-757GX/II offers the kinds of options you'd expect from Yaesu, too. Including standard and heavy-duty power supplies, automatic antenna tuner, and more.

So no matter where you work the DX, take along Yaesu's FT-757GX/II. The full-featured HF rig you'll have a real field day with.
Four to Go!

TM-221A/321A/421A/521A
144/220/450/1300 MHz
The Hottest Selling Compact FM Mobile Transceivers

The all-new TM-221A, TM-321A, TM-421A and TM-521A FM transceivers represent the "New Generation" in Amateur radio equipment. The superior Kenwood GaAs FET front end receiver; reliable and clean RF amplifier circuits, and new features all add up to an outstanding value for mobile FM stations! The optional RC-10 handset/control unit is an exciting new accessory that will increase your mobile operating enjoyment! TM-221A receives from 138-173.995 MHz. This includes the weather channels! Transmit range is 144-148 MHz. Modifiable for MARS and CAP operation. (MARS or CAP permit required.)

- TM-321A covers 220-224.995 MHz, TM-421A covers 438-449.995 MHz, and the TM-521A covers 1240-1300 MHz. (Specifications guaranteed for Amateur band use only.)
- Built-in front panel selection of 38 CTCSS tones. TSU-5 programmable decoder optional.
- Simplified front panel controls - makes operating a snap!
- 16 key DTMF hand mic., mic. hook, mounting bracket, and DC power cable included.
- Selectable frequency steps for quick and easy QSY.
- Packet radio compatible!
- Programmable band scanning with memory scanning and memory channel lock-out.
- New amber LCD display.

Optional Accessories:
- RC-10 Multi-function handset/remote controller
- PG-4G Extra control cable for second transceiver
- PS-50/PS-430 DC power supplies
- TSU-5 Programmable CTCSS decoder
- SW-100A Compact SWR/pwr/volt meter (10-150 MHz)
- SW-100B compact SWR/pwr/volt meter (150-450 MHz)
- SW-200A SWR/pwr/volt meter (18-150 MHz)
- SW-200B SWR/pwr/volt meter (140-450 MHz)
- SWT-1 Compact 2 m antenna tuner (200 W PEP)
- SWT-2 Compact 70 cm antenna tuner (200 W PEP)
- SWC-4 1200 MHz Directional coupler
- SP-40 Compact mobile speaker
- SP-50B Mobile speaker + PG-2N Extra DC cable
- PS-3B DC line noise filter
- MC-60A, MC-80, MC-85 Base station mic.
- MG-55 (8-pin) Mobile mic. with gooseneck and time out timer
- MA-4000 2 m/70 cm dual band antenna with duplexer (not supplied)
- MB-201 Extra mobile mount

Specifications and prices subject to change without notice or obligation.

Kenwood non-volatile operating system. All functions remain intact even when lithium battery back-up fails. (Lithium cell memory back-up, est. life 5 yrs.)

- 14 full-function memory channels store frequency, repeater offset, sub-tone frequencies, and repeater reverse information. Repeater offset on 2 m is automatically selected. There are two channels for "odd split" operation.
- Super compact: approx. 1/2"Hx5-1/2"Wx7/"D.
- Microphone test function on low power.
- High quality, top-mounted speaker.
- Rugged die-cast chassis and heat sink.

RC-10 Remote Controller
For TM-221A/321A/421A/521A.
Optional telephone-style handset remote controller RC-10 is specially designed for mobile convenience and safety. All front panel controls (except DC power and RF output selection) are controllable from the RC-10. One RC-10 can be attached to a combination of two transceivers with the optional PG-4G cable. When two transceivers are connected to the RC-10, cross band, full duplex repeater operation is possible. (A control operator is needed for repeater operation.)
THIS LUCKY HAM WON A KENWOOD 940 STATION AT BOXBORO!

DISCOUNT RESERVATION COUPON INSIDE

TO LEARN ABOUT A MASSACHUSETTS VACATION CALL 1-800-447-MASS
IN NEW ENGLAND
EVERYONE DRIVES TO
THE WONDERFUL
Boxboro
Hamfest

October
1 & 2
1988
EARLY BIRD
DISCOUNT
COUPON
IN THIS
MAGAZINE!
The BEST Ham Convention Ever!

MEET: Every Manufacturer
Every Dealer
you'd ever want to see!

- ICOM • KENWOOD • YAESU • TENTEC • COMRAD • ETO
- EGE • CUSHCRAFT • ALINCO • TELEGRAPH
- HAM RADIO • CTM • ORION/CREATE • CQ • PERIPHAX
- PALOMAR • DSR • DEELA LOOP • PX SHACK • RF PARTS
- MIRAGE/KLM • QSG • WAMPY • SCIENCE WORKSHOP
- DELAWARE • AMP SUPPLY • TEL-COM • AEA • MEJ
- KANTRONICS • OPTOELECTRONICS • E. H. YOST • 73
- HARCO ENGRAVING • AUSTIN ANTENNA • RAMSEY
& MORE ADDED EVERY WEEK!

A GIANT FLEA MARKET, TOO!

TWO BIG DAYS

OCT. 1 & 2 1988
SHERATON BOXBORO

Route 111 at Route 495
Boxboro, Massachusetts
(A Short Distance From The Mass Turnpike)

SAVE $1 ON EACH REGISTRATION WITH THIS CARD

REGISTRATION:

WITH THIS CARD
ORDER NOW AND
SAVE $1.00 on EVERY registration!

BOXBORO 1988
OCTOBER 1 & 2 SAT. & SUN.
New England A.R.R.L. Convention

• ANTENNA PROGRAMS • E.C.C. EXAMS • WOUFF HONG • YL PROGRAMS

EARLY BIRD DISCOUNT COUPON

HOW MANY?

☐ REGISTRATION $6.00 (required of everyone over 16) ($7.00 at door)

☐ SATURDAY NIGHT DANCE, SHOW & ROAST BEEF BANQUET $18.50 INCL. TAX & TIP

FLEA MARKET SELLER'S PERMITS (ONE REGISTRATION REQUIRED WITH EACH PERMIT)

SATURDAY
☐ TENT $14
☐ OUTSIDE $9

SUNDAY
☐ TENT $14
☐ OUTSIDE $9

SEPARATE PERMIT FOR EACH DAY

Your Name ________________________________ Call ________________________________

Your Complete QTH Street ________________________________ City ________________________________

State __________________ Zip Code __________________

Make Check Payable To: F.E.M.A.R.A., and Mail with S.A.S.E. to:
Arthur Tomkinson: WITHT, 9 Oliver Terrace, Revere, MA 02151