

Fixed, mobile or portable, ICOM's new IC-725 delivers band-commanding performance. The easy-to-operate IC-725 reflects ICOM's worldrenown excellence in circuit designs, versatility and dependability. Your enjoyment is also guaranteed with ICOM's one full year warranty! SMALL SIZE, BIG PERFORMANCE! Extraordinary Performance! Includes: 160 through 10 meter operation $\bullet 100$ watts output - Shortwave reception from 100 kHz to 33 MHz - SSB, CW and AM modes (FM optional) Sensitive 105 db dynamic range receiver - Low noise DDS switching • Panel-selectable RF preamp and attenuator • Dual VFO's • Selectable AGC • Rugged full duty cycle finals.

GLOBE-SPANNING OPERATION!

Full Featured Operation! 26 tunable memories with Band Stacking Registers which enable you to store a frequency, switch bands, and retum to the stored frequency • 10 Hz digital frequency display - Three tuning rates • Three scan modes • Highly effective Noise Blanker • RIT - Semi-QSK CW • Optional narrow CW filter - Built-in AH-3 controller •IC-725 measures only $9.0 \times 3.7 \times 9.4$ inches (H, W, D). Optional AH-3 automatic and remote antenna tuner for mobile and portable operation. Plugs

directly into the IC-725. Wide impedance matching range. Mating whip unit ($\mathrm{AH} 2-\mathrm{B}$) bolts to auto's frame, works $80-10$ meters.

O

ICOM

First in Communications

ICOM Amenca, Inc. 2380-116th Ave NE, Belevue. WA 98004 Customer Service Hotline (206) 454-7619
3150 Premier Drve. Sute 126, Inning. TX 750631777 Phoenx Parkway, Sute 201. Altanta. GA 30349
ICOM CANADA, A Divison of ICOM America inc.
3071 - $\mathbf{3} 5$ Road. Unit 9 . Richmond. BC.V6K2T4 Canada
Al stated specticatons are subject to change whout notce or obigaton All 1 COM rados sgitcantly exceed FCC reguiations imting spunous emsssons. 7251288

FOUR user selectable operating modes and a 90 number autodialer make Private Patch V the ONLY choice!

SELECT AN OPERATING MODE USING THE BUILT-IN KEYBOARD . . .

1. SIMPLEX SAMPLING PATCH

Private Patch V achieves a level of sampling patch performance unobtainable in any other product. Crucial to performance is the noise squelch filter. Compare our five pole filter to the competition's two pole filter. Advanced software algorithms perform noise correlation tests which result in greater useable range than the competition. Nine selectable VOX enhancement ratios allow you to vary performance from straight sampling to highly VOX enhanced. (sampling rate decreased while the land party is speaking). The mobile is in full control and can breakin at any time.

2. SIMPLEX VOX PATCH

VOX mode offers superb simplex operation with any radio, including synthesized and relay switched models. VOX mode has other advantages too. 1. A linear amplifier can be used to extend straight simplex range. 2. You can operate through any remotely located repeater to greatly extend range. 3. If desired you can connect Private Patch V to the MIC and speaker jack of your radio. NO INTERNAL CONNECTIONS ARE REQUIRED. Control is maintained automatically with built-in dial tone detection, busy signal detection and fully programmable activity and time out timers. An optional electronic voice delay board eliminates first word clipping with slow switching radios.

3. DUPLEX PATCH

Select duplex mode when connecting Private Patch V to your existing repeater or duplex base station. Many features including semi-duplex privacy mode are user programmable. The mobile is in full control at all times.

4. REPEATER CONTROLLER

Private Patch V will convert any receiver and transmitter into an outstanding performing repeater with duplex autopatch. Features such as repeater on/off code, hangtime, activity timer time, CW ID interval etc. are fully user programmable. Private Patch V is the right choice for your club system.

Private Patch V is a totally new concept in automatic phone patches. A built-in keyboard and menu driven display allow you to customize all modes, features, and functions specifically to your application.

Private Patch V can be a sampling patch today. A VOX patch tomorrow. And a repeater controller next year!

You may never need another patch again.

COMPARE THESE FEATURES

- 90 phone number autodialer
- Last number redial
- Regenerated tone/pulse dialing
- Toll restrict: 1st and 2nd digit restrict, prefix lockout and digit counting
- 1.5 digit connect/disconnect code
- 2.5 digit secret toll override code
- User programmable CW ID
- Remote hook flash
- Auto disconnect on dialtone/busy signals
- Telephone remote base
- Remote controlled relay (relay optional)
- Lightning protected

Call or write today for your FREE brochure.

Connect Systems Inc.

> 2064 Eastman Ave., \#113 Phone (805) 642-7184

AMATEUR ELECTRONIC SUPPLY: Milwaukee WI Wicklitte OH Ortando FL. Glearwater FL. Las Vegas NV - BARRY ELECTRONICS CORP - New York NY - ERICKSON COMMUNICATIONS: Chicago IL • HAM RADIO OUTLET: Anahein CA Butlingame CA. Oakland CA, Phoenix AZ San Diego CA, Van Nuys CA. Atianta GA - HENRY RADIO: Los Angeles CA - INTERNATIONAL RADIO SYSTEMS: Miami FL - JUNS ELECTRONICS: Culver City CA - MADISON ELECTRONICS SUPPLY: Houston TX - MIAMI RADIO CENTER CORP: Mami FL - MIKES ELECTRONICS FI Lauderdaie. FL - N\&G DISTRIBUTING CORP: Mam FL - OMNI ELECTRONICS: Lare do TX • PACE ENGINEERING: Tucson AZ • THE HAM STATION: Evansvilie IN • VALLEY RADIO CENTER: Harlingen TX • CANADA-COM.WEST RADIO SYSTEMS, LTD: Vancouver BC

KENWOOD

"DX-citing!"

TS-440S Compact high performance HF transceiver with general coverage receiver

Kenwood's advanced digital know-how brings Amateurs world-wide "big-rig" performance in a compact package. We call it "Digital DX-citement"-that special feeling you get every time you turn the power on!

- Covers All Amateur bands

General coverage receiver tunes from $100 \mathrm{kHz}-30 \mathrm{MHz}$. Easily modified for HF MARS operation.

- Direct keyboard entry of frequency - All modes built-in USB, LSB, CW, AM, FM, and AFSK. Mode selection is verified in Morse Code.
- Built-in automatic antenna tuner (optional) Covers 80-10 meters. - VS-1 voice synthesizer (optional)
- Superior receiver dynamic range Kenwood DynaMix - high sensitivity direct mixing system ensures true 102 dB receiver dynamic range (500 Hz bandwidth on 20 m) - 100% duty cycle transmitter

Super efficient cooling permits continuous key-down for periods exceeding one hour. RF input power is rated at 200 W PEP on SSB, 200 W DC on CW, AFSK, FM, and 110 W DC AM (The PS 50 power supply is needed for continuous duty.)

- Adjustable dial torque
- 100 memory channels

Frequency and mode may be stored in 10 groups of 10 channels each. Split frequencies may be stored in 10 channels for repeater operation.

- TU-8 CTCSS unit (optional)
- Superb interference reduction

IF shift, tuneable notch filter, noise blanker, all-mode squelch, RF attenuator, RIT/XIT. and optional filters fight QRM.
-MC-43S UP/DOWN mic. included

- Computer interface port

- 5 IF filter functions - Dual SSB IF filtering A built-in SSB fitter is standard. When an optional SSB filter (YK-88S or YK-88SN) is installed, dual filtering is provided.
- VOX, full or semi break-in CW
- AMTOR compatible

MAY 1989
volume 22, number 5

Publisher \& Editor-in-Chief:
T.H. TENNY, JR., W1NLB

EDITORIAL STAFF
Managing Editor:
Terry Northup, KA1STC
Technical Editor:
Marty Durham, NB1H
Consulting Editor:
Robert D. Wilson, WA1TKH
Associate Editors:
Tom McMullen, W1SL
Joseph J. Schroeder, W9JUV
Alfred Wilson, W6NIF
Production Editor: Susan Shorrock
Copy Editor: Peggy Tenney. KA1QDG Editorial Assistant: Beth McCormack

Editorial Review Board:
Peter Bertini, K1Z.JH
Forrest Gehrke, K2BT
Michael Gruchalla, PE
Bob Lewis, W2EBS
Mason Logan, K4MT
Vern Riportella. WA2LQQ
Ed Wetherhold. W3NQN

PUBLISHING STAFF

Assistant Publisher:
J. Craig Clark, Jr., N1ACH

Director of Advertising Sales:
Henry S. Gallup. N1GCF
Advertising Production Manager:
Dorothy Sargent, KA1ZK
Circulation Manager: Susan Shorrock
Circulation: Therese Bourgault
Traffic Manager: Phil Alix, N1FPX
Book Store: Maribeth Buchanan
Cover Illustration: Hans Evers, PAOCX

W6SAI, page 74

See page 25 for the winners of March's Weekender contest.

FEATURES			
IMPROVED HIGH-PERFORMANCE YAGIS FOR 432 MHZ Steve Powlishen, KIFO			
The Weekender: CONVERTER TUNES 4 TO 18 MHZ WITH NO BANDSWITCH Jack Najork. W5FG			
THE FOLD WIRE FED TOP-LOADED GROUNDED VERTICAL Walter J. Schulz, Jr. K3OQF			
Elmer's Notebook: OSCILLATORS Tom McMullen, WISL			
IMPEDANCE MATCHING TRANSFORMERS AND LADDER LINE Peter Anderson, KZ3K			
A NOVEL METHOD FOR MEASURING CABLE ATTENUATION 65 A. E. Popodi, OE2APM			
Ham Radio Techniques: ANTENNA TIME Bill Ort, WGSAI			
The Weekender: THE MICROFARAD COUNTER Hans Evers, PAOCX			
Practically Speaking: HIGH-FREQUENCY DIPOLE ANTENNAS, PART 1 Joe Cart, K4IPV			
DEPARTMENTS			
WILLIAM W. EITEL, W6UF PUBLISHER'S LOG COMMENTS HAM NOTEBOOK PRODUCT REVIEW HAM MART	4 6 6 38 101 102	NEW PRODUCTS DX FORECASTER FLEA MARKET ADVERTISER'S INDEX READER SERVICE	$\begin{array}{r} 104,117 \\ 109 \\ 112 \\ 118 \\ 118 \end{array}$

[^0]

William W. Eitel, W6UF 1908-1989

W6UF: Amateur Radio frontiersman

To say "It can't be done" was a challenge to William W. Eitel, W6UF. In 1927 it was thought that the new 10 meter band was workable for line-ofsight transmissions only, as the 5 -meter band seemed to be. W6UF was one of the first stations on the band, determined to prove that 10 -meters was good for long distance communication. In a few weeks he was running daily skeds with W1CCZ and ZL2AC, establishing beyond a doubt the DX qualities of the new band. His homemade transmitter used a crystal he had ground from a chunk of quartz found in a mountain stream. He saved money for weeks, to buy an 852 tube for the 150 -watt amplifier stage. He built a twotube regenerative receiver. His efforts were summarized in QST in January 1929. Ten meters was not like the "ultrahigh" frequencies! It was a DX band!
This was an auspicious beginning for a 20 -year-old lad with a consuming curiosity about radio communications. His biggest problem was the cranky 852 tube; it required enormous plate voltage to work properly at 10 meters. He decided he could build a better tube, which would work at a reasonable plate potential.
His chance came in 1933 when he went to work for a vacuum tube manufacturer in the San Francisco area. Bill, along with Jack McCullough, W6CHE, developed a low-voltage, high-current tube that proved superior
to the 852. Unfortunately, the company (a marine communication business) wasn't interested in selling tubes to Amateurs, so tube sales languished. Bill and Jack soon left the company, and in 1934 started a new enterprise - Eitel-McCullough, Inc. Their goal was to build reliable "EIMAC" tubes that would operate at higher frequencies than anything available. They borrowed $\$ 5,000$ and designed a revolutionary new triode tube, the 150T.
This was the start of something big. EIMAC tubes were quickly adapted for commercial and military use, and the little company prospered. Within a decade it became the United States' leading producer of power electron tubes and related devices. The combination of Jack (the planner and designer) and Bill (the hands-on activist) was fortuitous. The right guys with the right products at the right time!

Bill's interest in Amateur Radio, although curtailed by the effort of building a company and the demands of war production, never flagged. Bill and Jack went out of their way to enlist Radio Amateurs in the company, to encourage them in the new communication industry, and to develop new tubes for Amateur Radio.

Over the years, Bill never lost his inventor's curiosity. His interest in advancing the frontiers of Amateur Radio continued. In 1961 the EIMAC Radio Club, under the leadership of Bill, Jack, and Hank Brown (W6HB), established the first Amateur two-way "moonbounce" contact on 1296 MHz with W1FZJ.

Bill was a member of the Northern California DX Club and Project OSCAR. He donated time, equipment, and money to make the early OSCAR satellites successful. If there was a job to be done, he'd do it. His enthusiasm and support were often all that kept the early OSCAR satellite program from foundering. He was a remarkable, enthusiastic leader in the best sense of the word. He was an excellent operator, CW or phone, and set the pace for Amateurs many years his junior.

Upon retirement, Bill moved to Dayton, Nevada and set up his own experimental laboratory, continuing to work on ideas that interested him. He was a life member of the ARRL. Project OSCAR, and the 5-Star Operator's Club. He was elected to a fellowship in the Radio Club of America.

He passed away in February 1989 at the age of 81 . His accomplishments were many. In addition to being an active Radio Amateur, inventor, company founder, and executive, he was a good companion. He left behind a multitude of friends who mourned his passing. He left his mark in electronics and the Amateur world. His discontent with the status quo drove him to succeed when others dropped by the wayside. His inquisitive mind made him an alert problem solver. Along the way he helped others. He was an American original: a self-educated small-town boy who grew up in a turbulent era of rapid and productive scientific growth - and mastered his world.

We will all miss him. 73, Bill, and SK.
Bill Orr, W6SAI

Stacked in Your Favor!

TM-231A/431A/531A

FM Mobile Transceiver

Looking for a compact transceiver

for your mobile VHF and UHF operations? KENWOOD has a compact rig for each of the most popular VHF/

 UHF bands.- 20 multi-function memory channels. 20 memory channels allow storage of frequency, repeater offset, CTCSS frequency. frequency step, Tone On/Off status, CTCSS and REV.
- High performance-high power! 50 W (TM-231A), 35W (TM-431A) with a 3 position power switch (high, medium, low).
- Optional full-function remote controller (RC-20).
A full-function remote controller using the Kenwood bus line, model RC-20, may be easily connected to the TM-231A/431A/531A and can be mounted in any convenient location. Using the IF- 20 interface the RC-20 may be connected to four mobile transceivers. (TM-231A/431A/531A or the TM-701A)
- Multi-function DTMF mic. supplied. Controls are provided on the microphone for CALL (Call C.iannel). VFO, MR (Memory Call or to change the memory channel) and a programmable function key. The programmable key can be used to control one of the following on the radio: MHz. T. ALT. TONE REV. DRS. LOW or MONITOR.
- Easy-to-operate illuminated keys. A functionally designed control panel with backlit keys increases the convenience and ease of operation during night-time use.
- Auto repeater offset on 144 and 220 MHz .
- Built-in digital VFO.
a) Selection of the frequency step (5, $10,15,20,12.5,25 \mathrm{kHz}$)
*TM-531A: 10, 20, 12.5 25kHz
b) Programmable VFO

The user friendly programmable VFO allows the operator to select and program variable tuning ranges in 1 MHz band increments.

- Programmable call channel function. The call channel key allows instant recall of your most commonly used frequency data.
- Selectable CTCSS tone built-in.
- Tone alert system-for true "quiet monitoring"!
When activated this function will cause a distinct beeper tone to be emitted from the transceiver for approximately 10 seconds to signal the presence of an incoming signal.
- Easy-to-operate multi-mode scanning. Band scan, Program band scan, Memory scan plus programmable memory channel lock-out, with time operated or carrier operated stop.
- Priority alert.
- DRS (Digital recording system). The optional DRU-1 can store received and transmitted messages for up to 32 seconds, allowing the operator to quickly check or return any call using the tone alert system.
- Automatic lock tuning function (TM-531A).
- Repeater reverse switch.

$$
0
$$

PUBLISHER'S LOG

You are now looking at the final step in our redesign program here at Ham Radio. It represents well over a year of very hard work on the part of a large number of people including many of you, our readers.

We started with a new editorial staff. Next, we interviewed a sizable sample of both subscribers and non-subscribing Amateurs to find out where you felt our strengths and weaknesses were. What should be done to make the best Amateur Radio magazine even better?
By September of last year you saw phase one, with our new logo and a redirected emphasis on practical construction articles and shorter technical and tutorial pieces. We also instituted the feedback cards to find out just what you liked and didn't like about our many changes.

We listened, we fine tuned, and we listened again. All the while, those responsible for the design of the magazine were hard at work coming up with a product which would be more eye pleasing than ever before. One that would, at the same time, be very efficient in helping the reader to get the most from each page they read.
I'm very happy with this finished product, but I'm even more proud of the many people who have gone the extra distance to bring all of this together. Thanks must go to the whole Ham Radio staff; to those at Wallace Press, our typesetter; and to Anne Desmarais, our design consultant.

The formal program is now over, but the striving for improvement will never stop. If you have any good ideas or suggestions, we're always open to them. Let us know what you think.

Skip Tenney, W1NLB

Comments

A good laugh

Dear HR

Your February issue arrived in the mail yesterday and, after a look at the cover, I had one of the best laughs in a long time!
It's hard to tell what the piece of gear is that has your "cover ham" looking so apprehensive, but I immediately thought of the old SB-104 that is sitting on my table; the schematic is just about the same size, so big that I finally pinned it on the wall for convenience.
So congratulations to you and your artist for identifying with us readers who enjoy (?) digging into gear!

Ray Burke, VE1BFG, Bathurst, New Brunswick, Canada

A good recipeblending old with new

Dear HR

My good friend, Bert Cliff, W2QN, gave me a one year subscription to HR for Christmas. Today, for the first time since a lapse of almost ten years, I received the January issue in top condition.
I could not help but sit down and work through the magazine as soon as I could do so. If I am not mistaken, you are endeavoring to create a blending between the former Ham Radio Horizons and Ham Radio, which I followed for many years. My first impression is that you have achieved an excellent mixture. I, therefore, would suggest that you continue along this line, and I am eagerly looking forward to the following issues.

I have included my magazine evaluation card. I found the article written by Joe Reisert, W1JR, "VHF/UHF World," of special interest since it may well have put quite a dent into my HF one-sided-ness.
Congratulations to Joe Carr, K4IPV, for his splendid article on "Writing the Technical Article." I was the last editor of the pre-war German DASD Amateur Magazine CQ in 1941/43. I do wish I could have read Joe's advise then, or at least in 1947 when I started my sideline career of writing pieces for our first ham mag QRV after the war.

Albert Heine, DK7CN, D-8990 Lindau, W. Germany

Food for thought

Dear HR

I have just read a letter by AA6FW in your magazine of February 1989.

I am surprised. Perhaps the radio operators in San Diego are different from those here.

As an Amateur who is a relative newcomer (about 6 years), currently 49 years old, a V.E., and a volunteer operator at a museum demonstration station, I can make the following personal observations:

- I was stimulated to get my license by a man years my junior, not a grandfather.
- The growth of Amateur Radio, in this area, is positive and being aided by classes conducted by radio clubs in Delaware, Pennsylvania, and New Jersey.
- The newcomers are of all ages, and it's often a family affair.
- 5 WPM code can be passed by anyone who makes even a minimal effort. Of course code is an entrance requirement, but, so is a lot of other knowledge - frequencies, rules, regulations, electronics, etc.
Now, if the code requirement is eliminated under the guise of "too hard, scares them away," "not necessary," or some other feeble excuse, what do you suppose might be the next requirement to go - perhaps questions about...oh shucks, why even have an examination! "All an Amateur does is push a bunch of buttons." I can hear it now.

Merrill Jay Mirman, D.O., KT3Z, Springfield, Pennsylvania

Dual Band Afford-ability!

TM-701A

Dual Bander

The TM-701A combines two radios into one compact package. You get 25 watts on 2 meters and $70 \mathrm{~cm}, 20$ memory channels, tone encoder built-in, multiple scanning, auto repeater offset selection on 2 meters, and a host of additional features!

- 20 multi-function memory channels. 20 memory channels allow storage of frequency, repeater offset, CTCSS frequency. frequency step, and Tone On/Off status. CTCSS and REV, providing quick and easy access during mobile operation.
- 25 W on 2 m and 70 cm .
- Selectable full duplex-cross band (Telephone style) operation.
- Easy-to-operate front panel layout.
- Multi-function DTMF mic. supplied. Controls are provided on the microphone for CALL (Call Channel), VFO, MR (Memory Call or to change the memory channel) and a programmable function key, The programmable key can be used to control one of the following functions on the radio: MHz, T. ALT, TONE, REV, BAND, or LOW power.
- Easy-to-operate illuminated keys. A functionally designed control panel with individually backlit keys increases the convenience and ease of operation during night-time use.
- Optional full-function remote controller (RC-20).
A full-function remote controller using the Kenwood bus line may be easily connected to the TM-701A and mounted in any convenient location. The new controller is capable of operating all front panel functions.
- Built-in dual digital VFO's.
a) Frequency step selection ($5,10,15$, $20,12.5,25 \mathrm{kHz}$)
b) Programmable VFO

The user friendly programmable VFOs allow the operator to select and program variable tuning ranges in 1 MHz band increments.

- Programmable call channel function. The call channel key allows instant recall of your most commonly used frequency data.
- Programmable tone encoder built-in.
- Tone alert system-for true quiet monitoring.
When activated this function will cause a distinct beeper tone to be emitted from the transceiver for approximately 10 seconds to signal the presence of an incoming signal.
- Easy-to-operate multi-mode scanning. a) VFO scan

Band scan, Programmable band scan.
b) Memory scan plus programmable memory channel lock-out
c) Dual scan

Dual call channel scan
Dual memory scan
Dual VFO scan
d) Scan stop modes

Time operated scan (TO)
Carrier operated scan (CO)
e) Scan direction
f) Alert

When the AL switch is depressed memory channel 1 is scanned for activity at approximately 5 second intervals.

- MHz switch.
- Lock function.
- Repeater reverse switch.

Optional Accessories

- RC-20 Full-function remote controller
- RC-10 Multi-function remote controller
- IF-20 Interface unit handset • MC-44 Multifunction hand mic. - MC-44DM Multi-function hand mic. with auto-patch - MC-48B 16-key DTMF hand mic. \bullet MC-55 8-pin mobile mic.
- MC-60A/80/85 Desk-top mics. - MA-700 Dual band ($2 \mathrm{~m} / 70 \mathrm{~cm}$) mobile antenna (mount not supplied) • SP-41 Compact mobile speaker • SP-50B Mobile speaker - PS-430 Power supply • PS-50 Heavy-duty power supply • MB-201 Mobile mount • PG-2N Power cable • PG-3B DC line noise filter
- PG-4H Interface connecting cable •PG-4J Extension cable kit •TSU-6 CTCSS unit

KENWOOD

KENWOOD U.S.A. CORPORATION
COMMUNICATIONS \& TEST EQUIPMENT GROUP P.O. BOX 22745, 2201E. Dominguez Street Long Beach, CA $90801-5745$
KENWOOD ELECTRONICS CANADA INC.
P.O. BOX 1075, 959 Gana Court

Mississauga, Ontario, Canada L4T 4C2

MFJ, Bencher and Curtis team up to bring you America's most popular keyer in a compact package for smooth easy CW
 The best of all CW worlds - a deluxe MFJ Keyer using a Curtis 8044ABM chin in a

 compact package that fits right on the Bencher iambic paddie!
This MFJ Keyer is small in size but big in features. You get iambic keying, adjustable weight and tone and front panel volume and speed controls ($8-5 \mathrm{C}$ WPM), dot-dash memories, speaker, sidetone and push button selection of automatic or semi-automaticl tune modes. It's also totally RF proof and has ultra-reliable solid state outputs that key both tube and solid state rigs. Use 9 V battery or 110 VAC with MFJ-1305, \$9.95.
The keyer mounts on a Bencher paddie to form a small ($41 / 8 \times 25 / 8 \times 51 / 2$ inches) attractive combination that is a pleasure to look at and use.
America's favorite paddle, the Bench, has adjustable gold-plated silver contacts, lucite paddles, chrome plated brass, and a heavy steel base with non-skid teet.
You can buy just the keyer assembly. MFJ-422BX, for only $\$ 79.95$ to mount on your Bencher paddie.

Artificial RF Ground

 ground and eliminate RF "bites" feedback, TVI and RFI when you let the MFJ-931 resonate a random length of wire and turn it into a tuned counterpoise. MFJ. 931 also lets you electrically place a far away RF ground directly at your rig - no matter how far away it is -by tuning out the reactance of your ground connection wire. $71 / 2 \times 3^{1 / 2} \times 7 \mathrm{in}$.

Antenna Bridge ${ }_{575}^{\text {mf.2088 }}$
 Now you can quickly
 39^{95}

optimize your antenna for peak performance with this portable, totally selfcontained antenna bridge.
No other equipment needed - take it to your antenna site. Determine if your antenna is too long or too short, measure its resonant frequency and antenna resistance to 500
 ohms. It's the easiest, most

MFJ Coax Antenna Switches

s34 ${ }^{95}$ mFJ-1701

\$2195 mFJ- 1702

Select any of several antennas from your operating desk with these MFJ Coax Switches. They feature mounting holes and automatic grounding of unused terminals. They come with MFJ's one year unconditional guarantee. MFJ-1701, \$34.95. Six position antenna switch. S0-239 connectors. $50-75$ ohm loads. 2 KW PEP, 1 KW CW. Black aluminum $10 \times 3 \times 11 / 2$ inch cabinet. MFJ-1702, \$21.95. 2 positions. Cavity construction. 2.5 KW PEP, 1 KW CW. Insertion loss below 2 dB .50 dB isolation at $450 \mathrm{MHz} .50 \mathrm{ohm} .3 \times 2 \times 2 \mathrm{in}$. MFJ-1704, \$59.95. 4 position Cavity Switch with Lightening/Surge protection device. Center Ground position. 2.5 KW PEP, 1 KW CW. Extremely low SWR. Isolation better than 50 dB 500 MHz . Negligible loss. 50 ohm. $6^{1 / 4 \times 41 / 4 \times 1 \frac{1}{1} 4} \mathrm{in}$.
'Dry'’ Dummy Loads for HF/VHF/UHF

MFJ has a full line of dummy loads to suit your needs. Use a dummy load for tuning to reduce needless (and illegal) QRM and save your finals.
MFJ-260, \$28.95. Air cooled, non-inductive 50 ohm resistor. S0-239 connector. Handles 300 watts. Run full load for 30 seconds, derating curve to 5 minutes. SWR less than $1.3: 1$ to $30 \mathrm{MHz}, 1.5: 130 \cdot 60 \mathrm{MHz} .2^{1 / 2 \times 2} 21 / 2 \times 7$ in. MFJ-262,\$69.95. Handles 1 KW . SWR less than $1.5: 1$ to $30 \mathrm{MHz} .3 \times 3 \times 13 \mathrm{in}$. MFJ-264, \$109.95. Versatile UHF/VHF/HF 1.5 KW Dry Dummy Load. An MFJ first. Gives you low SWR to 650 MHz , usable to 750 MHz . You can run 100 watts for 10 minutes, 1500 watts for 10 seconds. SWR is $1.1: 1$ to 30 MHz , below $1.3: 1$ to 650 MHz . $3 \times 3 \times 7$ inches. S 0.239 connector.
MFJ-1286 Gray Line DX Advantage
Snag rare DX for only \$29.95! The MFJ. 1286 is a computerized DXing tool that predicts DX
 propagation. Even the casual DXer can work rare DX by knowing when conditions are best for DX. The Gray Line is the day/night divider line where the most amazing DX happens every day. Now you'll know exactly when to take advantage of it.
Gives detailed world map. Shows Gray Line for any date/time, UTC in 24 user chosen QTHs, time zones and more. IBM compatible. Any graphics.

MFJ's Speaker/Mics
 For Kenwood, Icom, Yaesu, Santec
 MFJ-284 or MFJ-286
 \$2495

MFJ's compact Speaker/Mics let you carry your HT on your belt and never have to remove it to monitor calls or talk. You get a wide range speaker and first-rate electret mic element for superb audio on both transmit and receive.
Earphone jack, handy lapel/pocket clip, PTT, lightweight retractable cord. Gray. One year unconditional guarantee. MFJ-284 fits Icom, Yaesu, Santec. MFJ-286 fits Kenwood.

12/24 Hour LCD Clocks

Crive Cover
 [13:00]

$\$ 19^{95} \mathrm{mFJ} \cdot 108 \mathrm{~B}$ \$ $\mathbf{9}^{95 \mathrm{MFJ}-1078}$ Huge $5 / 8$ inch bold LCD digits let you see the correct time from anywhere in your shack. Choose from the dual clock that has separate UTC/local time display or the single 24 hour ham clock.
Mounted in a brushed aluminum frame. Easy to set. The worid's most popular ham clocks for accurate logs. MFJ-108B $4 \frac{1}{2} \times 1 \times 2$; MFJ-107B $21 / 4 \times 1 \times 2$
Lighted Cross/Needle

 and reflected power in 3 ranges (20/200) 2000 watts forward/5/50/500 reflected). Push button range selection, $1.8 \cdot 30 \mathrm{MHz}$. Mechanical zero adjust for movement. SO-239 connectors. Light requires 12 VDC or 110 VAC with MFJ-1312, $\$ 9.95$.
Deluxe Code Practice

MFJ-557 Deluxe Code Practice Oscillator has a Morse key and oscillator unit mounted together on a heavy steel base so it stays put on your table. Also portable because it runs on a 9 volt battery (not included) or an AC adapter (\$9.95) that plugs into the side.
Earphone jack for private practice. Tone and volume controls for a wide range of sound. Speaker. The key has adjustable contacts and can be hooked to your transmitter. Sturdy. $8^{1 / 2} \times 2^{1 / 4} \times 3^{3 / 4}$ in. One year unconditional guarantee.

MFJ AC Voltage Monitor

$\$ 19^{95}$ mFJ-850 New
Prevent damage to rig, computer or other gear. Monitor AC line voltage for potentially damaging surge brown out conditions on

2-color expanded 95-135 volt scale.
Plugs into any AC outlet. 2\%
accuracy. $2^{1} / 4 \times 2^{1 / 4} \times 1^{1 / 2} 2$ inches.

- One year unconditional guarantee - 30 day money back guarantee (less s / h) on orders from MFJ - Add $\$ 5.00$ each s / h - Free catalog

IMPROVED HICH PERFORMANCE Yagis FOR 432 MHZ

Obtaining
 the most
 from a design

By Steve Powlishen, K1FO, 816 Summer Hill Road, Madison, Connecticut 06443

In the July 1987 issue of Ham Radio Magazine, ${ }^{1}$ I described a high-performance $432-\mathrm{MHz}$ Yagi design which I built from a Cushoraft 424B. This design improved the radiation pattern and wet weather performance of the original and offered a substantial increase in forward gain.

I gave two versions of the design. The first used 24 elements on a 17' boom. K2OS, WA3FFC, and W7HAH now use this Yagi on EME. All of them have reported on-air EME performance improvements. A number of tropo operators have also been pleased with the results of my modification. But tropo performance is much harder to quantify and prove than EME performance. The Yagi works so well that several operators have chosen to build it from scratch. As it stands, the 24 -element Mark 3 Yagi is still the final version for this boom length. I examined the possibilities of further optimization and found that I wouldn't achieve more than an additional 0.1 dB in theoretical gain. Unfortunately, I could obtain this gain increase only at the expense of pattern deterioration and increased resistive losses.

The second version of my design used a 24^{\prime} extended boom and had 32 elements. (See Table 1 for element length and spacing dimensions.) This extended version has also been used successfully on EME, both in NCIl's 16-Yagi array and my 4 -Yagi portable EME array. NC1I used the 4 -

Yagi array in his Rhode Island and Vermont EME DXpeditions. WA9FWD has used a similar 4×32 element Yagi array on EME. (He's now replaced it with an even longer 36-element model.) In the July 1987 Ham Radio article, ${ }^{1}$ I mentioned that while the 24 -element design was a thirdgeneration effort, the 32 -element model I described was a second-generation effort which still had room for improvement. I also gave alternative, but untested, director lengths for a potentially improved 32-element Yagi and an even longer 38-element model (both third-generation designs).

The revised design

Here are the final improved and tested dimensions for the 32 -element Yagi. It's called the 32 -element Mark 4 Yagi and is the fourth major revision of this design. The improvements to this 32-element Mark 4 Yagi over the earlier published version are:

- Improved radiation pattern, primarily in the rear lobes.
- Greatly improved VSWR bandwidth and wet weather performance.
- Reduced element resistive losses.
- Higher forward gain (-0.2 dB).
- Higher center frequency tuning for improved array performance.
I've also detailed a fully tested $27^{\prime} 6^{\prime \prime}$ long model.

FIGURE 1

Resonant frequency and VSWR bandwidth of the original 32element Mark 2 Yagi.

Why improve it?

I got the impetus for these changes while helping to assemble NC11's 16-Yagi EME array. I had determined the driven element T match dimensions by testing a Yagi mounted on a pole in my back yard. When we started checking the driven element matches of the individual Yagis, mounted in place with the other Yagis in the 16 -Yagi array, the dimensions for an acceptable VSWR didn't agree with my earlier work. A similar but lesser match problem arose in the 4 -Yagi portable EME array. And, although wet weather performance of NC1's 16-Yagi array was greatly improved over the unmodified Yagis, the wet weather VSWR performance wasn't as good as we'd hoped.
I examined a sample 32 -element Yagi on a HewlettPackard 8753A network analyzer; it revealed a very narrow match bandwidth. As you can see in Figure 1 (a printout of the network analyzer measurement), the under 1.2:1 VSWR bandwidth is approximately 1 MHz . The driven element is under 2:1 VSWR over a $5-\mathrm{MHz}$ span. This was substantially narrower than that displayed by the 24 -element Mark 3 Yagi. My attempts to improve the match bandwidth on the 32 -element Mark 2 Yagi by driven element adjustments alone were unsuccessful. With the help of the network analyzer I found a "natural" match frequency with acceptable bandwidth centered at 423 MHz . Previous work on the 32 -element Yagi had shown that shortening all of the eiements to raise the center frequency 9 MHz would lower the gain by several tenths of a dB .
I continued my computer analysis. As described in the Ham Radio article, the orginal computer analysis for the version 2 Yagi was done using a variation of the WB3BGU program. Because of the limited accuracy of this program, I had to make element adjustments to control the radiation pattern. Investigations done with MININEC showed excessive currents in the first few directors. These directors were also quite long when compared with some other designs. In fact, the director string could be divided into three parts: the first few directors which were tuned too low in frequency; the middle set of directors which were tuned too high in frequency; and the last directors which were tuned close to the correct frequency, but slightly low. Further analysis and work on other long Yagi designs ${ }^{2}$ showed that a smooth

TABLE 1

Dimensions K1FO 24', 32-element Mark 4 Yagi.

Element	Element	Boom	Element
Spacing	Length		
(inches)	(mm)		
1.000	348		REF
5.250	336		DE
7.875	323		D1
11.563	314		D2
16.813	309	1"	D3
23.563	305		D4
31.875	301		D5
42.125	297		D6
52.375	294		D7
62.625	292		D8
72.875	290		D9
83.125	288		D10
93.375	286	11/8"	D11
103.625	285		D12
113.875	284		D13
124.125	283		D14
134.375	283	11/4"	D15
144.625	282		D16
154.875	280		D17
165.125	279		D18
175.375	278	$11 / 8^{\prime \prime}$	D19
185.625	277		D20
195.875	276		D21
206.125	276		D22
216.375	275		D23
226.625	274		D24
236.875	273		D25
247.125	273	$1^{\prime \prime}$	D26
257.375	272		D27
267.625	272		D28
277.875	271		D29
288.125	271		D30

minor lobe pattern coincided with a good current distribution. I used this information in the 24-element Mark 3 Yagi design.

Design details

Up to this point, I'd been doing all my work on the Yagis in English dimensions. I needed an easier measurement method because I was spending considerable time building test Yagis. Metric dimensions for the element lengths were the answer. Not only is the millimeter an easier unit for working with $432-\mathrm{MHz}$ Yagis, but the size of a millimeter (.039") allows for a smoother element taper - without the confusing fractional units.

All element spacings are the same as they were in the earlier versions; they are given in inches. I spent a fair amount of time looking at other spacing arrangements. It was possible to obtain slight performance improvements, but only with extensive spacing changes. These changes would make additional modification and upgrading difficult, defeating my purpose.

To make this improved design, I first converted the English lengths used in the 24 -element Mark 3 Yagi to metric dimensions. Next I rounded these millimeter-sized directors to whole millimeters. Then I smoothed out the large changes in director lengths. The computer analysis on MININEC looked promising, but there was a substantial frequency

A New Spectrum Analyzer From AVCOM!!!

PSA-65A display of 270-770 MHz TVRO block downconverter showing SCPC, digital and video transponders.
The newest in the line of rugged spectrum analyzers from AVCOM offers amazing performance for only \$2,675.

AVCOM'S new PSA-65A is the first low cost general purpose portable spectrum analyzer that's loaded with features. It's small, battery operated, has a wide frequency coverage and is accurate - a must for every technician's bench. Great for field use too.

The PSA-65A covers frequencies thru 1000 MHz in one sweep with a sensitivity greater than -90 dBm at narrow spans. The PSA-65A is ideally suited for 2-way radio, cellular, cable, LAN, surveillance, educational, production and R\&D work. Options include frequency extenders to enable the PSA-65A to be used at SATCOM and higher frequencies, audio demod for monitoring, log periodic antennas, carrying case (AVSAC), and more.

Can't wait to find out more about this revolutionary new AVCOM Spectrum Analyzer? Then see us at the SPACE/STTI Las Vegas Show, March 21-23, THE INTERNATIONAL MOBILE COMMUNICATION EXPO in Las Vegas, March 29-31, or Dayton HAMVENTION, April 28-30. Write, fax or call AVCOM for brochure and specifications sheet.

500 SOUTHLAKE BOULEVARD • RICHMOND, VIRGINIA 23236•804-794-2500

Construction detail of the 32-element Mark 4 driven element using 424B parts.
shift as a result of these manual length changes. I shortened the lengths to center the Yagi at the desired frequency.

Now I had to perform the final length optimization using MININEC. This was a painfully slow process because of the computation time required by the computer available to me at that time. A quick look at the Yagi modeling with four segments required over 2 hours; a more accurate examination using eight segments took almost 8 hours. Consequently, I was able to make only a few element adjustments each day. I'd make an overnight high-accuracy run to ensure that I was still on the right track. Fortunately, the machine I use now solves the problem over six times faster.
When I started this project 4 years ago, I was using a simple program. The original design objective was to increase the Yagi's gain while creating a clean radiation pattern. My current design process adds to the original goals with the following requirements:

- Very high forward gain per boom length.
- Very clean radiation pattern.
- Wide gain bandwidth.
- Acceptable dry and wet weather performance.
- Good driven element match bandwidth.
- Reasonably high natural driven element impedance.
- Good director current distribution.
- Low resistive losses.

Knowledgeable use of the original program can get you 80 percent of the way to a good Yagi design. But the new requirements have rendered my first program obsolete, as it is unable to get all the way to an optimum solution. More complex programs, along with the all-important post-
computer optimization steps, now take you 95 percent of the way to the perfect Yagi.

After finalizing the computer-generated dimensions, I began to build and test the project. As I had already built and tested a number of Yagis, I needed to make adjustments only to the driven element and director 1.

Construction

The Yagi's mechanical layout is the same as originally described in the July 1987 Ham Radio article. Elements are mounted on plastic bushings which insulate them from the boom sections they extend through. The element ends are chamfered like those of the earlier Yagis. Supports keep the boom from sagging unacceptably. I suggest you review my earlier article before attempting to build these Yagis.

I compared driven element T matches constructed from the original Cushcraft parts used on the 24 -element Yagi, with T matches using no. 12 T wires and a UT-141 balun like those of the 32 -element Mark 2 Yagi. I obtained similar dry weather matches and match bandwidths with both driven element arrangements. Wet weather performance was slightly better with the no. 12 T wires. A slight adjustment to the balun length made it correspond to an electrical half wavelength. This improved the Yagi's pattern balance.
Figure 2 details the driven element construction using the original Cushcraft parts. Note that the balun must be shortened by 1 inch. As with the 24 -element Yagi, I didn't use the original rectangular black spacers and I changed the jumper from the N connector to the T match bar to no. 12 to get a proper match. For the best match don't place the T bars parallel to the driven element.

When the directors of the Coors International Bicycle Classic needed a sophisticated mobile communications system, they turned to communications consultant Rick Woodsome. As a communications specialist, Woodsome knows what it takes to make a communication system work.

That's why he turned to Larsen Antennas.
"You don't pull off the largest sports event in the Western Hemisphere without good communication. And you don't have good communication without the right equipment.
"Larsen antennas were instrumental in making last summer's Coors Classic an overwhelming success. They were key to our entire communication network.
"Without Larsen, it would have been uphill all the way."
Rick Woodsome
rary mounts. You can buy with confidence, because they're all backed by Larsen's N No Nonsense Warranty tor a full six months.

For a protessional approach to amateur radio,
tune in to Larsen.

Larsen Antennas

The Amateur's Professional

THE AMATEUR'S PROFESSIONAL.
Larsen Külrod* and Külduckie* antennas provide amateurs the same advantages enjoyed by
commercial two way radio users. Both combine
top performance with the long range dependability provide amateurs the same advantages enjoyed by
commercial two way radio users. Both combine
top performance with the long range dependability provide amateurs the same advantages enjoyed by
commercial two way radio users. Both combine
top performance with the long range dependability your
dealer for the complete line of Larsen antennas
and per-
manent
and tempo-

EFFECTIVE MARCH 1, 1989 ege has Joined the HAM RADIO DUTLET NATIONWIDE TEAM

 send $\$ 1.00$ for shipping \& handling 9 Nationwide locations

This gives you even better response with low-low outlet prices \& rapid deliveries coast to coast. SEE OUR TOLL FREE NUMBERS BELOW

All Major Brands in Stock Now!

ANAHEIM, CA 92801
2620 W. La'Palma
(714) $761-3033$ (213) $860-2040$
Between Disneyland \&
Knotts Berry Farm
ATLANTA, GA $\mathbf{3 0 3 4 0}$
6071 Buford Hwy.
(404) 263-0700
Larry, Mgr. WDAGW
Doraville. 1 mi north of $1-285$

BURLINGAME, CA 94010	PHOENIX, AZ 85015
999 Howard Ave.	1702 W. Camelback Rd.
(415) $342-5757$	(602) $242-3515$
George, Mgr. WB6DSV	Bob K7RDH. Gary WB7SLY, Mgr.
5 miles south on 101 from SFO	East of Hwy. 17
OAKLAND, CA 94606	SALEM, NH 03079
2210 Livingston St.	224 N. Broadway
(415) $534-5757$	
Rich, Mgr. WAgWYB	$1-800-444-0047$
IS-880 at 23rd Ave. Ramp	Curtis, Mgr. WB4KZL.
	28 miles north of Boston exit $11-93$

SAN DIEGO CA 92123
 5375 Kearny Villa Rd. 619) $560-4900$ tom, Mgr. KM6K Hwy 163 \& Claremont Mesa Bivd.

 WOODBRIDGE, VA 22191 14803 Build America Drive

The 3CXI200A7

 continues the EIMAC tradition of serving AMATEUR RADIO.EIMAC was right there to meet Ham requirements of 1500 watts PEP with its 3CX1200A7 tube. Leading manufacturers count on its proven performance and reliability.

Low-cost power

for small spaces

The rugged 3CX1200A7 takes size into consideration and, by design, is recommended as a single, low-cost alternative for a pair of EIMAC $3-500 \mathrm{Z}$ tubes for new amplifier designs.

General Specifications

The EIMAC 3CX1200A7 is a highmu, compact, forced air cooled triode for zero-bias class AB2 amplifiers.

- $2.9^{\prime \prime}$ dia. $\times 6.0^{\prime \prime}$ long
- Plate dissipation: 1200 watts
- Glass chimney SK-436 available
- Standard EIMAC SK-410 socket available
More information is available on the new EIMAC 3CX1200A7 tube from Varian EIMAC, or any Elec-
tron Device Group worldwide sales organization.
Varian EIMAC
1678 S. Pioneer Road
Salt Lake City, Utah 84104
Telephone: 801-972-5000

varian(:)

eimac salt lake division

The second version of the driven element is shown in Figure 3. It uses no. 12 T wires in place of the original $3 / 16^{\prime \prime}$ diameter T bars. This allows for a greater natural impedance setup. I prefer this arrangement because the shorting straps are farther out on the driven element, away from the high-current point. I tried baluns made from UF-141 solid copper shield coax and RG-303 (like the original 424B) with similar results. If you make the balun from RG-303 you'll need to use a set of dimensions different from those used with the first driven element arrangement. I thought it was desirable to eliminate the original solder lugs and solder the center conductor directly to the T match wires instead.

Performance

The computed E and H plane patterns for the 32 -element Mark 4 Yagi in Figure 4 show a very smooth lobe struc-
ture. The first sidelobes are 1 dB stronger than those in the original version. This seemed an acceptable tradeoff for a smoother overall lobe structure and significantly lower rear and mid-H plane lobes, in combination with higher overall gain. Calculated gain on MININEC is 17.9 dBd (20.1 dBi). Because of program inaccuracies and resistive losses, the real gain of the Yagi is closer to $17.8 \mathrm{dBd}(19.9 \mathrm{dBi})$ - still an excellent figure for the boom length. DJ9BV examined the Yagi design using the more sophisticated NEC program. His results gave an excellent pattern correlation. The NECcalculated gain figure of $17.8 \mathrm{dBd}(19.9 \mathrm{dBi})$ also agrees closely with antenna measurements.

On the antenna range, the new model consistently measures about 0.2 dB higher than the earlier 24^{\prime} long version. It also measures about 0.4 dB higher than my "high-gain" reference Yagi, the KLM 432-30 LBX. This places the real-

FIGURE 3

MODIFIED CUSHCRAFT BALUN (RG-303/U)
FOR USE WITH DE WITH \#12 'T' WIRES ONLY

Construction detail of the 32-element Mark 4 driven element using no. 12 T wires. Further details for modifying the Cushcraft Balun for use with the no. 12 T wire match.

INSIDE VIEW - RS-12A	ASTRON POV - heavy duty • high qua SPECIAL FEATURES - SOLID STATE ELECTRONICALLY REGULATED - FOLD-BACK CURRENT LIMITING Protects Power Supply from excessive current \& continuous shorted output - CROWBAR OVER VOLTAGE PROTECTION on all Models except RS-3A. RS-4A. RS-5A. - MAINTAIN REGULATION \& LOW RIPPLE at low line input Voltage - HEAVY DUTY HEAT SINK - CHASSIS MOUNT FUSE - THREE CONDUCTOR POWER CORD - ONE YEAR WARRANTY • MADE IN U.S.A.	ER SUPPLIES TY • RUGGED • RELIABLE • PERFORMANCE SPECIFICATIONS - INPUT VOLTAGE: 105-125 VAC - OUTPUT VOLTAGE: 13.8 VDC ± 0.05 volts (Internally Adjustable: 11-15 VDC) - RIPPLE Less than 5 mv peak to peak (full load \& low line) - Also available with 220 VAC input voltage
RM SERIES	$19^{\prime \prime} \times 51 / 4$ RACK M	NT POWER SUPPLIES
RS-A SERIES MODEL RS-7A	MODEL Continuous Duty (Amps)	
RS-M SERIES MODEL RS-35M	MODEL - SWithable voll and Amp meter Continuous Duty (Amps) RS-12M 9 - Separate voit and Amp meters RS-20M 16 RSSMM 25 RS-50M 37	ICS: (Amps) Size (IN) $\mathbf{H} \times \mathbf{W} \times \mathbf{D}$ Shipping WI. (Ibs.) 12 $43 \times 8 \times 9$ 13 20 $5 \times 9 \times 101 / 2$ 18 35 $5 \times 11 \times 11$ 27 50 $6 \times 13^{3} \times 11$ 46
VS-M AND VRM-M SERIES I 8** MODEL VS-35M	- Separate Volt and Amp Meters • Output Voltage adjustab to Full Load	2-15 volts • Current limit adjustable from 1.5 amps
RS-S SERIES	- Built in speaker	

world gain of the new 32-element Mark 4 Yagi at about 17.8 dBd (19.9 dBi). Earlier measurements with the Mark 2 Yagi were slightly optimistic; the real-world gain for this version was about 17.5 dBd . (This has also been confirmed by NEC analysis.)

Array temperature is an important parameter on EME and for high-performance tropo stations. Array noise is the combination of noise received by the array (manmade or natural) and the noise generated from resistive losses in the

FIGURE 4

Caiculated E and H plane patterns for the K1FO 32-element Mark 4 Yagi.
material used to make it. DJ9BV calculated that an array of four of the 32-element Mark 4 Yagis pointed at cold sky has a noise temperature of 25 K . This figure is 5 K lower than the original Yagi design - a significant number on EME. Array noise measurements, using earth to cold sky and stellar sources to cold sky, place the array temperature somewhat higher than the calculations. Measured array temperatures for four Yagis arranged 2×2 are about 30 K for the new Mark 4 Yagi, and about 37 K for the old version.

To calculate the overall system temperature, you have to add the phasing line, relay, and balun losses, and the receive system noise temperature to the array noise. For a high-performance EME system with very low loss phasing lines (like the Andrew Heliax ${ }^{\text {TM }}$ and a 25 K preamplifier), this reduced array temperature would provide an additional $0.5-\mathrm{dB}$ signal-to-noise improvement on receive over the original 32 -element Yagis. Including the additional gain of the improved design, you can expect to hear your own moon echoes almost 1 dB stronger - a significant improvement for no array size increase.

Figure 5 is a network analyzer plot of the driven element match. When you compare this with Figure 1 (the same plot for the original 32-element Yagi) you can see that the

FIGURE 5

Resonant frequency and VSWR bandwidth of the improved 32element Mark 4 Yagi.

FIGURE 6

Element mounting dimensions for the center section of the boom for the $\mathbf{3 6}$-element extended modified 424B Mark 4 Yagi.
match bandwidth is much broader. On the 32-element Mark 4 Yagi, the SWR is now less than $1.2: 1$ for almost 2.5 MHz . This is $2-1 / 2$ times wider than the original. The SWR is less than $2: 1$ over 16 MHz , or more than 3 times greater than the earlier version.

With the revised dimensions, the 32 -element Yagi behaves well when wet. The VSWR curve shifts down in frequency approximately 2 MHz under simulated heavy rain conditions. This raises the SWR to a still acceptable 1.35:1 when the antenna is very wet. This is a significant improvement over the 32 -element Mark 2 Yagi, which would show about a 2.2:1 VSWR in heavy rain.

Proper stacking distances for the 32 -element Mark 4 Yagi are 82 inches in the E plane and 78 inches in the H . At these distances, the stacking gain (before phasing line losses and mechanical errors are factored in) is over 2.9 dB in each plane. A 4-Yagi EME array using low-loss phasing lines would have $23.3 \mathrm{dBd}(25.5 \mathrm{dBi})$ array gain. This is more than adequate to work a number of different 432MHz EME stations. An 8 -bay 32 -element Yagi array has enough gain to give you a standout EME signal.

A longer 36-element version

NC1I did his portable EME operations in the summer, usually the worst time of year for EME. Although the original 4×32 element Yagi array performed well, I wanted a little extra performance without having to add more Yagis. I chose the 27-1/2' length because it was the minimum size increase which would make a significant performance improvement. (See Table 2 for element length and spacing details.)

Electrically, the design is virtually identical to the 32 element Mark 4 Yagi. Mechanically, the changes are a little more detailed. I built a 6^{\prime} long 1-1/4" diameter center boom section from scratch for the long Yagi. I reinforced this new center section with a $1-3 / 8^{\prime \prime}$ outer diameter, $0.058^{\prime \prime}$ wall thickness, $24^{\prime \prime}$ long piece of 6061-T6 aluminum tubing. The $1-3 / 8^{\prime \prime}$ diameter tube is centered at the mast mounting point. This arrangement gives you a very rugged (though slightly heavy) boom section.

TABLE 2

Dimensions K1FO 36-element Yagi 27'4-1/8" boom.

Element	Element	Boom	Element
Spacing	Length	Diameter	
(inches)	(mm)		
1.000	347		REF
5.250	327		DE
7.875	322		D1
11.563	313		D2
16.813	308		D3
23.563	304	$1 "$	D4
31.875	300		D5
42.125	296		D6
52.375	293		D7
62.625	291		D8
72.875	289		D9
83.125	287		D10
93.375	285		D11
103.625	284	$11 / 8$	D12
113.875	283		D13
124.125	282		D14
134.375	282	11/4"	D15
144.625	282	$13 / 8^{\prime \prime}$	D16
154.875	281		D17
165.125	279		D18
175.375	278	$11 / 4^{\prime \prime}$	D19
185.625	277		D20
195.875	275		D21
206.125	275		D22
216.375	274		D23
226.625	274	$11 / 8^{\prime \prime}$	D24
236.875	273		D25
247.125	273		D26
257.375	272		D27
267.625	271		D28
277.875	270		D29
288.125	270		D30
298.375	269	$1^{\prime \prime}$	D31
308.625	269		D32
318.875	268		D33
329.125	268		D34

FIGURE 7

USE ADDITIONAL CUSHCRAFT $424 B$ ORIGINAL CENTER BOOM (CUSHGRAFT 424B P/N BA)
SHORTEN PER ABOVE OR MAKE NEW PIECE FROM $11 / 8^{\circ}$ OD. $\times 0.058$ WALL 6061-T6
Detail for the new no. 2 rear boom section for the 36 -element extended Mark 4 Yagi.

Though the doubled-up center piece may seem like overkill, it's very easy to bow a $0.058^{\prime \prime}$ wall tube when you tighten the mast bracket U bolts. A few degrees of bend in the boom may not be noticeable on a short Yagi, but when you translate this bend to a $27-1 / 2^{\prime}$ long boom it becomes a significant curvature.

The new center boom section is detailed in Figure 6. Figure 7 describes boom section no. 2 (between the rear and the middle section). You can make this second boom section from a spare 424B original center section, or from scratch. Just follow the drawing and use $1-1 / 8^{\prime \prime}$ diameter $\times 0.058^{\prime \prime}$ wall aluminum tube. The center boom reinforcing piece is shown in Figure 8.
I made new pieces for the boom supports so I could extend them. I positioned the mast mounting point for the boom supports $30^{\prime \prime}$ from the boom. This creates a large enough angle and prevents overstressing the supports. Like the earlier Yagis, I used old-style Cushcraft 220B bent support pieces with longer homemade center sections. Fig-

FIGURE 8

Detail for reinforcing the center boom section of the $\mathbf{3 6}$-element extended Mark 4 Yagi.

FIGURE 9

Detail for the boom support pieces on the 36-element extended Mark 4 Yagi.
ure 9 shows these new boom support splice pieces. Cushcraft has since changed the design of their boom supports. If you don't want to make your own supports from scratch, Cushcraft 4218-XL boom supports will do the job.

Electrical changes

You'll notice that the element lengths start out 1 mm shorter than on the 32 -element Mark 4 Yagi. I changed the length to keep the gain center frequency in the right place. Remember that the Yagi's center frequency oscillates up and down as you add directors. Tapered designs like this one minimize the effect, but the trait still exists.
The driven element was easy to set up for both a good SWR at 432 MHz and a minimum centered above 432 MHz . This is the best way to ensure good wet weather performance. The match bandwidth on the 36 -element model is actually better than on the 32 . The driven element match on the 36 -element Yagi also was relatively insensitive to the balun length - another good sign. The driven element for the 36 -element Yagi is outlined in Figure 10.

Stacking the 36-element Yagi

At a 12-wavelength boom length a good Yagi will have a nearly symmetrical pattern. You can see from the calculated pattern in Figure 11 how the H plane is starting to show nulls at 90 degrees in the pattern, similar to the E plane. The -3 dB beamwidth is still slightly wider in the H plane, even at this long boom length. This indicates that optimum spacings will be close but not quite equal in both planes.
The optimum spacings for the 36 -element Yagi are 87" in the E plane and $85^{\prime \prime}$ in the H plane. At these spacings the theoretical stacking gain in each plane is 2.9 dB .

Performance of the $\mathbf{3 6}$-element Yagi

The calculated pattern for the 36 -element Yagi (Figure 11) is quite similar to the 32 -element Mark 4 Yagi. The sidelobe structure is almost identical. The main lobe E and H plane beamwidths are about 1 degree narrower than the 32 -element Yagi at 18×18.5 degrees.

Measured gain of the 36 -element Yagi is approximately

FIGURE 10

Detail of the driven element of the 36 -element Yagi using the no. 12 T wire match. Total boom length is $27^{\prime} 4-1 / 8^{\prime \prime}$.
0.6 dB higher than the 32 -element Mark 4 Yagi at 18.3 dBd or 20.5 dBi . Array temperature is even better than the shorter Yagis at a calculated 24K. Measurements indicate an array temperature under 30 K .
Of course, on-the-air performance is what counts. WA9FWD reported a significant improvement when he upgraded from four of the 32 -element Mark 2 Yagis to four of the 36 -element model.
NC1I and I recently rebuilt our portable EME array to use four of the new 36 -element models. The old array was 4 $\times 32$ element Mark 2 Yagi. The new array seems to follow the predicted improvements. Measured sun noise is up 1.5 dB from the best we measured with the old array. The new array uses the same phasing lines, power divider, and preamp as the old one. The sun noise improvement is in the expected range. Gain of the 36 -element Yagi is 0.8 dB higher than the 32-element Mark 2. Signal-to-noise improvement due to noise pickup and resistive losses is calculated to be over 0.5 dB . The sum, 1.3 dB , is close to the measured $1.5-\mathrm{dB}$ improvement.

We first tested the new array at W1NY during the January VHF contest. We made a total of 15 EME QSOs in only 5 hours of EME operation, all with a bad antenna relay! After the contest we fixed the relay and activated the array the following weekend. We had 16 hours of EME operation spaced over the two weekends. We made 34 EME QSOs with 26 different stations, all on random. Echoes were noticeably better with the new array.

Conclusion

A top performing $432-\mathrm{MHz}$ Yagi must have a proper balance of several desirable characteristics:

FIGURE 11

Calculated E and H plane patterns for the K1FO 36 -element Mark 4 Yagi.

America's Communications Leader Presents Its All-New 10-Meter SSB/CW Mobile Transceiver

Realistic, America's premier brand of scanners, CB radios and satellite TV systems, introduces the HTX-100. It's the perfect first rig for a beginning Ham and a superb 10 meter mobile radio for any amateur. Compact, yet loaded with "big rig" features you want.

Pushbutton Memory Tuning

An easy-to-program memory
stores 10 favorite frequencies and

Ultracompact and includes everything you need for underdash installation
mike-mounted pushbuttons permit safe and easy up/down frequency selection while you drive. A frontpanel lock control prevents accidental frequency changes. You can fine-tune reception with the ± 1.5 kHz RIT control. Coverage is 28.0 to 29.6999 MHz , USB or CW. Convenient semi break-in keying and CW sidetone are built in.

Selectable Power Output

You can select 25 -watt or 5 -watt QRP power output from the front panel. The HTX-100 has a backlit LCD frequency display with mode and tuning-step indicators. You also get a 5 -step LED signal/RF power meter, noise blanker, hefty 3 -watt audio output, high-quality built-in
speaker, front-panel headphone jack and a rear-panel jack for adding an external speaker.

Join the Action on " 10 "

With improving band conditions and new Novice voice and digital privileges, the 10 -meter fun is just beginning. Be a part of it with this affordable, top-quality transceiver! \#19-1101. Only \$259.95

Exclusively at

Radio Shack The Technology Store ${ }^{\text {m" }}$

A DIVISION OF TANDY CORPORATION
Price applies at participating Radio Shack stores and dealers You must have a valid amateur radio license to legally transmit with this transceiver

HITACHI SCOPES AT DISCOUNT PRICES

List \$560
Save \$141

20MHz Dual Trace Oscilloscope

All Hitachi scopes include probes, schematics and Hitachi's 3 year guaranty on parts and labor. Many accessories available for all
scopes.

V-425
List $\$ 995$

- DC to 40 MHz

Dual Channel
CRT Readout
Cursor Meas

- DC Offset
- Alt Magnifier
- Compact Size

- DC to 100 MHz
- Dual Channel
- Delayed Sweep
- CRT Readout
- Sweep Time
- Autoranging

V-1060 \$1,325: ${ }^{\circ}$ Trigger Lock List $\$ 1595$ \$1,325 2 mV Sensitivity
V. $223 \quad 20 \mathrm{MHz} \quad$ D.T., 1 mV sens, Delayed Sweep, DC Offset, Vert Mode Trigger V. $42240 \mathrm{MHz} \quad$ D.T. 1 mV sens, DC Offset Vert Mode Trigger, Alt Mag V. $423 \quad 40 \mathrm{MHz} \quad$ D.T. 1 mV sens, Delayed Sweep, DC Offset. Alt Mag $\mathrm{V} .66060 \mathrm{MHz} \quad$ D.T. 2 mV sens, Delayed Sweep. CRT Readout V. $1065 \quad 100 \mathrm{MHz} \quad$ D.T., 2 mV sens, Delayed Sweep, CRT Readout, Cursor Meas V. 1100 A 100 MHz Q.T. 1 mV sens, Delayed Sweep, CRT Readout, DVM, Counter V. $1150 \quad 150 \mathrm{MHz} \quad$ Q.T., 1 mV sens, Delayed Sweep. Cursor Meas, DVM, Counter

ELENCO PRODUCTS AT DISCOUNT PRICES

20MHz Dual Trace Oscilloscope

- 6" CRT
- Built in
component tester
- TV Sync

X-Y Operation

SEE YOU AT DAYTON!

35 MHz Dual Trace Good to 50 MHz

\$495

M0-1252

- High luminance $6^{\prime \prime}$ CRT
- 1 mV Sensitivity
- 6KV Acceleration Voltage
- 10ns Rise Time
- X-Y Operation - Z Axis
- Delayed Triggering Sweep

Top quality scopes at a very reasonable price. Contains all desired features. Two 1x, 10x probes, diagrams and manual. Two year guarantee.

9 Functions Memory and Data hold $1 / 2 \%$ basic acc $31 / 2$ digit LCD				Multimeter with Capacitance and Transistor Tester 55 CM-1500 eads Volts, Ohms,		CM-1550 \$58.95 9 Ranges . 1 pf -20,000ufd $.5 \%$ basic accy Zero control with case	Digital LCR Meter
ST-265 $\$ 22$ $0.1000 A A C$	Bench DMMS			$\begin{aligned} & \quad \text { SL-30 } \\ & \$ 135 \\ & \text { Digital display } \\ & \text { Temp range: } \\ & \text { 300F-900F } \end{aligned}$		Breadboards	$5{ }_{\text {L }}$
Wide Band Signal Generators SG-9000 \$129 RF Freq $100 \mathrm{~K} \cdot 450 \mathrm{MHz}$ $\text { AM Modulation of } 1 \mathrm{KHz}$ Variable RF output SG-9500 with Digital Display and 150 MHz built-in Freq Ctr $\mathbf{\$ 2 4 9}$		3½ Digit Probe Type DMM					$\begin{gathered} 9610 \text { or } \\ 9620 \\ \$ 18.95 \end{gathered}$ Resistor Blox n to 1 M \& 100 K pot Capacitor Blox 10MFD
- ∞ Fully Regulated, Short cir 2 Limit Cont., 3 Separate XP-660 with Analog	\$249 $0-20 \mathrm{~V}$ at 1 A $0-20 \mathrm{~V}$ at 1 A 5 V at 5 A ed with 75	Quad Power Supply XP-580 $\mathbf{\$ 5 9 . 9 5}$ 					
Frequency, Period, Tota Self Check with High S Oscillator, 8 digit LED	$\begin{gathered} \$ 259 \\ \text { F-100 120MH } \\ \$ 179 \end{gathered}$ zed Crystal Oven ay	GF-8	$15 \text { witho }$	Freq. Meter $\$ 179$			
WE WILL NOT B UPS Shipping: US ($\$ 10 \mathrm{Max}$) IL Res.,	UNDERSOLD! Tax	C \& S SALES INC. 1245 Rosewood, Deerfield, IL 60015 (800) 292-7711 (312) 541-0710				15 Day Money Back Guarantee 2 Year Warranty WRITE FOR FREE CATALOG	

- High forward gain for the boom length.
- Excellent sidelobe structure.
- Good gain bandwidth.
- Good driven element SWR bandwidth.
- Low resistive losses.

Once you've defined these electrical traits, you must contruct your Yagi so that it will not only work in the real world, but stay up and retain that performance for many years. The K1FO 32 and 36 -element Yagis have an excellent balance of these design goals, especially when you consider that they can be made easily from an existing commercial Yagi and its spare parts.
The 4 -element (41" long) Yagi extension appears to be worth the effort. During initial operation with the 36 -element Yagi arrays, it seemed we finally had an array that was better than a 4-Yagi array was supposed to be. As any given Yagi design is extended, its driven element impedance and rear lobe structure oscillate up and down. At a length of 27-1/2', the pattern and driven element are in optimal combination. If you plan to build a long $432-\mathrm{MHz}$ Yagi from scratch, I suggest that you take a serious look at the 36 element model.
The results of the computer analysis suggest that the design could be extended still further with good results. But keep in mind that the boom would have to be extended by more than the same percent of boom change when going from 32 to 36 elements for another $0.5-\mathrm{dB}$ gain. You'd need to add at least five more elements, possibly six, to see an equivalent improvement. This would make the boom almost 32 feet long. Since the 36 -element Yagi weighs over 12 pounds and has a wind area of over 3 square feet, an even longer Yagi may quickly become unmanageable. A very long object also develops quite a momentum when it's moved. This added inertia requires a large increase in the mechanical strength of the array's stacking frame.

Acknowledgment

I'd like to thank Rainer Bertelsmeier, DJ9BV, for his NEC analysis and array temperature calculations of my Yagi designs

REFERENCES

1. Steve Powishen, K1FO. High Performance Yagis for 432 MHz ." Ham Radio, July 1987 . page 8 2. Steve Powlishen, KIFO An Optimum Design tor 432 MHz Yagis. Part 1." OST, December 1987 page 20

MARCH

WINNERS
Congratulations to George Gorsline. VE3FIU, our March sweeps winner and Rick Littlefield, K1BQT, author of March's most popular WEEKENDER - "Solo-16 Acoustic CW Speaker." Both will receive a copy of The Radio Handbook by Bill Orr, W6SAI.

Our WEEKENDER sweepstakes ends with the April issue. You still have a chance to send your April evaluation cards and win. The winners of the April sweeps will be announced in the June issue of Ham Radio.

Thanks to all of you who sent in your cards. Your comments have been invaluable to us!

Terry Northup, KA1STC

AMATEUR TELEVISION

Only \$299
Designed and built in the USA Value + Quality from over 25years in ATV...W6ORG

With our all in one box TC70-1 70cm ATV Transceiver you can easily transmit and receive live action color and sound video just like broadcast TV. Use any home TV camera or VCR by plugging the composite video and audio into the front VHS 10 pin or rear phono jacks. Add 70 cm antenna, coax, 13.8 Vdc and TV set and you are on the air...it's that easy!
TC70-1 has >1 watt p.e.p. with one xtal on $439.25,434.0$ or 426.25 MHz , runs on 12-14 Vdc @ .5A, and hot GaAsfet downconverter tunes whole $420-450 \mathrm{MHz}$ band down to ch3. Shielded cabinet only $7 \times 7 \times 2.5^{\prime \prime}$. Transmitters sold only to licensed amateurs, for legal purposes, verified inthe latest Callbook or with copy of license sent with order.
Call or write now for our complete ATV catalog including downconverters, transceivers, linear amps, and antennas for the $70,33, \& 23 \mathrm{~cm}$ bands.
(818) 447-4565 m-t 8am-5:30pm pst.

Visa, MC, COD
P.C. ELECTRONICS

Tom (W6ORG)
Maryann (WB6YSS)

T.V.I. problems?

Low pass T.V.I. filters from Barker \& Williamson

Model	Power (Watts)	Cut Off Frequency	Frequency of Maximum Attenuation	Minimum Attenuation	Frequency Range	Price
F. $10 / 1500$	1000	34 MHz	52 MHz	70 db	$18-30 \mathrm{MHz}$	\$36.95
FL10/100	100	44 MHz	57 MHz	60 db	$18-30 \mathrm{MHz}$	\$29.50*
FLo/ 1500	1000	55 MHz	63 MHz	70 db	o meter	\$49.50*
FLO/100	100	55 MHz	63 MHz	50 db	6 meter	\$34.50*

All above to match
-Add \$2 shipping and handling and antennas.

ALL OUR PRODUCTS MADE IN USA

CONVERTER TUNES
 4 TO 18 MHz WITH NO BANDSWITCH

By Jack Najork, W5FG, 723 Flamingo, Duncanville, Texas 75116

If you buy a new SSB rig today, chances are it includes a "general coverage" receiver that tunes from 100 kHz to 30 MHz . This range includes all the international shortwave bands and many other radio services - lots of interesting listening!

Those of us with older rigs don't have this feature. If we want to eavesdrop on these frequencies we can trade in our rigs, invest several hundred dollars (or more) in a general coverage receiver, or dig into the junkbox and create some form of compromise. My junkbox is much larger than my bank account(thanks to Dallas' famous monthly electronic sidewalk sale), so I chose the compromise approach and built a converter.

My converter covers 4 to 18 MHz in two bands: 4 to 11 MHz and 11 to 18 MHz . This span includes most of the popular short-wave bands as shown in Table 1. To use this converter your SSB receiver needs only to tune to 3.5 MHz , and be able to receive in the AM mode (since most broadcasters still use this form of modulation).

How it works

If you look at Figure 1, you'll see that the unit consists of RF amplifier Q1, local oscillator Q2, and mixer Q3. The two bands are covered without a bandswitch by using an IF of 3.5 MHz . By selecting the appropriate oscillator frequency range, you can tune this range above or below the desired incoming signal. A bit of math is all you need to understand this approach.
The oscillator range is 7.5 to 14.5 MHz . Incoming signals from 4 to 11 MHz are mixed with the oscillator to produce the 3.5 MHz IF. Signals from 11 to 18 MHz mixed with the oscillator will also produce an IF of 3.5 MHz . All that remains is to make sure you can separate the two incoming signals. Because at any one oscillator frequency the two incoming signals are 7 MHz apart, this isn't a great problem.

How does this converter compare with a new general coverage receiver? First of all, it doesn't have the same extensive frequency coverage. Secondly, the tuning rate is coarser
(comparatively speaking). Each band covers 7 MHz , so the kilohertz zip by at an astounding rate as you tune. Tune very slowly and use your SSB receiver for fine tuning. On the plus side, the converter's sensitivity is excellent - 10 feet of antenna will tune in the world! And...you've saved lots of money. Despite its limitations, the converter fits the bill for casual shortwave listening.

Circuit details

RF amplifier input C1-L1 comprises a high-Q, lightly loaded, tuned circuit. This is essential for good band separation. A tapped toroid coil, along with light coupling to Q1 and loose antenna coupling, help keep the Q high. (If you don't have a suitable toroid, I've included specs for a solenoid-type substitute.) Space it at least 1 inch from metal surfaces on all sides to maintain high Q. C1 is a junkbox broadcast variable, with sections in parallel for a capacity range of 15 to 500 pF . This tunes the 4 to 18 MHz span without bandswitching.

Most SSB receivers have excellent sensitivity at 3.5 MHz , so the converter doesn't need high gain. Including an RF stage lets you use a small, indoor antenna (unless you live in a shielded building). This, in turn, aids front end selectivity and avoids possible overload. RFC1 in the drain of Q1 peaks up gain at the higher frequencies.

TABLE 1

International short-wave broadcast bands.

$$
\begin{array}{r}
5.95-6.2 \mathrm{MHz}-49 \text { meters } \\
7.10-7.5 \mathrm{MHz}-41 \text { meters } \\
9.50-9.98 \mathrm{MHz}-31 \text { meters } \\
11.70-12.08 \mathrm{MHz}-25 \text { meters } \\
15.10-15.45 \mathrm{MHz}-19 \text { meters } \\
17.70-17.90 \mathrm{MHz}-16 \text { meters } \\
21.45-21.95 \mathrm{MHz}-21 \text { meters }
\end{array}
$$

NEWSSTAND RATE \$35.40/YR.
SAVE $\$ 12.45$ with your subscriptionOne year 12 issues $\$ 22.95$Two years 24 issues $\$ 38.95$Three years 36 issues
$\$ 49.95$

Subscribe to HAM RADIO today. Tap into Amateur Radio's \#1 technical and building journal. You'll also save $\$ 12.45$ off the newsstand price ($\$ 35.40$ per year)! Fill out this card and mail it in.

For even more prompt service, call TOLL FREE (800) 341-1522, MasterCard, VISA and Bill Me orders accepted. Phone lines open Monday thru Friday 8 a.m. to 9 p.m. Please, orders only.
Bill mePayment enclosed
Name \qquad
Address
City \qquad State
Check if this is a renewal
MAY 89
Please allow $4-6$ weeks for delivery of first issue.
FOREIGN RATES: Europe via Air Forwarding Service $\$ 40$ per year. All other countries $\$ 31.00$ per year.

Schematic diagram.

Q2 is a conventional FET oscillator. C3 is another junkbox item, salvaged from an AM/FM radio. Combining the BC oscillator section (85 pF) with one FM section (20 pF) gave me the capacity spread I wanted. You can use higher capacities (like 125 or 150 pF) here, but you'll have to juggle the values of C4 and L 2 to achieve the desired tuning range of 7.5 to 14.5 MHz .

Mixer Q3 is also conventional. R7, the $4.7-\mathrm{k}$ resistor across the IF output coil, lowers the drain impedance to decrease possible overload. It also lowers the output circuit Q , so you can use your SSB receiver to fine tune signals 50 kHz or more on either side of 3.5 MHz .

Tune-up

Start by getting the oscillator to tune from 7.5 to 14.5 MHz . It helps to use a grid-dip meter. Next, check the C1-L1 combination for coverage with a grid dipper before wiring it into the circuit. If your C1 minimum capacity is too large, you won't get complete 4 to $18-\mathrm{MHz}$ coverage. Some math helps here. First, determine the ratio of frequency coverage: $18 \div 4=$ 4.5:1. The capacity ratio needed to cover this range is equal to the frequency ratio squared. Consequently, your capacity ratio should be 4.5^{2} or 20.25:1. To determine the required minimum capacity, divide the $500-\mathrm{pF}$ capacitor by 20.25 ; you'll get 24.7 pF . Because a little overlap is good, try to reduce this minimum further -- say to 15 pF . This is about the best you can do with such a large capacitor. Many BC tuning capacitors have built-in mica trimmers. Remove these, or you may never reach the minimum. Your connecting leads to C1-L1 should be short and dressed away from the chassis to prevent

PARTS LIST

```
PARTS LIST
C1 \(15-500 \mathrm{pF}\) variable.
C2 22 pF.
C3 100 pF variable.
C4 50 pF variable.
L1 26 turns no. 24 enameled on T50-2 toroid or 10 turns no. }2
    enameled spaced 3/4" on 1-1/4"'form. (35-mm film con-
    tainer.) L = approximately 3.2 \muH.Link: 2 turns.
    L1 center tapped.
    22 turns no. 24 enameled on 3/8" slug-tuned form, tap 6
    turns from ground. L = 3\muH.
    40 turns no. 32 enameled on 1/4" slug-tuned form. L = 15
        \muH.Link: 5 turns.
Q1 Dual-gate FET, 40673 or similar.
Q2,Q3 JFET, MPF 102 or similar.
RFC1 50 turns scramble wound on 1/4-watt, 10-k resistor. No. 32
        enameled.
RFC2 1mHRFC.
```

additional stray capacitance. (Connecting Q1 adds a few pF.) Attach C2 as close as you can to the tap on L1.

With everything wired and the smoke test passed, you should hear a definite noise peak on your $3.5 \mathrm{-} \mathrm{MHz}$ receiver when you tune the IF output coil of the converter with the power on. With a short antenna on the converter, tuning C1 slowly should produce two noise peaks. If you get whistles and birdies when tuning C 1 , the RF stage is oscillating. Make sure the C1-L1 combination and wiring are well isolated from the drain circuit of Q1. If Q1 is unusually "hot," reducing the value of $R 2$ to 22 k or 15 k will generally tame the oscillations.
(508)

474-8949
24 Hour FAX

THE Amatour Antennakit

40/80 Meter Antenna Kit For 'Perfect Dipole' SWR

A complete kit includes:

- W2AU 1:1 Balun
- W2VS KW-40 Traps (pair)
- End-sulators ${ }^{\text {™ }}$ (pair)
- \#14-7 Copper Wire (125')
- Installation \& Pruning Instructions

Get "perfect dipole" (low SWR) operation on both bands, plus "second resonance" operation on 10,15 and 20 meters. Complete instructions results in a quick, accurate installation and pruning to low operating SWR. Every component in the 40/80 meter kit is an old line, reliable UNADILLA product, time tested with hams for over 20 years.

Contact Your Local Ham Dealer Todav!!!

To order direct call (508)475-7831
or write for our informational brochure on our other fine products
Baluns-Antenna Kite-Fiters-Center Ineulatora-ENDsulators ${ }^{\text {mu}}$-Coaxial Relays All products come with a 30 Day Warranty -NOTICE-
We are the NEW manufacturers of the original JAMES MILLEN ${ }^{\text {TM }}$ Products (508) 975-2711 9am-5pm EST M-F
1.2M-1.5M PARABOLIC DISH/FEED/DOWN CONVERTER to 2 Meters

- RCP, LCP, or Linear Polarization
- LNA - NF $<1.5 \mathrm{~dB}, \mathrm{G}>22 \mathrm{~dB}$
- Preselector Filter Machined 4-Pole Combline
- Microstrip Mixer on high dielectric alumina
- Local Oscillator - Heater Stabilized, $\pm 2 \mathrm{ppm}$ for CW/SSB
- Down Converter mounted in feed assembly for optimum performance

Frequencies available: $1.296-1.691$ GOES WX - 2.304-2.40 OSCAR Mode-S -3.456 GHz

- Feed/Down Converter Assemblies are interchangeable in common feed mount. - 1.2 Meter or 1.5 Meter Spun Aluminum Dish has mtg. hardware for 1.5° mast - Feed Antenna has +5 dBiC Gain, selectable polarization.

PRODUCT PRICE LIST

RCP/LCP Feed Assembly, Type N connectors. Model WCFA-(freq)

$\$ 185.00$

 Linear Polarized Feed Assembly, Type N Conn. Model WLFA-(freq) (Specify frequency: $1.296,1.691,2.304,2.400,3.456 \mathrm{GHz}$)1.2 Meter Spun Aluminum Dish with mtg. hardware WUDA-1.2M

295.00

1.5 Meter Spun Aluminum Dish with mtg hardware WUDA-1.5M 395.00

LNA -2 stage GaAsFET, NF $<1.5 \mathrm{~dB}, \mathrm{G}>22 \mathrm{~dB}$, SMA Conn. WLNA-(freq) (Specify frequency: $1.2,1.69,2.35,3.456 \mathrm{GHz}$)
Preselector Bandpass Filter, Machined 4-Pole Combline, SMA conn. (Specify frequency: $1.296,1.691 .2 .3,2.4,3.456 \mathrm{GHz}$) Model WMCF-(freq) 85.00

Microstrip Mixer - Thick Film, Machined Housing WHMM-(freq) 45.00 Local Oscillator - Heater Stabilized, Thick Film, WHLO-(freq) 325.00
(Specify frequency: $1.151,1.5535,2.159,2.255,3.311$, or any spot F_{0}) Complete Feed Down Converter to 2 Meters. Model WFDC-(treq) 675.00
(Specify frequency: feed type) (Other IF's avail., GOES-137.5MHz)
Complete Dish/Feed/Down Converter Assembly
1.2 Meter Dish, Model WDDC-1.2-(treq)
1.5 Meter Dish, Model WDDC-1.5-(freq)

All Products Shipped UPS except Parabolic Dish shipped by Truck - Freight Collect

1989 EDITIONS

1989 RADIO AMATEUR CALLBOOKS

RADIO AMATEUR CALLBOOKS

1989 NORTH AMERICAN CALLBOOK

Fully updated and edited to include all the latest FCC and foreign govermment callsigns and addresses for Hams in North America. Includes plenty of handy operating aids such as time charts, QSL bureau addresses, census information and much more. Calls from Northern Canada to tropical Panama. Now is the time to buy a new Callbook when you'll get the most use out of your investment. © 1988, 1672 pages.
DCB-US89
Softbound $\$ 25.95$

INTERNATIONAL EDITION

QSL's are a very important part of our hobby. All sorts of awards, including the coverted DXCC, require confirmation of contact before the award can be issued. Of special interest, addresses are being added daily for Hams in the USSR and other countries. While in no means complete. it's a start and will be of tremendous help in getting OSLs. Handy operating aids round out this super book value. © 1988,1672 pages
-CB-F89
$\$ 28.95$

BUY 'EM BOTH SPECIAL

Reg. $\$ 54.90$ Only $\$ 49.95$ SAVE $\$ 4.95$
THE 1989 ARRL HANDBOOK FOR THE RADIO AMATEUR
Revised and updated with the latest in Amateur technology, now is the time to order your very own copy of the world famous ARRL HANDBOOK. In addition to being the definitive reference volume for your Ham Shack, there are plenty of projects for every interest in Amateur Radio - from antennas for every application to the latest state-of-the-art projects - you'll find it all in the 1989 HANDBOOK. Over 1100 pages 1988
-AR-HB89
Hardhound \$20.95
ANTENNAS by John Kraus, W8JK
Kraus's classic antenna book has been extensively revised and up-dated to reflect the latest state-of-the-art in antenna design and theory. Includes over 1,000 illustrations and nearty 600 worked examples and problem solutions. Chapters cover basic concepts, point sources and point sources and point source arrays, dipoles, helixes, broadband and frequency independent antennas, special applications and tons more of information. Also includes 5 apendices: reference tables, computer programs, books and video tapes, answers to problems and a problem supplement. College level text for the Amateur. 2nd edition, 917 pages © 1988.
MH-35422
Hardbound $\$ 59.95$
Please enclose $\$ 3.75$ shipping and handling.
HAM RADIO'S BOOKSTORE Greenville, NH 03048

603-878-1441

N. Hi Pro Repeaters
 ELCO

MAGGIORE ELECTRONIC LAB.

Manufacturers of Quality Communications Equipment

Hi PRO
 VHF-UHF REPEATERS

SUPERIOR RECEIVER AND TRANSMITTER SPECIFICALLY DESIGNED FOR REPEATER SERVICE.
ADJUSTABLE TRANSMITTER POWER, FROM 1 TO 25 WATTS MINIMUM OUTPUT WITH EXTREMELY COOL OPERATION AUTOMATIC BATTERY BACK UP SYSTEM CAPABILITY WITH BATTERY CHARGING AND REVERSE POLARITY PROTECTION.NOW WITH A FULL COMPLIMENT OF INDICATORS AND STATUS LIGHTS. -100% DUTY CYCLE-ADVANCED REPEATER SQUELCH NO CHOPPING, POPPING, OR ANNOYING REPEATER KEY UPS DURING LIGHTNING STORMS.-DIE CAST ALUMINUM R.F. ENCLOSURES -SMALL SIZE $51 / 4 \times 19 \times 13$ "-HIGH QUALITY LONG LIFE DESIGN.

SEE YOU AT DAYTON! BOOTH \#403

The Hi Pro Receiver is the heart of the Hi Pto Repeater specitically designed to commercal specitications tor Repeater service and boasts high Q mult funed cricuits In both the if and oscillator stages to insure low desense intermod and sparious along with chorce of varying degrees of it selectivity Supenor squetich action a necessity tor Repeater service extreme sensitivity. frequency and themal stabitity This recerver not only can be used as hermar stabuty this recerver nor ony catbe seme. mith recerver bubse thep fay 'ecerver in yout present eppaler Eassy saapis to any asstem The smail ste allows for easy mounting even where space is at a premurn The excellent front end rojection with wide dyamic range guarantees excelient desense intermod and spunous response rejection Advanced squelch cricuitry to produce mun squelch chopping even with weak signals of tugh devation such is weak mobile of tapud tading signals and also thigh electrical norse fejection such as electrical storms igntion pulses. etc

Hi Pro Receivers

FEATURES:

High sensitivity

- Supenor rejection
- Double sided mir spec G-t0 tiberglass boards
- Extremely stabie operation
- Excelient adjacent channel refection
- Squelch carcuit designed for critical repeater use
-Wide selectron al trequency fanges
- Separate open colle tor COR output
- Separate tone control squelch input
- Separate tone comvol output
- Muilt channel capability Up to 6 chamers
- Avaitable with precision grade high stability crystal
- Selectable COS high or low oulpul

AMATEUR DISCOUNTS AVAILABLE

- Small sye
- Choice of passtainas
- Disctiminator meter ouput
- Signal level meter output
- Multpie Vortage Requiation
- 1 year wartanty

SPECIFICATIONS:

Sensitivity:
12 dB Sinad (E/A. Method) 025 uv
20 db queting method 030 uv
Selectivity:
EIA lwo signal method
Standard : 15 kHz
$\begin{array}{ll}50 \mathrm{kHz} & -80 \mathrm{~dB} \\ 30 \mathrm{kHz} & 130 \mathrm{cB}\end{array}$
Optional Natrow $-15 \mathrm{kHz}-100 \mathrm{~dB}$
Spurious Response: 85 dB
Intermodulation:-70 d8
Modulation Acceptance: Standard $=60 \mathrm{kHz}$
Natrow 50 kH :
Squelch Sensitivity: 010 to 0.20 uv
Frequency Response $\quad 2$ to -3 dB of $6 \mathrm{~dB} /$ Octave de emphasis from $300-3000 \mathrm{~Hz} 1000 \mathrm{~Hz}$ z elerence Audio Output: ito 8 chm speaken) 2.0 watts max Rt input impedance: 50 anims
Frequency Range:
VHF $130.150 \mathrm{MHz}=144.175 \mathrm{MH}=220.250 \mathrm{MHz}$
UHF $406-450 \mathrm{MH}: 450-490 \mathrm{MHz}$
Operating Voltage: 11 to 145 VDC
138 VDC nommal

Current: 90 mA nominal squelthed
Size: 3 - W $\times 6=1,1$ H
Duty Cycle: 100 -n at 60 C
Operating Temp. Range: 30 C to -60 C

Meets or Exceeds All Published Speciticatrons

ASK ABOUT OUR COMPUTER CONTROL SYSTEM, AND MICROCONTROL AUTO PATCH, AND REPEATER KITS.

Maggiore Electronic Laboratory 600 WESTTOWN RD., WEST CHESTER. PA 19382 PHONE: 215-436-6051 TELEX:499-074-MELCO FAX: 215-436-6268

THE FOLD WIRE FED TOP-LOADED GROUNDED VERTICAL

By Walter J. Schulz, Jr., K3OQF, 15225 Wayside Road, Philadelphia, Pennsy/vania 19116

It's common practice to use the folded wire tapped to a grounded tower to feed the tower as a vertical radiator with top-loaded Yagi or quad antennas. You can use these installations as top-loaded verticals on 40, 75, and 160 meters. John True, W4OQ, did an empirical study of this type of system and wrote about the results in Ham Radio Magazine..$^{1.2}$ After reading his study, 1 decided that 1 needed to be able to design the system on paper independent of sets of interpolative electrical measurements. I had to answer a number of questions to achieve my design goals; there were two that concerned me most. What's the actual grounded tower electrical height with Yagi or quad antennas, and what's the impedance to be expected at a tap point on the tower? To resolve these questions, I looked at the physical aspects in a different way. I assumed that the whole antenna system was a transmission line UHF tank circuit (Figure 1).

It's well known that the quarter-wave transmission line will act as an impedance transformer and match two different impedances. This phenomenon is an advantage at ultrahigh frequencies where lump-constant components of capacitance and inductance are too large to be used in a tank circuit. A quarter-wave transmission line can be used as a tank circuit; ${ }^{3}$ it will display a very high quality factor (Q). Keep the transmission line length at a quarter wave and place a tap along the length for matching impedances if you wish. This tap will transform impedances between the tap point and an active device like a tube or transistor.

Sometimes it's desirable to have a shorter length of transmission line. You can reduce the length of the line by using a loading capacitance at its open end. The transmission line is shorted at one end and capacitively loaded at the other. The tap point along the transmission line will always be a pure resistance with no reactive component, as long as the line is equivalent to a quarter wave which is parallel resonant.

The transmission line tank circuit can be compared with a tower capacitively loaded by a Yagi or quad antenna. The impedance is transformed by placement of a tap along the tower. It's difficult to figure out where to place the tap on
the tower or transmission line, as every Amateur location is unique. You can make a fairly accurate first approximation; this will place the tap near the optimum position on the tower for an impedance match. Once you've made your calculation, a little experimentation will show exactly where the tap should go.

Here's an example. A Rohn Model 25 tower has 90degree electrical height on 3.8 MHz . This serves as a reference parameter for further calculations. Use the algorithim that follows to determine the tap point on the tower that gives you a 52 -ohm match.

Establish the feedpoint impedance for the height and diameter of the tower using Schelkunoff's equation. ${ }^{4}$ In this instance his equations derive shape factor as $Z_{0}=316$. and a complex feedpoint impedance as $R_{r}=37.7$ ohms +j 21.8 ohms. Next, find the quality factor:

$$
\begin{equation*}
Q=\frac{X_{L}}{R_{r}}=\frac{+j 21.8 \Omega}{37.7 \Omega}=0.5782 \tag{1}
\end{equation*}
$$

Treating the tower as a transmision line, find the loop resistance:

$$
\begin{equation*}
R=\frac{6.28\left(Z_{o}\right)}{Q(\lambda)}=\frac{6.28(316)}{(0.5782)(78.96)}=43.4635 \tag{2}
\end{equation*}
$$

$\lambda=78.95$ meters

$$
\begin{equation*}
\lambda=\frac{3 \times 10^{8}}{f}=\frac{3 \times 10^{8}}{3.8 \times 10^{6}}=78.9475 \text { meters } \tag{3}
\end{equation*}
$$

Find R1 (loop resistance) value on the tower:

$$
\begin{equation*}
R I=\frac{8\left(Z_{o}\right)^{2}}{R(\lambda)}=\frac{8\left(316^{2}\right)}{(43.4635)(78.96)}=232.773 \tag{4}
\end{equation*}
$$

Find the ratio of R_{t} to $R 1$:

$$
\begin{equation*}
\alpha=\frac{R_{t}}{R I}=\frac{52}{232.773}=0.2234 \tag{5}
\end{equation*}
$$

FIGURE 1

Illustration of a shunt fed tower and its electrical equivalent.

Note: R_{t} is the tap point impedance. In this case it's 52 ohms.
θ tap point on tower
θ tap point $=\operatorname{arc} \sin \left(\alpha \sin ^{2} \theta_{G t}\right)^{1 / 2}$
θ tap point $=\operatorname{arc} \sin \left[0.2234 \sin ^{2}(90)\right]^{1 / 2}$
θ tap point $=\arcsin 0.4727$
θ tap point $=28.2^{\circ}$
Convert tap point height from degrees to feet above ground:

$$
\begin{equation*}
\frac{28^{\circ}}{360^{\circ}}(259)=20 \text { feet } \tag{7}
\end{equation*}
$$

If you want to find other tap points above the tower's base and along its length, you need to know the total electrical height of the whole antenna system. Determine the tap point position on the tower length by using proportions to get the first approximation. The first approximation gives you a starting point from which to calculate tap placement on the tower. You may find you have to move the tap up or down. This adjustment, which increases or decreases resistance transformation at the tap point, is necessary for a match to the transmission line.

Electrical antenna height or line length

I'm sure you've seen how electrical antenna height differs from actual physical antenna height. Literature on the subject shows how this phenomenon has been put to use changing antenna current distribution and raising the radiation resistance. You might find it helpful to ask the follow-
ing questions about an antenna structure already supporting a Yagi or quad antenna, especially if you want to fold wire feed a grounded tower as a vertical radiator.

- What is the total antenna electrical height?
- What is the equivalent electrical height represented by top loading?
-What is the proper tower tap point for shunt feeding?
Consider a Rohn Model 25 tower 55 feet high. This tower supports a TH6DXX triband Yagi which, for our purposes, can be compared to a flat-top antenna with paraliel wires. Assume the elements are parallel wires forming a flat top, but each is of a different length. You must average all element lengths (six in the example) to get a uniform length for use in a capacity equation by Grover. 5 You must also average each element's different spacing along the boom. After averaging these boom lengths and spacings, you're ready to use these values to find the flat-top capacitance loading

The average element spacing is $57^{\prime \prime}$; the average element length is $276^{\prime \prime}$.
Find the capacitance:

$$
\begin{gather*}
C \text { in } p F=7.36 \frac{\ell}{F} \tag{8}\\
Q=\log \frac{2 h}{D}-K=\log \frac{1320}{57}-0.874=0.4907 \tag{9}\\
P=\log \frac{4 h}{\text { dia }}-K=\log \frac{2640}{l}-0.874=2.5476 \tag{10}
\end{gather*}
$$

$$
\begin{gather*}
F=\frac{P+(n-l) Q}{n}-K_{n}= \tag{11}\\
\frac{2.5476+((6-1(10.4907))}{6}-0.252=0.5815 \\
C=\frac{7.36(23 f)}{0.5815}=291 p F \tag{12}
\end{gather*}
$$

The capacitive value represented by the Yagi is 291 pF . Find the capacitive reactance from the previous value:

$$
\begin{equation*}
X_{c}=\frac{1}{6.28\left(3.8 \times 10^{6}\right)\left(291 \times 10^{-12}\right)}=144 \Omega \tag{13}
\end{equation*}
$$

Find the shape factor for the antenna tower:
$Z_{o}=60 \ln \frac{(2 h)}{(a)}-I=60 \ln (2) \frac{\left(660^{\prime \prime}\right)}{\left(2.95^{\prime \prime}\right)}-I=306$
Find the equivalent electrical height of the whole structure:

$$
\begin{equation*}
\theta H_{b}=\operatorname{arccotan} \frac{X_{c}}{Z_{o}}=\operatorname{arccotan} \frac{144}{306}=65^{\circ} \tag{15}
\end{equation*}
$$

$\theta H_{a}=76^{\circ}$
$\theta H_{b}=65^{\circ}$
$\theta G t=141^{\circ}$ total height \in electrical degrees

Finding the tap point on the tower

You know that the tap point on the reference tower structure is 28 electrical degrees above the tower's base for a tower of 90 electrical degrees in length. This means you'll use proportions to find the tap point for antenna heights other than 90 degrees. Say you want to find the tap point for an antenna height of 141 electrical degrees. Let X be the unknown value for the tap point on the tower. Once you determine the tap point in electrical degrees, convert this value to feet.

$$
\begin{gather*}
\frac{90}{28}=\frac{141}{X} \tag{16}\\
3.2143=\frac{141}{X} \tag{17}\\
X=\frac{141}{3.2143}=44^{\circ} \tag{18}
\end{gather*}
$$

Converting to feet:

$$
\begin{equation*}
\left(\frac{44}{360}\right)(258.9474)=32 \text { feet } \tag{19}
\end{equation*}
$$

(Sce Figure 2.)

Preparing the tower for shunt feeding

One of the first things you must do when shunt feeding a grounded tower is insulate the upper portions of the tower from ground. Do this by placing egg insulators where the guy wires connect to the tower. It's usually advisable to break up the guy wires with insulators every $1 / 10$ of a wavelength to prevent reradiation by the wires and radiation pattern distortion.

Once you've located the tap point, you can feed it in one of two ways. The first is to extend a folded wire straight out from the tap point and drop it down parallel to the tower's base. RF excitation will occur at the earth's surface. Another method (which gives slightly better bandwidth and results) is to build a cage about the same diameter as the tower, instead of using a single wire. You can hang the cage on an outrigger extending out from the tap point and running parallel to the tower down towards the ground. The cage works better than an aluminum pipe, and offers less wind resistance. It also decreases the amount of weight that's hanging off the tower.
Once the fold wire or cage is in place, there are a num. ber of things to do before exciting the tower with RF power. To start, hang the outrigger arm at the first approximation tap point. (The arm can extend 1 to 3 feet out from the tower's side. The outrigger arm material is usually a light metal, like alumninum pipe, with a 1 -inch outside diameter, that's clamped to the tower legs with U bolts.) Suspend the fold wire or cage from the first outrigger to a second one at the tower's base. Make sure the bottom outrigger has an insulator, so that the cage is insulated above the ground.

The impedance noise bridge is a valuable tool for determining the feedpoint impedance at the fold wire or cage feedpoint on the bottom outrigger. You can move the wire in towards the tower or away from it to determine which spacing gives the best impedance match, then try raising or lowering the tap point for a better match. Observe the reactance value on the bridge once you've found the tap point with the best match.

It may be a good idea to cancel out the inductive reactance before moving the tap point position, or the fold wire in and out from the tower. l've given approximate values for maximum capacitance to cancel out the inductive reactance for the following bands: 1000 pF for 160 meters, 500

FIGURE 2

Illustration of the electrical height of the tower in degrees and the approximate placement of the tap in degrees.

John J. Meshna Jr., Inc:

SURPLUS ELECTRONICS

INDUSTRIAL GRADE PRINTER

PEEPING TOM SPECIAL

Origianally these giant prisms $18 \times 8 \times 2 \mathrm{y}$ operator didn't get shot to pieces. Now you can use one for whatever clandestine or Tom toolery you can think of. You can look ove fences around fences of maybe even find a real use for them. One of our visiting experts suggests these may have been used in M.17 tanks. The exposed surfaces. except for the
glass of course, are painted offical olive drab A unique and unusual find Used. good condi

Shpg. Wt. 8 lbs. SPL-16A. $52 \quad \$ 12.95$

芷

MONITOR FLOAT ARM

SWITCHES
Monitor Float Atm is the easiest way to keep your montor off
yout desk yet within reach Just push you tmontor aside to
clear vour desk Swing ove to the proper working position
when you want to use it It can all be down with one hand
because the Float Arm is phenumatically controlled and batanced to effortiessly float your monitor where vou want

We just got in a bunch of beautiful new Oak keyswitches. They are perfect for powering due to ther unique 3 key positions. The firs cstion is ol ed at 25 amps at 125 V , are swit en evice is attached to therm. Each switc comes with hardware and two barrel keys position. Similiar switches are used on many large computers for security and to msure the to tind surplus and normally very expensive.

BARRIER STRIPS
Mandullu1d

Shpg W. 1 Lb SP.128A $\$ 125$

RIGHT ANGLE PRISMS

IBM * Compatible
Flat Screen Monitor
We just bought a bunch of classy looking IBM: compatible The montors uthize a flat 12 amber thigh contrast non glare CRT Some of the nice features of this tem ate high resolution 80×25 character display. they are tulty enctosed and come with a tilt \& swivel base The TTL level signals are input thru a sub-D tvpe connector The monitors run on standard US house current. 95°
 the CRT's are unbroken and will not have butn marks on them The original selling price of this very handsome unit was over 512500 each including the tilt swivel base. We offer ASIS"Complete with Schematic Shpg Wi 20 Lbs

MOT 17
$\$ 37.50$

Enhanced 101 Key
IBM Compatible Keyboards his excess inventory of IBM PC, XT \& AT co patible 'key" boards. They can also be used the enhanced XT and AT modes by resetting the DIP switches accordingly hughly tespected name the manufacturers
 have been removed from the cases, but it does appeat on the encoder board. These boards are added to take advantage of state of the att sottware packages and a fir contel panel provided along with snap open self locking legs Most packages and a LED control panel is are slightly used. All of them are in excellent working and excellent physicat condition Most are in their original factory cartons We supply a schematic and operators quide with each
one. Shpg. Wt. $5 \mathrm{Lbs} \quad \mathrm{Kybd} 11$

5 AMP GEL CELLS

The full pacs came in a sturdy plastic enclosure.

We sent Eagle Eve Al out hunting in a far away salvage yard a few days ago and he
came up with a real winner While ctawhing around a big heap of stuff he saw a familial outline at the bottom. Atter a few minutes, Lo and behold, some beautiful shiny new Gates gel pacs emerged. The pacs contain 152 V .5 amp gel cells for a total of 30 VDC , amp tollows all guaranteed OK. Here's a tip Use duct tape to hold the cells tonether

15 Cells. 30 VDC in a Sturdy plaste enclosure Shpg Wt 8 Lbs SPL 2748.52 540.00 12 Cells, 24 VDC SPL $3368-52$ Shpg $W_{t} .4 \mathrm{Lbs}$
6 Cells 12 VDC 6 Cells, 12 VDC 3 Shpg. Wt 2 Lbs

SPL-2078-52
SPL.118-5
5 3 Cells. 6 VDC
-

PARTS GALORE ASSEMBLY Pictured below is a high reliability power supply it contains many very useful and expensive parts we must offer these the agreement with the manufacturer we can not sell the unit intact

POWER SUPPLY REGULATOR BOARD
Consists of LM 123 IC regulator or equivalent
TIP 32 transistor. 6 amp bridge. 10,000 ut
50 V capacitor LM 340712 tequlator, a stal
6 V buzzer, 2 sockets to hold the smallet 2
bands which consist of LM 39 N IC. reg. TIP
$32 X$ ister 410 K 10 tim Pots.
and loads of other parts
Shpg Wi. $2.5 \mathrm{Lbs} \quad$ SP.274B.51 53.50 TRANSFORMER made by Signal of Aerospact Systems Input. 110:220VAC. Output 24v Shpg Wi. 3 Lbs. T $661.51 \quad \$ 5.00$ DUAL POWER TRANSISTORS ASSEMBLY 2N6249 of equivalent high power switching Natts rated at 300 VCBO 30 amps 175
wat which list lor over $\$ 8.00$ each mounted in an aluminum housing in $\begin{array}{lllllllll}\text { Shpg. Wt. 0.5Lbs SP. } 2768-51 & \$ 175 & \text { Shpg Wi 2Lbs } & \text { SPL. } 107.51 & \$ 7.50\end{array}$

John J. Meshna Jr., Inc. surplus electronics

19 Allerton St. P.O. Box 8062
E. Lynn, Massachusettes 01940

Mostorcord VSA

O
Tel. (617)595-2275
FAX. (617)595-4680

* No C.O.D's
\$20.00 Minimum Order

MICROWAVE MODULES EQUIPMENTS
Use your existing HF or 2 M rig on other VHF or UHF bands

RECEIVE CONVERTERS

See us at DAYTON Booths 66 \& 67

Send 75 C (3 stamps) for detail specs of all VHF \& UHF items and KV6 crystal fitiers
Prices subject to change without notice
(508) 263-2145 SPECTRUM INTERNATIONAL, INC. Post Office Box 1084 Concord, MA 01742, U.S.A.

Look at our MOBLIE MARK

"ON WINDOW" Line

VHF
(140-175)

- No Hole
- Easy to Mount
- Rugged
- Superior Performance
- Radiator Snaps On and Off
- Competitively Pricec

UHF
(420-520)

- 3 db gain
- No Hole
- Easy to Mount
- Rugged
- Superior

Performance

- Radiator Snaps On ano Off
- Competitively Priced

brings imagination and innovation to antennas since 1948 !!

IF YOU BUY, SELL OR COLLECT OLD RADIOS, YOU NEED...
ANTIQUE RADIO CLASSIFIED
Antique Radio's Largest-Circulation Monthly Magazine
 FREE SAMPLE COPY!

Classifieds - Ads for Parts \& Services Articles - Auction Prices-Flea Market Info. Also: Early TV, Ham Equip., Books, Telegraph, Art Deco, 40's \& 50's Radios \& more... Free 20-word ad each month. Don't miss out! 6-Month Trial - $\$ 11$.
1-Year: \$19 (\$28 by 1st Class) Foreign by air-Canada: $\$ 30$; Mexico: $\$ 28$; Other: $\$ 55$ A.R.C., P.O. Box 2-A4, Carlisle, MA 01741

FIGURE 3

Two methods of tuning out the inductive reactance at the feedpoint on a shunt-fed tower. (A) Variable capacitors are used to tune out inductive reactance. (B) Fixed capacitors are used with a series variable inductor to tune out any additional capacitance in the circuit.
pF for 80 meters, and 300 pF for 40 meters (Figure 3A). You can obtain these capacitance values by using a variable capacitor or a fixed capacitance (doorknob capacitor),
along with a series inductance to negate the fixed capacitance not needed to cancel out the antenna inductive reactance (Figure 3B). When you've canceled out the reactance component, match the resistance value in the usual way. Use an L or T-network, or toroid transformer, if the feedpoint isn't an exact 52 -ohm match. Remember the fold wire will always present inductive reactance and this reactance must be canceled out with capacitive reactance. By using the fold wire you eliminate the need for a loading coil, increasing radiation efficiency.

It's also important to remember that you should have a good ground system with many radials when shunt feeding top-loaded towers. This doesn't mean just a few long radials, but a minimum of 60 radials $1 / 8$ wavelength long. If your ground system is inadequate, it will be hard to find the tap point placement and total system adjustment will be very difficult. The calculations are made assuming the ground system will have little loss resistance. [T]

REFERENCES

1. John R. True. W4OO. "How to Design Shunt-Feed Systems for Grounded Vertical Radiators." Ham Radio. May 1975, pages 34.39
2. John R. True. W4OQ. Measurement Techniques tor Antennas and Transmission Lines." Ham Radio. May 1974, pages 36.42
3 Capitol Radio Engineering Institute. Ransmission Lines. McGraw Hill, Inc, 1972 edition, pages 1123.

4 SA. Schelkunott, Theory of Antennas of Arbitrary Size and Shape - Institute of Radio Engneers Proceedings. September 1941, pages 493-520
5 Frederick W Grover. Methods. Formulas, and Tatles tor the Calculation of Antenna Capac ity" Bureau of Standards. volume 22. 1927.1928. page 588

RELY ON JAN FOR 3-WAY HELP:

1. TECHNICALLY CORRECT CRYSTALS TO YOUR SPECS.
2. QUICK TURNAROUND WITH HUGE INVENTORY, PROMPT SERVICE, AND OUR EMERGENCY ORDER PLAN.
3. LOW PRICES.

QUARTZ CRYSTALS FOR TWO.WAY - INDUSTRY MARINE - AMATEURS SCANNERS - CBS MICROPROCESSORS

FOR FREE CATALOG, CALL OR WRITE: JAN CRYSTALS P.O. BOX 06017 FORT MYERS, FL 33906 (813) 936-2397

VISA

TOLL-FREE: 1-800-237-3063
IN FLORIDA: 1-800.226-XTAL FAX ORDERS: 1 -813-936-3750

GET A BIRD'S EYE VIEW
From GrafTrak II $^{\text {M }}$ and your IBM ${ }^{*}$ PC

LAT LON HGT RNG	$\begin{array}{r} 2.2^{\circ} \mathrm{n} \\ 32.4^{\circ} \mathrm{w} \\ 33296 \mathrm{~km} \\ 37512 \mathrm{~km} \end{array}$	ECHO 250 ms FRQ 145.81271 DOP -294 Hz DRF 4 Hzm	ELEU 15.3° AZIM 102.9° SQUINT 18.6° ϕ 86°

GrafTrak II $^{\prime *}$ provides real-time graphic display of a flat projection map which moves under the selected satellite(sat)/Sun/Moon/star coverage circle and updates once per second. Features include spherical projection views, graphic screen dumps to an IBM/Epson/Oki of HP Laserjet Series II printer, selectable lat/lon grid intervals. disk command files, automatic control of antenna rotators with full 180 degree elevation, coverage swath display for weather sats, multiple fange circles, automate sat switching, real-time ground
track display, and squint angle display track display, and squint angle display
Silicon Ephemeris ${ }^{\text {t" }}$ provides tabular data output to the screen. printer, or disk file for the following operating modes. I observertobs) to 16 sats. 16 obs to I sat, schedule for 1 obs to I sat, window between 2 obs and I sat, nse and set times for I sat, time ordered rise and set times for 16 sats. Almanac for Sun and Moon. I6 obs to SunMoon, schedule for I obs to Moon, window between 2 obs and Moon, schedule for 1 obs to Sun. and optical visibility schedule
The package includes an editor program used to construct and modify satobs data base files. In addition, a program to update data base files from bulletin boards, complete source code for a compatible rotator and receiver control program and several other utilities ate included.
Requires an IBM PC. PC/XT, PC/AT, or true compatible, an IBM Color/Graphics Monitor Adaptor or true compatible, optional but recommended 80×87 math coprocessor, minimum 512 K RAM, DOS 20 or later, and either two 360 K floppy drives or one 360 K floppy and one hard drive; the programs are not copy protected.
The complete package is $\$ 395$ (List Price). Call for quotation. Check, money order. MasterCard, or VISA accepted Silicon Solutions. Inc P PO. Box 742546 - Houston. Texas 77274-2546 - (713) 777-3057

Ham Notebook

Homebrew Neutralizing Capacitor

Most of us now have transceivers with an output of 100 watts. This is ideal for driving a high-power triode amplifier. Such an amplifier isn't difficult to build and can be quite economical if you have some 250Ts, 833As, etc. stored away somewhere. Perhaps you have a ham friend who works at a broadcast station. Stations often remove tubes from service that are perfectly good for Amateur use, especially for CW. Some

РНото A

Example of a completed Neutralizing Capacitor.
of the other components, however, may be difficult to find or too expensive. The neutralizing capacitor need not fall into this category.
My list of materials isn't cast in concrete. Use what you have on hand and calculate the capacity range from the formula in The ARRL Handbook. The items specified will result in a capacity of 1 pF at $3.0^{\prime \prime}$ spacing to 5.6 pF at $0.5^{\prime \prime}$ spacing.

Construction

Use pc board material with copper on one or both sides. Make the top plate using a circle cutter. Cut the bottom plate $4^{\prime \prime}$ square and then trim off the corners. Round the edges with a file and polish them with fine sand-

paper or crocus cloth. You can mount the bottom plate on just one center insulator, but I used four to make it sturdier. Countersink the top plate center hole and fasten on the $3^{\prime \prime}$ brass bolt with a lock washer and nut. Solder the bolt head to the pc board copper. This is the only tricky part of the entire project. Be careful not to make the countersink too deep. If you do, there will be a gap between the bolt head and the copper foil. It will be very difficult (I might even say nearly impossible) to bridge that gap with solder. Saw a slot in the other end of the $3^{\prime \prime}$ bolt for screwdriver adjustment.

PARTS LIST

1-4" diameter piece of pc board
1-4" square piece of pc board
1-1/4-20 $3^{\prime \prime}$ long flat-head brass bolt
3-1/4-20 brass nuts
1-1/4" lock washer
$1-3 / 16^{\prime \prime} \times 3 / 8^{\prime \prime} \times 4^{\prime \prime}$ brass bar
$1-1^{\prime \prime} \times 5^{\prime \prime}$ ceramic insulator
4- $1 / 2^{\prime \prime} \times 1.5^{\prime \prime}$ ceramic insulators
Fiber washers and brass machine screws for the insulators

The support for the top plate is a piece of brass $1 / 8^{\prime \prime} \times 5 / 16^{\prime \prime} \times 4^{\prime \prime}$. If you use hollow brass, solder on a $1 / 4-20$ brass nut after you drill a clearance hole for the $3^{\prime \prime}$ brass bolt. If the brass is solid, you can drill and tap it for the $3^{\prime \prime}$ brass bolt. You also need to countersink the four flat-head machine screws holding the bottom plate flush with the pc board copper.

Ken Leiner, N4LC

Adding 10 MHz to the HyGain HyTower

Although it's an older antenna, the HyGain HyTower is still in use in the United States, Canada, and around the world. The HyTower is basically a quarter-wave vertical. The antenna incorporates various tuning stubs; these decouple it for bands other than 40 and 80 meters. For 160 meters, the antenna uses a base-loading coil.
l've operated with the HyTower at W5UOJ for almost 16 years, and it was used when I got it! It's never failed on 160,80 , or 40 meters. Because I have beams for 20, 15, 10, etc., I never installed the stubs for 20, 15, and 10 meters on this particular antenna.

After the 30-meter band (10,100 to 10.150 MHz) opened, I tried the HyTower with an old Collins S-Line. The SWR was relatively low and it worked after a fashion. Because there's a coil for 160 installed in the 80-meter line (mostly shorted out for 80 meters). I could vary the SWR by moving the tap on the coil. Apparently the antenna was working as a three-quarter wavelength vertical.

I didn't get very good signal reports with the antenna this way. It worked, but...! I decided to add a matching section for the 30-meter band.

I garnered several pieces of aluminum from the antenna graveyard and pieced them together. Most of my matching section addition was 1 -inch tubing. I inserted a shorter piece of $7 / 8$ inch tubing into the end for tuning.

I started with a total length of just over 23 feet, and tuned the antenna for the best SWR by telescoping the 7/8inch section up and down inside the 1 -inch section. I installed two 3 -inch stand-off insulators along the first section of tower and two 4-inch insulators on the second section (see Figure 1 for details). I shimmed them with small sections of plastic from margarine tubs to bring the $23+$ foot section vertical. This took care of almost 16 feet: I left the remaining 7 feet freestanding.

FIGURE 1

Mechanical details for attaching the 23 -foot matching stub to the Hygain Hytower.

Next I strapped the bottom of the newly added stub to the bottom of the tower leg with a scrap of aluminum. (You could probably use heavy wire.) Then I adjusted the antenna for minimum SWR. Because my antenna is mounted next to the house, I could make these adjustments with the stub mounted permanently. If your HyTower is mounted away from a building, put up the lowest and highest insulators and make the tuning adjustments by moving the antenna stub up and down. You can mount the stub permanently when the SWR is the lowest.

My stub was just short of 23 feet; the actual length of yours may differ. Because the antenna is mounted next to the house, and since the stubs for 20,15 , and 10 meters aren't installed on it, the final stub length could vary. Always check the SWR before finalizing your work!

The stub adds a third antenna in parallel with the existing 80 and 40 meter sections. With a good ground system this antenna can easily work the world. Stateside contacts are also much easier to make.

I spent less than an hour on this modification, and the time was well spent. It cost me nothing because I had all the materials on hand. Even if you have to purchase everything, it should cost less than \$20 - and prob-
ably less than $\$ 10$. Of course, the modified HyTower isn't a beam. But considering that inany stations working the $30-$ meter band are using dipoles and even long wires, it does make for a better-than-average antenna! See you on 30 !

Glen Zook, W5UOJ

The N5NBU "Nice but Ugly" \$1.29 Antenna

Living in an apartment presents special challenges for Amateur Radio operators. Limited space and landlord rules pose difficulties, particularly when it comes to antennas. When I was told that my ground plane had to come off the balcony, I decided enough was enough and the "Nice but Ugly" \$1.29 antenna was born. (See Figure 1.)

My requirements were simple. I needed to put up an antenna that was
as effective as possible within the space available. Then the XYL added another constraint: "Try not to spend any money on it."

I tried and discarded gems like "The Bedroom Wall Quad" (two square wire loops on opposite walls of the bedroom) and "The Guillotine" (a long wire strung throughout the place, which was a real adventure in the dark!).

Then, by sheerest chance, I saw some light at the end of the tunnel or rather, in the ceiling. While replacing a light bulb in the closet, I noticed an access panel in the ceiling. I lifted it up and, lo and behold, space! A whole attic just waiting for an antenna installation! I immediately sat down and started contemplating antenna designs.

I made a couple of trips into the attic with measuring tape in hand and my plan began to take shape. Because I had severe budgetary restrictions, the antenna had to be simple and built with materials I had around the house. What's cheap, long, and conductive...?

FIGURE 1

Installed view.

RF POWER

TRANSISTORS

\section*{Partial Listing of Popular Transistors \& Tubes} | P/N | NetEs | P/N | Net/Es | P/N | Net/Es |
| :--- | :--- | :--- | ---: | :--- | :--- |
BFR96	$\$ 2.75$	MRF607	$\$ 2.50$	2SC2694	$\$ 46.75$		BFR96	$\$ 2.75$	MRF607	$\$ 2.50$	2SC2694	$\$ 46.75$	
MRF134	16.00	MRFE29	3.00	2SC2695	31.75			MRF136	21.00	MRF629	3.00	2SC2695	31.75
:---	:---	:---	:---	:---	:---	:---							
MRF	MRF630	3.75	2SC2782	32.75				MRF136Y	$\mathbf{4 7 . 0 0}$	MRF641	18.00	2SC2782	32.75
:---	:---	:---	:---	:---	:---								
MRC2879	21.00						MRF137	24.00	MRF644	23.00	$2 S C 2904$	32.50	
:---	:---	:---	:---	:---	:---								
MRF138	35.00	MRF646	25.00	2SC2905	34.50		MRF141G	190.00	MRF646	25.00	2SC2905	34.50	
:---	---:	---:	---:	:---	---:								
MRF148	34.00	MRF653	14.00	40582	9.50		MRF148	34.00	MRF653	14.50	LOWNOISEFIGURE		
:---	---:	---:	---:	:---	:---								
MRF150	79.50	MRF654	20.00	MGF1402	17.95								

MRF153	395.00	MRF843,/F	22.50	MRF911	2.00
MRF154	497.00	MRF846	37.75	MRF965	2.00
MRF156	537.00	MRF873	29.75	ME55537/3SK205	3.25

 \begin{tabular}{ll|ll|ll}
MRF172 \& 58.75 \& P19847 \& 21.00 \& J310 \& 1.00

MRF174 \& 80.00 \& RF120 \& 22.00 \& U309 \& 1.75

MRF208 \& 14.50 \& SD1229 \& 12.00 \& U310 \& 1.75

MRFF212 \& 19.50 \& SD1272 \& 12.00 \& 2N4416 \& 1.00

MRF221 \& 11.00 \& SD1278-1 \& 13.75 \& 3N204 \& 2.00

MRF224 \& 13.50 \& SD1405 \& 16.00 \& 3N211 \& 2.00

MRF224 \& 13.50 \& SD1405 \& 16.00 \& 3N211 \& 2.00

MRF237 \& 2.00 \& SD1407 \& 25.00 \& OUTPUT MODULES

MRF238 \& 14.00 \& SD1429-3 \& 16.00 \& SAU4 400 110 \& 49.50

MRF239 \& 15.00 \& SRF2072 \& 12.75 \& SAU17A 903 \& 50.00

MRF240 \& 15.00 \& SRF3662 \& 24.00 \& SAV6 150 \& 4250

MRF240 \& 15.00 \& SRF3662 \& 24.00 \& SAV6 154 \& 42.50

MRF240A \& 15.00 \& SRF3775 \& 13.00 \& SAV7 146 \& 42.50

MRF245 \& 32.00 \& SRF3800 \& 17.50 \& SAV12 \& SA8 \& 42.50

\hline HRF247 \& 23.50

MRF247 \& 24.75 \& 2N1522 \& 11.95 \& SAV15 220 \& 48.00

MRF248 \& 33.00 \& 2N3553 \& 2.25 \& SAV17 $14650 \% 66.50$

MRF248 \& 33.00 \& 2N3553 \& 2.25 \& SAV17 146 sow 66.50

MRF260 \& 8.00 \& 2N3771 \& 3.50 \& M57710A uee SAVs

MRF26 \& 9.00 \& 2N3866 \& 1.25 \& M57713 \& 49.50

MRF262 \& 9.00 \& 2N4048 \& 11.95 \& M57726 \& 57.75

MRF264 \& 10.50 \& 2N4427 \& 1.25 \& M57727 \& 69.50

MRF309 \& 60.00 \& $2 N 5109$ \& 1.75 \& M57729 440 \& 59.75
\end{tabular}

 \begin{tabular}{ll|ll|ll}
MRF316 \& 64.50 \& 2N5591 \& 13.50 \& M57737 146 \& 48.50

MPF317 \& 59.75 \& 2N5641 \& 12.00 \& W57745 \& 87.00

MRF321 \& 23.75 \& 2N5642 \& 13.75 \& M57755 \& 78.75

MRF327 \& 57.00 \& 2N5643 \& 18.00 \& M57762 \& 1296

MRF491 \& 12.00 \& 2N5944 \& 10.00 \& H57765 \& 74.00
\end{tabular}

MRF401	12.00	2N5944	10.00	W57764 74.00
MRF406	13.50	2N5945	10.00	M57712,M57733 use
MAF412	22.00	2N5946	12.50	M57737,SC1019 sav

	22.00	2N5946	12.50	W57737,SC1019 sav
MRF421	24.00	2N608O	7.50	SC1027 ued Saua
Mafa 42	36.00	2N6081	8.50	SC1028

M F F 422	36.00	2N6081	8.50	SC1028 use savis
MRF427	17.00	2N6082	10.00	MHW710.1,2,3 61.00
MRF428	50.00	2N6083	10.00	MHW820-1 76.00

MRF428	50.00	2N6083	10.00	MHW820-1	76.00
MRF429	39.00	2N6084	11.50	MHW820-2	82.00
MRF433	11.00	2N6097	20.00	SPECAL	

MRF433	11.00	2N6084	11.50	MHWB20-2	2N2.00
MRF435	68.50	$2 N 6255$	20.00	SPECIAL TUBES	
MRF448	73.50	$25 C 730$	4.50	6CL 6	9.95

MRF449	22.50	2SC730	4.50	6GK6	7.95
MRF1307	4.00	6HF5	14.95		
MRF49A	18.25	2SC1729	16.25	6JB6 ECG	15.95

MRF450	13.50	2SC1946	18.75	6JS6C ECG	15.95
MRF450A	14.25	2SC1946A	16.75	6KD6 EEECG	15.95

MRF450A	14.25	2SC1946A	16.75	6KD6 GEECG	15.95
MRF453	17.00	2SC1947	9.75	6LF6 GEEEG	15.95

MRF453A	18.50	2SC1955	9.00	6LO6/6MJ6	13.95
MRF454	14.00	2SC1968A	22.00	12BY7A	7.95

MRF454A	17.00	2SC1969	2.50	$572 B / T 160 \mathrm{~L}$	69.50
MRF455	11.25	2SC1996	-	811 A	17.95

WRF455A	12.75	2SC2029	2.50	8174	11.00
WRF458	20.00	2SC2075	1.75	M2057	22.75

MRF460	23.50	2SC2094	18.50	2SC2094	18.50
MRF464	25.00	2SC2097	29.00	61468	43.00
	12.95				

MRF464	25.00	2SC2097	28.00	61460	12.95
MRF466	18.75	2SC2166C	2.00	6550	14.95
MRF475	6.75	2SC2221	8.25	$7581 /$ KT66	14.95

MRF476	4.00	2SC2237	7.00	8122	154.50
MRF477	11.75	2SC2289	13.75	8874	349.50
MRF479	13.75	2SC2290	14.75	8875	319.00

MRF477	11.75	2SC2289	13.75	8874	349.50
MRF479	13.75	2SC2290	14.75	8875	319.00
MAF485mp	18.50	2SC2312C	4.75	8950	18.00

MRF492	14.75	2SC2312C	4.75	8950	18.00
MSC2509	98.00	3CX800A7	339.50		
MRF497	14.25	2SC2559	28.25	3CX1500A	629.50

MRF515	2.50	2SC2630	23.00	4CX250B	74.50
MRF555	3.00	2SC2640	15.00	4CX10000A7	399.00
MRF557	5.25	2SC2641	16.00	$3-5002$	114.50
MRF559	2.25	2SC2642	28.25	$4-400 \mathrm{C}$	139.90

No Extra Charge for C.O.D. or VISA/MC Orders
Ship/Hand. 1 lb. U.S. or Forelgn Sm Pkt Air 8 Oz. $\$ 5.00$ Minimum order $\$ 10 \quad$ Quantity Pricing Available PARTS OROERS ONLY - NO TECHNICAL
(800) 854-1927

ORDER LINE - INFORMATION or TECH HELP
(619) 744-0700

FAX 619-744-1943

1320 Grand Avenue San Marcos. CA 92069

FIGURE 2

End-feed view.

Eureka! Aluminum foil! Because the antenna would be installed in the attic there wouldn't be any wind loading, and there were convenient vertical supports (roof trusses) running the length of the attic. I went into the kitchen, got out the roll of foil, and measured off 66 feet (the length of my attic, and two full waves at 10 meters - how convenient) plus a little bit for anchoring purposes. I decided an end-fed antenna would be perfect as it involved just a single wire to my tuner.
After measuring out the foil and locating my box of tacks, I once again climbed into the attic. Starting at the far end, I rolled and flattened about a foot of foil for a good strong anchor, held it vertical, and thumbtacked it to the support on the far end of the attic. Working my way back to the access hatch, I unrolled the foil and tacked it to every fourth vertical. They're spaced about 18 inches apart. I continued this rather tedious process (tedious because the foil is quite delicate) until I came to the access panel. Then 1 folded the foil over to bring it down to the edge of the access. To connect the antenna to the tuner, I scraped off about 2 feet of insulation from an 18foot piece of no. 16 enameled wire, then soldered it (sort of) to a piece of foil about a foot long using "the bigger the blob, the better the job" method. I rolled this up into the end of the antenna, flattened it, tacked it down to the edge of the access, and connected the wire to my MFJ Deluxe Versa Tuner II. (See Figure 2.)

Now it was time for the acid test. I tuned the transmitter up into the dummy load, switched to the antenna, and heard the (new and thrilling)
sounds of DX stations. After finding a clear spot on 10 meters to finish my tune-up, I called CQ and immediately got my own mini-pileup. The SWR meter said I was matched up with a $1: 1$ ratio, and the stations I was talking to were giving me $59+20$ reports. It was the same story with CW on 15 and 40 meters. On 80 meters I have a problem with RF "bites," but a good ground should cure that problem. I've greatly alleviated and almost eliminated my TVI. My primary problem was fundamental overload. Now just turning the rabbit ears parallel with the piane of the antenna greatly reduces and just about gets rid of TVI on channel 2 (my problem channel).

I hope you'll try my Nice but Ugly antenna. Just remember basic safety precautions regarding power lines, etc. and you'll have a safe and trouble-free installation.

Now, I wonder if I can do something with these tin cans..

Don Lane, N5NBU

Mobile Antenna Anti-rotate Device

Mounting your low-band mobile antenna on your bumper is the easiest method - mechanically. It's also best for performance. But this mount is impossible on many station wagons and "three door" cars. Side mounts are apt to rotate, unless they include a rugged anti-rotate device. I used a standard ball mount, which rotated even when minimal force was applied. My solution for this rotation problem is shown in Figure 1.
"How Does Your Remote Base Stack Up?"

Now it's easy to add a multi-band remote to your repeater.

Your repeater can link to any frequency on up to six bands with ACC's new interface to the ICOM IC-900 Super Multi-Bander System.

Our new FC-900 Interface connects your ACC controller to the ICOM band units (the ICOM fiber optic controller and interface aren't needed). Add new bands to your system by just adding band units. And best of all - everything just plugs together!

If you've built remotes before, you'll appreciate the simplicity - and the performance. If you haven't, now is the time to add a new remote base or linking system to your repeater.

Extend the range of your repeater, link to other repeaters for emergency and public service activities, and benefit from the elevation of your repeater site for all bands. From ten meter DX to 1200 MHz linking - and everything in between.

ACC pioneered frequency agile remotes and links on repeaters years ago. Now we've made it easy. One more reason that ACC is the right choice for your repeater system.

Write or call for more information on ACC's line of repeater controllers, voice storage units, and the new FC-900 Interface.

acc

advanced computer controls, inc.

2356 Walsh Avenue, Santa Clara, CA 95051 (408) 727-3330

ATV CONVERTERS • HF LINEAR AMPLIFIERS

DISCOVER THE WORLD OF

AMATEUR TELEVISION CONVERTERS

 AUDIO SQUELCH CONTROL HO ATV :
2 METER VHF AMPUFERS is Wat Mode 13SA
IS Watt Model 1 BrSA TSWate Moder 855A
Avalable on tol a wired and lesten
$\$ 7995 \mathrm{Kit}$
811995 Kit

HF AMPLFIERS PE MOTOROLA BULLETINS Complete Pents Last for HF Amplien Described in
the MOTOROLA Bultetins.

 NEWII 300 WATT $10-150$ MHz Amblifirt POWER SPLITTERS And COMBINERS 600 Watt 2-Port ${ }^{(2-30 \mathrm{MHz})}$ $\begin{array}{ll}600 \text { Watt } & \begin{array}{l}\text { 2-Port } \\ 1200 \text { Watt } \\ \text { 4-Port }\end{array}\end{array}$
 100W $420-450$ MH2 PUSH-PULL LINEAR
AMPLIFER - $558-F M-A T Y$ AMPLIFIER - $5 S B-F M-A T Y$
KEB67-PK (Kit)
$K E B 67-\mathrm{PCB}$ (PC Bost)
KEB67-1 (Manuel) KEB67-1 (Manu
For detailed infor
out free cataloz

VK200-2048 RF Choke HEAT SINK MATERIAL Model 99 Heat $\operatorname{Sink}(65 \times 12 \times 1.6)$ CHS - 6 Copper spres der (6atsi/4)
Add 1200 additionsl shippine $\$ 2200$

We mese stork Hard-to-Find ants
CHIP CAPACITORS
METALCLAD MICA CAPACITORS
RF POWER TRANSISTORS RF POWER TRANSISTORS
MRFIAIG MRF 1416
MRF1516
MiNi-CIRCUIT MIXERS $58 L-1$
$58 L-1 \times$
$0.0181 M$
ARCO TRMMMER CAPACITORS
Add 1200 for shipping and handling

120920
116680
3650
1798

DIAMONTD ANTENNA

KNOWN WORLD-WIDE FOR PREMIUM QUALITY ANTENNAS AND METERS POWER/SWR METERS

- Forward \& Reflected Power \& SWR
- Selectable RMS or PEP switch
- 3 Power Ranges:

5/20/200 Watts
30/300/3KW (SX-100 only)

- Power Meas. Accuracy 5\% (typ.)
- Insertion Loss: 0.2 dB Max.
- Wideband Performance

FIVE MODELS TO CHOOSE FROM

PO-TLM Trunk Lid Mount \$21.95
*We guarantee each DIAMOND antenna and wattmeter sold by us to meet your satisfaction or return it to us within 10 days for a full refund.
Quantity Pricing Avallable - Dealer Inquiries Invited Orders recelved by 1 PM PST shipped UPS same day. Next day UPS dellvery available
No Extra Charge for C.O.D. or VISAMC Orders ORDERS ONLY - NO TECHNICAL
(800) 854-1927

ORDER LINE and/or TECH HELP
(619) 744-0700

FAX 619-744-1943
"QUALITY NEED NOT BE EXPENSIVE"

Communication CCl Concepts Inc.

508 Millstone Drive, Xenia, $\mathrm{OH} 45385^{\circ}(513)$ 220-967

High Performance
 vhf/uhf preamps

R-4C Enhancements

Receive Only	Freq. Range (MHz)	$\begin{aligned} & \text { N.F. } \\ & \text { (dB) } \end{aligned}$	$\begin{aligned} & \text { Gain } \\ & \text { (dB) } \end{aligned}$	1 dB Comp. (dBm)	Device Type	Price
P28VD	28.30	<1.1	15	0	DGFET	\$29.95
P50VD	50-54	<1.3	15		DGFET	\$29.95
P50VDG	50.54	<0.5	24	+12	GaAsFET	\$79.95
P144VD	144-148	<1.5	15	0	DGFET	\$29.95
P144VDA	144.148	<1.0	15	0	DGFET	\$37.95
P144VDG	144-148	<0.5	24	$+12$	GaAsFET	\$79.95
P220VD	220-225	<1.8	15	0	DGFET	\$29.95
P220VDA	220-225	<1.2	15	0	DGFET	\$37.95
P220VDG	220-225	<0.5	20	+ 12	GaAsFET	\$79.95
P432VD	420-450	<1.8	15	-20	Bipolar	\$32.95
P432VDA	420-450	<1.1	17	-20	Bipolar	\$49.95
P432VDG	420-450	<0.5	16	+12	GaAsFET	\$79.95
Inline (rf switched)						
SP28VD	28-30	<1.2	15	0	DGFET	\$59.95
SP50VD	$50-54$	<1.4	15	0	DGFET	\$59.95
SP50VDG	$50-54$	< 0.55	24	$+12$	GaAsFET	\$109.95
SP144VD	144.148	<1.6	15	0	DGFET	\$59.95
SP144VDA	144.148	<1.1	15	0	DGFET	\$67.95
SP144VDG	144.148	< 0.55	24	+12	GaAsFET	\$109.95
SP220VD	220-225	<1.9	15	0	DGFET	\$59.95
SP220VDA	220-225	<1.3	15	0	DGFET	\$67.95
SP220VDG	220-225	<0.55	20	+12	GaAsFET	\$109.95
SP432VD	420-450	<1.9	15	-20	Bipolar	\$62.95
SP432VDA	420-450	<1.2	17	-20	Bipolar	\$79.95

Every preamplifier is precision aligned on ARR's Hewlett Packard HP8970A/HP346A state-of-the-art noise figure meter. RX only preamplifiers are for receive applications only. Inline preamplifiers are if switched (for use with transceivers) and handie 25 watts transmitter power. Mount iniline preamplifiers between transceiver and power amplifier for high power applications. Other amateur, commercial and special preamplifiers available in the 1.1000 MHz range. Please include $\$ 2$ shipping in

Advanced Receiver Reseorch

AMP-4, PD-4, Replacement PC Boards
Front-Panel 6-Position AGC / Filter Switch
Plug-in Second I-F Accessory Filters
CF-1.7K/8, Sharp SSB. Better than F1-1500.
CF-1.0K/8, Wide CW. Super scanning filter. CF-500/8, Standard-bandwidth (W
CF-250/8. Low-lose narrow bandwidth (W
Switchable First t-1 Filter Solutions
CF-2K/8, Sharp Filter Pair for Contests and DX. CF-5K/8, First I-F Replacement.
CF-600/6. The Ultimate CW Upgrade!

Sherwood Engineering Inc.

1268 South Ogden Street, Denver, (C) 80210 (303) $722-2257$ Monday - Friday 9 A.M. SP.M.

Sales, Service \& Installations from:
Design Electronics Ohio, KN8/ (614) 836.5711 Days, (614) 836-3376 Evenings 1.TA Industrics. K3LR (412) 528.9302 , or (216) 533.7916 U.S. and Canada. Connecticut residents add $7.1 / 2 \%$ sales tax. C.O.D. orders add $\$ 2$. Air mail to foreign coun-
tries add 10%. Order your ARR Rx only or inline tries add $\mathbf{1 0 \%}$. Order your ARR Rx only or inline
preamplifier today and start hearing like never before!
 \title{
0
}
 \title{
0
}

Factory Authorized Dealer \& Service For

Call Us For
Great Prices \& Great Service

TOLL FREE ORDER LINE 1-800-344-3144

THEHAMSTORE
 SALES AMATEUR RADIO SERVICE

SERVICE MONITOR MEASUREMENTS MODEL FM 110

- Covers all business channels from 30 MHz to 512 MHz
- Monitor: 2uV. frequency error display, scope deviation display
- Generator: Calibrated output up to 10 mV , Sinad display
- Built-in Tone Generator

AMAZINGLY LOW PRICE OF ONLY

WE ACCEPT VISA, MASTERCARD \& AMERICAN EXPRESS
AIE CORPORATION - MEASUREMENTS DIVISION
PO BOX 70, BATESBURG, SOUTH CAROLINA 29006 (803)532-9256

Anti-rotate bracket for side-mounted mobile antennas.

I attached the aluminum bracket to my car with stainless steel sheet metal screws available from most hardware stores. My installation fits two different diameter antennas, so I cut the hole in the standoff for the larger one. I bushed out the smaller antenna with a 4 -inch length of clear plastic hose, also from the hardware store. I split it lengthwise and attached it with a hose
clamp. I added the L-shaped retainer at the front of the mount to prevent rotation in the forward direction (less likely). You'll need to vary my dimensions to fit your car and antenna(s).

This device has stood the test of several thousand miles and many QSOs. Thanks to Bob, W1KSK, for his original suggestion.

George Wilson, W1OLP

Tom McMullen, W1SL

OSCILLATORS

Oscillators have been a part of radio since the use of spark transmitters. The waves spark transmitters generated weren't the clean waveforms available with modern circuitry, but they were radio waves. They weren't selfsustaining; they reached an energy peak when first started, and each successive peak was weaker (because of circuit losses) until the wave died out completely. These were known as "damped' waves.

The vacuum tube saved the day. It allowed for the addition of enough power to the circuit to overcome the losses and maintain the waveform as long as voltage was applied. Vacuum tubes were standard in many types of oscillator circuits for many years, and are still the mainstay when you need more than a few watts of RF power to drive the next stage.

Transistors are prevalent in modern equipment. These small, quiet, relatively cool devices perform well as oscillators from audio frequencies up into the microwave region. But whether the oscillator is a tube or transistor, the thing that makes it perform is feedback.

Feedback - the vital ingredient

Basically, an oscillator is an amplifier with some of its output signal fed back to the input in a proper phase relationship. If the waveform phase adds to the input waveform, the circuit will oscillate; if it tends to cancel the input waveform, it won't.

Feedback that tends to cancel the input waveform is called negative feedback, and this very characteristic has been used in many circuits to improve their operation. For example, negative feedback is used in high-quality audio

amplifiers to reduce distortion and prevent overload. In RF circuits, negative teedback is called neutralization and is used to prevent oscillation. Circuit designers can use phase-shifting networks and filters to tailor feedback for almost any situation.

Here's an example of how feedback gets things started. Figure 1 shows a simple transistor circuit with a black

An oscillator is an amplifier with controlled feedback. Here, the "black-box" between the collector and base provides the voltage feedback and phase shift needed to keep oscillation going.
box called "feedback" connected between the output (collector) and input (base) of a transistor. (Don't worry about what's in the box right now.)

Let's say that the $A C$ voltage on the collector reaches 10 volts, and that the transistor provides a voltage gain of 20 (that's simple voltage gain, not decibels). All the black box needs to do is supply 0.05 volts to the base. The transistor will amplify that by 20 , and maintain the required 10 volts on the collector. A good design adds an extra fraction of a volt to the feedback to take transistor aging, low supply voltage, and other troubles into account - just to be safe. The phase of the voltage must be "aiding," that is, near 0 or 360 degrees. But applying too much feed-
back voltage isn't good. It can overdrive the transistor, causing the waveform to distort and create harmonics. The transistor will also draw more current than needed, and may overheat.

What's in the box?

You can obtain feedback in many ways, and electronic handbooks often show a dozen or more types of oscillators. Figure 2 represents an old standby used for many years in various commercial and Amateur applications. It's a tube circuit with a small coil in the plate circuit located near the windings connected to the grid. This was once called a "tickler" coil.

The amount of feedback was adjusted by moving the coil closer to or further from the input circuit. The phase was determined by having the winding start and finish properly connected in the plate circuit. The old rule of thumb was: "If it doesn't oscillate, reverse the feedback windings." Some oscillators in early receivers had a feedback coil that could be rotated, letting you fine tune the strength of oscillation. (A few of these oscillators were known as "regenerative receivers.") This isn't a very elegant method of

FIGURE 2

An early "brute force" type of feedback used a plate coil located so that its magnetic field was coupled to the grid tuned circuit.

THE PITURE OF amateur communications

Once in a lifetime, a transceiver is introduced that's so extraordinary and innovative that it opens a totally new era in HF communications. ICOM's pacesetting |C-781 proudly exhibits that hallmark achievement with futuristic designs and features of true legendary proportions. Whether DX'ing, contesting, pioneering new interests or enjoying unquestionable top-of-the-line performance, the IC-781 is indeed today's standard of excellence!

Multi-Function Five Inch CRI. Displays frequencies, modes, memory contents, operating notes, RIT, two menu screens, plus a panoramic view of all signals in a selected range. A portion of the screen also serves as a display for data modes like RITY, AMTOR. and PACKEI.

Unique Spectrum Scope. Continuously indicates all signal activities and DX pileups with your operating frequency in the center. Selectable horizontal frequency spans of 50 .

100 , and 200 KHz for each side of the frequency you're listening to. Vertical range indicates relative signal strengths. A contester's dream!

Dual Width Noise Blanker includes MCF filter plus level and width controls to eliminate pulse and woodpecker noise with minimum adjacent-signal interference.

Incomparable Filter Flexibility. Independent selection of wide and narrow SSB filters plus CW filters. Second and third CW IF filters are independently selectable!

Dual Watch. Simultaneously receives two frequencies in the same band! Balance control adjusts VFO A / B receive strength levels. You can check additional band activity. even tune in your next contact, while in QSO without missing a single word!

DX Rated! 150 watts of exceptionally clean RF output. Easily drives big amplifiers to maximum power.

Twin Passband Tuning with separate controls for second and third IF stages! Increases selectivity and narrows bandwidth, independently varies low and high frequency response, or functions as IF shift. If's DX'ing Dynamite!

A Total Communications System!

 Includes built-in 100\% duty AC supply, high speed automatic antenna tuner, iambic keyer, semi-automatic or full QSK CW breakin to 60 wpm , Audio Peaking Filter (APF), RF speech processor, multiscanning, 105dB dynamic range, all-band/all-mode receiver with general coverage, and much more!ICOM Dependability. The phenomenal IC-781 is built for action and backed with the most extensive warranty in the industry.

See the IC-781 at your local ICOM dealer.

ICOM

First in Communications
ICOM America, Inc., 2380 116th Avenue N.E, Bellevue, WA 98004 Customer Service Hotline (206) 454.7619
3150 Premier Drive, Suite 126, Iving, TX 75063
1777 Phoenix Parkway, Suite 201, Atlanta, GA 30349 ICOM CANADA, A Division of ICOM America, Inc., 3071 - H5 Road, Unit 9, Richmond, BC. V6X 2T4 All stated specifications subiect to change without notice or obligation All ICOM radios significantly exceed FCC reguations limiting spurious emissions. 781188

PLAN YOUR SPRING ANTENNA WORK NOW!

THE ARRL ANTENNA BOOK Written by members of the ARRL Technical Department staff and sixteen well-known outside authors, all of whom have done much to contribute to the state-of-the-art in antenna and transmission line theory and practice. The recently published 15th Edition presents the best and most highly regarded information on antenna fundamentals, propagation, transmission lines, Yagis and quads, as well as all of the popular wire antenna designs. You'll find antennas for limited space, portable, mobile, VHF, UHF, microwave and space communications. Contains over 700 pages and 987 figures. Chapter lineup: Safety First, Antenna Fundamentals, The Effects of Earth, Selecting Your Antenna System, Loop Antennas, Multielement Arrays, Broadband Antennas, Log Periodic Arrays, Yagi Arrays, Quad Arrays, Long Wire and Traveling Wave Antennas, Direction Finding Antennas, Portable Antennas, Mobile and Maritime Antennas, Repeater Antennas Systems, VHF and UHF Antenna Systems, Antennas for Space Communications, Spacecraft Antennas, Antenna Materials and Accessories, Antenna Supports, Radio Wave Propagation, Transmission Lines, Coupling the Transmitter to the Line, Antenna and Transmission Line Measurements, Smith Chart Calculations, Topical Bibliography on Antennas, Glossary and Abbreviations. Edited by Gerald L. Hall, K1TD, QST Associate Technical Editor. Copyright 1988, \#2065 \$18*.

- For postage and handling add $\$ 2.50$ ($\$ 3.50$ for insured parcel post or UPS, please specity)

YAGI ANTENNA DESIGN is based on the series in Ham Radio Magazine by the late Dr. James L. Lawson, W2PV. Jim designed and built a highly competitive and successful Amateur Radio contest station. 210 pages cover the following subjects: Performance Calculations, Simple Yagis, Performance Optimization, Loop Antennas, Ground Effects, Stacking, Practical Designs, Designs for 7 through 28 MHz . Hardcover, Copyright 1986. \#0410 \$15*.

NOVICE ANTENNA NOTEBOOK At last, an antenna book written for the beginner! Don't let the lack of an antenna keep you from getting on the air. With this book you can choose which wire, vertical or beam antenna suits your needs, and you'll be ready for all of the fun of seeing that the antenna you put up really works! Contains pictorial drawings that show dimensions for Novice and Technician band use. Written by W1FB in his usual plain language style that makes him so popular as a QST author. Copyright 1988, \#2073 \$8*

ANTENNA COMPENDIUM We don't have room for all of the good antenna articles that are submitted to QST; so we have packed this volume with new material on verticals, quads, loops, Yagis, reduced-size antennas, baluns, Smith Charts, antenna polarization and other interesting subjects. 176 pages, Copyright 1985. \#0194 \$10*

LOW BAND DXING John Devoldere, ON4UN completely explores the 160,80 ,
and 40 -meter bands. A large portion of this book is devoted to propagation characteristics and design and building of efficient antennas for these bands. 210 pages, Copyright 1987, \#047X \$10.

HF ANTENNAS FOR ALL LOCATIONS was written by L.A. Moxon, G6XN for the RSGB. Contains 264 pages of practical antenna information. This book is concerned primarily with small wire arrays, but you'll find descriptions of some aluminum antennas as well. Copyright 1982, \#R576 \$15*

TRANSMISSION LINE TRANSFORMERS

At last there is a source of practical design data covering the use of these devices for both commercial and amateur applications. Written by Dr. Jerry Sevick, W2FMI, this book covers types of windings, core materials, fractional-ratio windings, efficiencies, multiwinding and series transformers, baluns, limitations at high impedance levels and test equipment. Hardcover, 128 pages, Copyright 1987. \#0471 \$10*.

W1FB'S ANTENNA NOTEBOOK Not everyone has a great deal of real estate to put up a forest of aluminum. Doug DeMaw tells how to get the best performance out of unobtrusive wire antennas and verticals and how to build tuners and SWR bridges. 122 pages, Copyright 1987, \#0488 \$8** For shipping and handling add $\$ 2.50$ ($\$ 3.50$ for insured parcel post or UPS)-please specify.

FIGURE 3

A modern circuit uses feedback from the emitter to base of a transistor via C3. C3 and C4 form a voltage divider; R1 and R2 provide base bias. The collector is bypassed to ground for RF, and output is taken from the emitter via C6.
providing feedback, but it works. Because physical vibration and temperature cause problems in oscillators, it follows that a circuit with two coils prone to vibration and heat will be more unstable than a circuit with only one.

Figure 3 takes another approach to feedback. In a more modern transistorized circuit, a capacitive voltage divider couples some of the energy from the emitter circuit to the base circuit. The value of the capacitors from base to emitter and emitter to ground determines the strength of the feedback signal. The resonance of the tuned circuit sets the frequency of oscillation. The collector circuit is bypassed for RF, which completes the signal path back to the emitter.

You may wonder how the oscillation gets started in the first place. When power is first applied to an oscillator, the rush of current through the transistor (or tube) and the tuned circuit starts the "store energy/release energy" cycle. This cycle peaks at the circuit's resonant frequency. The action creates a small signal at the base (or grid, in a tube). Because the circuit is an amplifier, this small signal is amplified. A portion of it is then fed back to the input to further enhance the oscillation and be amplified again, and so it goes. The whole procedure requires only a few cycles to reach full strength.

Audio oscillators get started in a similar fashion, except that most depend upon a resistance/capacitance phaseshift network to determine the frequency of oscillation. The voltage change across the output load resistor creates a starting signal, which is fed back, amplified, and so on. It's possible to use a transformer to obtain
inductively coupled feedback for an audio oscillator, but why lug the heavy iron around if you can use something else?

Back to the RF circuits. Figure 4 shows two oscillators that use crystals as their frequency-determining element. In Figure 4A, the crystal is connected from base to ground. It serves the same purpose as the tuned circuit in Figure 3, by forming a parallel-
resonant circuit at the base. In Figure 4B, the crystal is a series-resonant type and provides feedback at the crystal frequency directly from collector to base.
There are many variations of these circuits; some have names associated with their inventors. Figures 3 and 4A, for example, are versions of what is often called a Colpitts oscillator; Figure $4 B$ is a Pierce oscillator.

In Figure 5, you'll notice one of those voltage-variable capacitors I explained in last month's column. It looks like a cross between a capacitor and a diode, and changes its capacitance in proportion to the DC voltage applied. In the circuits used last month, I varied the negative (-) voltage applied to the diode to change the capacitance. Instead of using two supplies, one negative and one positive, this circuit simply reverses the diode and varies the positive $(+)$ voltage to tune the circuit by means of R1.

What makes an oscillator unstable?

Frequency stability is one of the

FIGURE 4A

A Colpitts-type crystal oscillator.

FIGURE 4B

A Pierce-derivative crystal oscillator. This crystal provides feedback at its natural frequency. C1 and C3 are small-value capacitors used to stabilize the amount of feedback, preventing overdrive to the transistor and crystal.

	SYNTHESIZED SIGNAL GENERATOR	
$\begin{gathered} \text { MADE IN } \\ \text { USA } \end{gathered}$	y	MODEL SG-100F S429.95

- Covers 100 MHz to 199.999 MHz in 1 kHz steps with thumbwheel dial Accuracy +/- 1 part per 10 million at all frequencies - Internal FM adjustable from 0 to 100 kHz at a 1 kHz rate - External FM input accepts tones or voice - Spurs and noise at least 60 dB below carrier - Output adjustable from $5-500 \mathrm{mV}$ at 500 hms - Operates on 12 Vdc @ $1 / 2 \mathrm{Amp}$ Available for immediate delivery • $\$ 429.95$ delivered - Add-on accessories available to extend freq range, add infinite resolution, AM, and a precision 120 dB attenuator - Call or write for details - Phone in your order for fast COD shipment.

VANGUARD LABS
196-23 Jamaica Ave., Hollis, NY 11423
Phone: (718) 468-2720 Mon. thru Thu.

FIGURE 5

A VFO circuit using a voltage-variable capacitor as the tuning element. This can also be called a voltage-controlled oscillator (VCO).
prime goals in designing and building an RF oscillator of any type. Mechanical stability is a close second.

It's almost impossible to design an oscillator that ignores temperature changes, but there are tricks that help you come close. Because many components cause frequency changes when the circuit gets warmer, it's possible to use temperature-compensating capacitors to provide an opposing characteristic when they warm up. If you select the proper values, the result will be an almost temperaturestable oscillator.

Of course, keeping the entire circuit away from other elements that produce heat makes your task much easier. Power supply rectifiers, transformers, and sometimes filter capacitors plus power-amplifier stages all heat up their surroundings, and you should avoid them when placing an oscillator on a chassis. Ventilate the enclosure to let heat escape or, if that isn't possible, use good heat-sink material to get the heat out of the box and into the free air where it won't harm anything. Good design also calls for keeping the current drawn by the oscillator device as low as possible. Current passing through resistors (and tubes or transistors) produces heat, so the less heat produced, the less heat there is to be dissipated

Mechanical instability is evident in two forms. One form is called microphonics. If you tap on the enclosure and hear a "boing" when listening to the oscillator in a receiver, you have microphonics. The other form is a noise or a jump in frequency when you tune the oscillator. The
microphonic type is caused by something moving in the RF field of the oscillator-tuned circuit. It may be the walls of the enclosure, a nearby component with long leads, or even the tuned circuit components (loose windings and air-variable capacitors are prime suspects). The cure is to mount everything very rigidly, and allow space between the coil and other components so that the RF field doesn't intercept a loose or vibrating part. Heavy or rigid oscillator-enc sure walls and chassis help too.

Noise and frequency jumps are usually caused by dirty contacts in the variable capacitor of the tuned circuit. Even the voltage-variable capacitor isn't immune, because the potentiometer that changes the voltage can become noisy just as volume controls do in an audio circuit. Clean contacts are the answer for the variable capacitor. There are chemical solutions that you can use to cure the problem in both capacitors and variable resistors. If all else fails, replace the noisy part with a new one. It's worth noting that even oscillators that vary the inductance rather than the capacitance are not immune to this problem, because anything that is in the RF field of the coil can induce noise (and temperature instability) into the circuit.

SHORT CIRCUIT HOTLINE

Building a current ham radio project? Call the Short Circuit Hotline any time between 9 AM and Noon, or 1 to 3 PM - Eastern time - before you begin construction. We'll let you know of any changes or corrections that should be made to the article describing your project.
(See "Publisher's Log." April, 1984, page 6, for details.)

IMPEDANCE MATCHING TRANSFORMERS AND LADDER LINE

Simple schemes
for matching
50-ohm coax
to ladder line

By Peter H. Anderson, KZ3K, 915 Holland Road, Bel Air, Maryland 21239

Hams enjoy experimenting with antennas. Simple wire types require a minimal investment, and the parts (consisting of nothing more than wire and insulators) are readily available. I've been working with 1:4 impedance transformers and ladder-line transmission line and would like to share what l've learned.

Introduction

A number of years ago I won my one and only door prize at a hamfest. It was an all-band "dipole-like" antenna consisting of 130 feet of wire center fed with 450-ohm transmission line. I couldn't wait to put up my new "toy" and give it a try. Imagine my disappointment when I found that it didn't work.

My preference for 450 -ohm line used in conjunction with 1:4 ferrite transformers began with that antenna. I solved my impedance-matching problems using those transformers, and the antenna still works well today. I've since changed the feeds for all my other HF antennas to 450 ohm ladder line using the type of $1: 4$ impedance transformers shown in Photo A.

Ladder line has a lot to recommend it over coaxial cable. For instance, it's inexpensive and very light. Many of us depend on the smallest of twigs at the top of a tree to achieve maximum height when erecting a dipole. Anyone who has attempted to hoist the end of a dipole that's center fed with RG-8 can attest to the frustration of having those twigs break. The entire antenna falls, and you end up with a ' V " shaped dipole.

Unlike coax, ladder line doesn't fill up with water, and I take a bit of comfort in being able to "see" whether the line is intact. Ladder line is also balanced and relatively loss-
less. Within hours of putting up a new antenna, I usually find myself wanting a bit more bandwidth than it can provide. Ladder line gives me flexibility in using a tuner that coaxial cable does not.

The difficulty with using ladder line seems to be in matching the 50 -ohm rig to the 450 -ohm tramsmission line and the transmission line to even the simplest of dipoles.* This drawback has become more apparent with the wide proliferation of solid-state rigs with a fixed 50 -ohm output.

General analysis of 1:4 impedance transformer

Take a look at the general 1:4 impedance-matching autotransformer in Figure 1. It includes some practical implementations. Note that the output ("b" side) may be balanced or unbalanced depending on where ground is supplied on the input ("a" side).
A rigorous analysis of the network, which assumes only that the two coils are tightly coupled with one another, results in the following expression:**

$$
\begin{equation*}
\mathrm{Z} a=\frac{R b}{4.0-j \frac{R b}{X l}} \tag{1}
\end{equation*}
$$

The j operator in the denominator indicates that the second term adds to the first at right angles, as shown in Figure 2 . Note that if $2 \pi \mathrm{fL} 1$ (the inductive reactance) is "large"

[^1]
FIGURE 1

Schematic representation of 1:4 impedance transformer and implementations using a rod and toroid. The dots refer to the relative positioning of the windings. Each bifilar turn consists of two conductors tightly coupled to one another.

PHOTO A

An implementation of a $1: 4$ transformer using a ferrite rod. The design shown is unbalanced; ground is applied to one side of the transformer versis the center. Small applications of epoxy hold the rod in place.
in relation to Rb , the first term in the denominator swamps the second and the expression reduces to:
$\mathrm{Za}=\mathrm{Rb} / 4$
The input impedance is $\mathrm{Rb} / 4$ and is purely resistive. The fact that the inductive reactance is large in relation to Rb is particularly important. It raises questions about how large "large" is, and about what happens if the inductive reactance isn't "large" enough.
Figures 3 A and B provide a graphical analysis of Equation 1. Figure 3A shows that the ratio of the resistive portion of Za to Rb approaches 0.25 as the frequency increases for all values of Rb divided by L1 - that is, as the inductive reactance becomes "large" in relation to Rb. You'll note that at a particular frequency the ratio approaches 0.25 as Rb decreases in relation to L1, or as L1 increases in relation to Rb. Figure 3B is interesting because it shows that the

FIGURE 2

The joperator indicates the quantities add at right angles. If $\mathrm{Rb} / \mathrm{XI}$ is small in relation to 4.0 , the denominator is close to 4.0 . However, if Rb is large in relation to 4.0 , the denominator is $\mathrm{Rb} / \mathrm{XI}$.
reactive component seen on the "a" side may either increase or decrease with increasing frequency. Note that the reactive component is always positive (inductive).

Analysis of an inadequate design

The following example shows how to use Figures 3A and B to analyze the performance of an impedance transformer.
As one of my earliest projects, I attempted to match my 50 -ohm transmitter to an end-fed wire which was about 135 ohms resistive at 3.5 MHz (see Figure 4). I reasoned that $135 / 4$ wasn't 50 , but it was close enough. I wasn't prepared for the 10 ohms plus the substantial reactive component which resulted, and I dropped the project in frustration.
I used the T-200-2 iron powder core (usually red in color).* It's probably the most common toroid-type core used at high HF power levels by the Amateur fraternity.
Consider a nine-bifilar turn arrangement at 3.5 MHz : $L l($ in $\mu H)=(\text { turns } / I 00)^{2} \times A l$ where $A l$ is in $\mu \mathrm{H}$ per 100 turns.

[^2]
KENWOOD

This HT Hav Alli! TH-215A/315A/415A
 Full-featured Hand-held Transceivers
 Kenwood brings you the greatest hand-held trans-
 KENWOOD

ceiver ever! More than just "big rig performance," the new TH-215A for 2 m, TH-315A for 220 MHz , and TH-415A for 70 cm pack the most features and the best performance in a handy size. And our full line of accessories will let you go from hamshack to portable to mobile with the greatest of ease!

- Wide receiver frequency range. Receives from $141-163 \mathrm{MHz}$. Includes the weather channels! Transmit from $144-148 \mathrm{MHz}$. Modifiable to cover $141-151 \mathrm{MHz}$ (MARS or CAP permit required).
- TH-315A covers $220-225 \mathrm{MHz}$, TH-415A covers $440-449.995 \mathrm{MHz}$.
- $5,2.5$, or 1.5 W output, depending on the power source. Supplied battery pack (PB-2) provides 2.5 W output. Optional NiCd packs for extended operation or higher RF output available.
- CTCSS encoder built-in. TSU-4 CTCSS decoder optional.
- 10 memory channels store any offset, in $100-\mathrm{kHz}$ steps.
- Odd split, any frequency TX or RX , in mernory channel " 0 "
- Nine types of scanning! Including new "seek scan" and priority alert. Also memory channel
- Intelligent 2-way battery saver circuit extends battery life. Two battery-saver modes to choose. with power saver ratio selection.
- Easy memory recall. Simply press the channel number
- 12 VDC input terminal for direct mobile or base station supply operation. When 12 volts applied, RF output is 5 W ! (Cable supplied!)
- New Twist-Lok Positive-

Connect locking battery case.

- Priority alert function.
- Monitor switch to defeat squelch. Used to check the frequency when CTCSS encode/decode is used or when squelch is on.

- Large, easy-to-read multi-function LCD display with night light. - Audible beeper to confirm keypad operation. The beeper has a unique tone for each key. DTMF monitor also included.
- Supplied accessories: Belt hook. rubber flex antenna, PB-2 standard NiCd battery pack (for 2.5 W operation), wall charger, DC cable, dust caps.

Optional Accessories:
-PB-1 12 V. 800 mAH NiCd pack for 5 W output - PB-2:8.4 V, 500 mAH NiCd pack (2.5 W output) - PB-3: $72 \mathrm{~V}, 800 \mathrm{mAH}$ NiCd pack (1.5 W output) - PB-4:7.2 V. 1600 mAH NiCd pack (1.5 W output) - BT- 5 AA cell manganese/alkaline battery case $-\mathrm{BC}-7$ rapid charger for $\mathrm{PB}-1,2,3$ or $4-\mathrm{BC}-8$ compact battery charger - SMC- 30 speaker mictophone - SC-12, 13 soft cases - RA -3.5 telescoping antennas -RA-8B StubbyDuk antenna - TSU-4 CTCSS decode unit - VB-2530: $2 \mathrm{~m}, 25 \mathrm{~W}$ amplifier ($1-4 \mathrm{~W}$ input) - LH-4. 5 leather cases - MB-4 mobile bracket - BH-5 swivel mount - PG-2V extra DC cable -PG-3D cigarette lighter cord with fiter

145

SUPER PERFORMANCE BATTERIES

SUPER ICOM
SUPER ICOM BP-7S, 13.2 volts 900 ma , double the capacity of the Icom BP.7.5w output
SUPER ICOM BP-8S, 9.6 volts, 1200 ma . 50% more capacity than the Icom BP - 8 .
Both are rapid base charge only. or slide in wall charger, 4 inches high. BP-7S or BP-8S. $\$ 69.00$.

SUPER KENWOOD

SUPER KENWOOD PB-25S/PB-26S.

 8.4 volts. 900 ma, double the capacity of the PB-25/PB-26 for the 2500/ 2600/3500/3600. Charge with either the standard wall charger or drop in charger 3 inches high. $\$ 65.00$

SUPER YAESU

SUPER YAESU FNB-4SH, 12 volts, 1000 ma , double the capacity of the Yaesu FNB-4. 5 watt output. Rapid charge only. \$71.00
SUPER YAESU FNB-3S, 9.6 volts 1200 ma , triple the capacity of the Yaesu FNB-3, 3.5 watt output. Rapid or wall charge. $\$ 60.00$
Both are perfect for the 03, 09 and 727 series radios and are 4 inches high.
Inserts for:
Kenwood PB-25, 25H, 26
$\$ 29.00$
Exact replacement FNB-2 Nicad pack for Yaesu FT-404R/207R/208R/708 Icom BP-3
$\$ 22.00$
Icom BP-5 (500ma
Icom BP-7 (500 ma)
Icom BP-8

Add $\$ 4.00$ shipping \& handling for first pack CT residents add $7 \% \%$ tax
Complete line of NICAD packs for Icom, Kenwood, Yaesu, Tempo, Santec, Azden, Cordless Telephones
Alkaline, Nicad, and Gell-Cells. All NICAD packs include a 1 year guarantee. Commercial Radio Packs also
available
For all your battery needs, write or call today for a complete catalog. Dealer inquiries invited Made by Hams for Hams

SEE YOU AT DAYTON

MASTER PACKET RADIO: the hands on guide

by Dave Ingraham, K4TWJ

Appeais to all leveis of packet radio enthusiasts from novices to experts alike. Full of illustrations and written in a simple, easy-tounderstand style. Topics covered include: a basic primer, home computers and data communications terminals, a survey of equipment available, how to setup a station plus much more. 208 pages () 1988 1st edition.
$\square 22567$
Softhound $\$ 12.95$
YOUR GATEWAY TO PACKET RADIO by Stan Horzepa, WA1LOU
Beginners will find the complete easy-to-understand explanations eliminate many of the frustrating aspects of packet operation. Full of helpful hints and tips that come from thousands of hours of on-the-air experience. 208 pages © 1987
-AR-PKT
Softbound $\$ 9.95$
THE PACKET RADIO HANDBOOK

by Jonathan Mayo, KR3T

Providing you first with packet basics, this book progresses through the inner workings and operational aspects of packet to a look at future technology stillindevelopmental stages. Also includes: using bulletinboards, tratfichanding on packet, modulation methods and networking principles, protocols (both AX. 25 and VADCG) and a thorough discussion of the various TNCs and accessories available. © 1987 1st Edition 218 pages.
-T-2722

Softhound $\$ 14.95$

ARRL COMPUTER NETWORKING
CONFERENCES 1-4
Pioneer Papers on Packet Radio 1981-1985
Written during the formulative years of Packet development, these papers (too numerous to mention them all) cover: theory, practical applications, protocols, software and hardware sub-
jects. You also get a complete up-to-date collection of all published "Gateway", the ARRL Packet Radio newsletter. As big as the ARRL. HANDBOOK. © 1985 over 1000 pages.
$\square A R-C N C$
Softbound \$17.95
5th COMPUTER NETWORKING
CONFERENCE PAPERS © 1986
-AR-CNC5
Softbound $\$ 9.95$

6th ARRL COMPUTER NETWORKING

CONFERENCE ©1987
August 1987
\square AR-CNC6
Softbound $\$ 9.95$
7th ARRL COMPUTER NETWORKING
CONFERENCE ©1988
-AR-CNC7
Softbound $\$ 11.95$
INTRODUCTION TO PACKET RADIO
by Phil Anderson, WaxI
This book contains a broad overview of packet radio for the beginner. Simple technical discussions are designed to inform, not scare the beginner. © 1988.58 pages. 1st Edition.

Softbound \$2.95

PACKET COMMAND

by Buck Rogers, K4ABT
This book is a basic look at packet radio from the inside out. Similar commands are grouped together with simple easy-to-understand explanations. ©1988 58 pages, ist Edition.
-KT-PC
Softbound $\$ 2.95$

ADVANCED PACKET

by Buck Rogers, K4ABT

This book looks at the more advanced side of packet operation. Includes 2400 baud data transfer, FAX and WEFAX, packet cluster information and more. © 1988, 58 pages, 1st Edition
DIGITAL COMMUNICATIONS

WITH AMATEUR RADIO

special AEA edition by Jim Grubbs, K9EI
Starts with a basic review of dipital communications and techniques and includes a complete description of what packet radio is all about. TNCS, operating modes, networking are all fully covered in easy-toundestand terminology. Also covered are accessories, innovations and interesting organizations you can join. © 1988, 1st Edition, 160 pages.
-AEA-PKT
Softbound $\$ 9.95$
Please enclose $\$ 3.75$ shipping and handling.

HAM RADIO'S
 BOOKSTORE

Greenville, NH
03048
(603) 878-1441

Wide Dynamic Range and Low Distortion - The Key to Superior HF Data Communications

- Dynamic Range $>75 \mathrm{~dB}$
- 400 to 4000 Hz
- BW Matched to Baud Rate
- $\mathrm{BER}<1 \times 10^{-5}$ for $\mathrm{S} / \mathrm{N}=0 \mathrm{~dB}$
- 10 to 1200 Baud
- Linear Phase Filters

ST-8000 HF Modem

Real HF radio teleprinter signals exhibit heavy
fading and distortion, requirements that cannot be measured by standard constant amplitude BER and distortion test procedures. In designing the ST-8000, HAL has gone the extra step beyond traditional test and design. Our noise floor is at -65 dBm , not at -30 dBm as on other units, an extra 35 dB gain margin to handle fading. Filters in the ST-8000 are all of linear-phase design to give minimum pulse
distortion, not sharp-skirted filters with high phase distortion. All signal processing is done at the input tone frequency, heterodyning is NOT used. This avoids distortion due to frequency conversion or introduced by abnormally high or low filter Q's. Bandwidths of the input, Mark/Space channels, and post-detection filters are all computed and set for the baud rate you select, from 10 to 1200 baud. Other standard features of the ST-8000 include:

- 8 Programmable Memories
- Set frequencies in 1 Hz steps
- Adjustable Print Squelch
- Phase-continuous TXTones
- Split or Transceive TX/RX
- CRTTuning Indicator
- RS-232C, MIL-188C, or TIL Data
- 8,600 , or 10 K Audio Input
- Signal Regeneration
- Variable Threshold Diversity
- RS-232 Remote Control I/O
- 100-130/200-250 VAC, $44-440 \mathrm{~Hz}$
- AM or FM Signal Processing
- 32 steps of M/S filter BW
- Mark or Space-Only Detection
- Digital Multipath Correction
- FDX or HDX with Echo
- Spectra-Tune and X-Y Display
- Transmitter PTT Relay
- 8 or 600 Ohm Audio Output
- Code and Speed Conversion
- Signal Amplitude Squelch
- Receive Clock Recovery
- $3.5^{\prime \prime}$ High Rack Mounting

Write or call for complete ST-8000 specifications.

HAL Communications Corp.

Government Products Division
Post Office Box 365
Urbana, Illinois 61801
(217) 367-7373 TWX 910-245-0784

$$
\begin{aligned}
L I(\text { in } \mu H) & =(9 / 100)^{2} \times 120 \\
& =0.972 \mu H
\end{aligned}
$$

(4)

Therefore, the inductive reactance at 3.5 MHz is:

$$
\begin{aligned}
X I & =2 \pi \times 3.5 E \times 10^{6} \times 0.972 E \times 10^{-6} \\
& =21.4 \text { ohms }
\end{aligned}
$$

This falls far short of the requirement that $X l$ be "large" in relation to Rb , which in this case was 135 ohms.
You can quickly calculate the resistive component of Za seen by the transmitter by referring to Figure 3 A . Rb/L1 is nominally 138 ohms per $\mu \mathrm{H}$. Using the curve for 150 ohms per $\mu \mathrm{H}$ as a guide, you can interpolate that the resistive part of $\mathrm{Za} / \mathrm{Rb}$ at 3.5 MHz is nominally 0.075 . This makes the resistive ratio of $Z a$ to R b 1:13 - a far cry from 1:4. Additionally, the input resistance seen by the transmitter is close to 10 ohms.
Find the reactive component using Figure 3B. By picturing a curve between Rb/L1=100 and 200 you can estimate the reactive component ratio to be nominally 0.1 . That is, 0.1×135 ohms $=13$ ohms. This means that at 3.5 MHz , the 135 -ohm resistance is "reflected" to the transmitter as 10 ohms resistive plus 13 ohms reactive. Note that the reactive element is inductive. All in all, mine was not a successful venture.

Developing a workable design for an end-fed wire

Your next step is to design a functional transformer for this antenna. According to Figure 3A, you need an Rb/L1 ratio of less than 15 ohms per $\mu \mathrm{H}$ to get close to a $1: 4$ impedance ratio at 3.5 MHz . Because Rb is equal to 135 ohms, L1 must be larger than $135 / 15=9 \mu \mathrm{H}$. Figure 3B shows that the reactive component at 3.5 MHz is $0.04 \times 135=5.4$ ohms, which is probably acceptable in relation to 33 ohms resistive. Use the relationship for iron powder toroids to find the number of turns required:

$$
\begin{align*}
\text { Turns } & =100 \times \sqrt{\text { (desired } \bar{d} L \text { in } \mu H / A l)} \\
& =100 \times \sqrt{(9 / 120)} \\
& =27.4 \text { turns } \tag{6}
\end{align*}
$$

Note that each turn is bifilar consisting of two wires. Getting 55 single turns of no. 12 or 14 enameled wire on a T. 200 core isn't possible. My own experience is that 15 bifilar turns is a practical maximum.

If you are confronted with the same problem at 7.0 MHz , look at Figure 3A and you'll see that an Rb/L 1 of 25 ohms per $\mu \mathrm{H}$ is sufficient. Consequently, L 1 must be a minimum of $135 / 25=5.4 \mu \mathrm{H}$. I calculated the number of bifilar turns to be 21 .

Now that l've gone through an analysis and design example. I'd like to offer some generalizations:

On 3.5 MHz a ratio of $\mathrm{Rb} / \mathrm{L} 1$ of 15 ohms per $\mu \mathrm{H}$ is adequate. At 7 and 14 MHz , ratios of 25 and 50 are adequate. Clearly, a broadband transformer designed using these criteria for one band will also perform on the higher ones.
So far l've considered an Rb of 135 ohms. We hams are usually interested in transforming Rb values on the order of several hundred ohms, and I concluded that the T-200-2 is very difficult to use on the lower HF bands. More than 21 bifilar turns simply don't seem to fit and I'm suspicious of parasitic capacitance; however, there's an easier alternative.

FIGURE 3A

FIGURE 3 B

Graphical analysis of Equation 1.

want to experiment with a toroid, the FT-240-61 might be a good prospect.
Consider a 13 -bifilar turn arrangement at 3.5 MHz :
$L l($ in mH$)=(\text { turns } / 1000)^{2} \times A l$
Where $A l$ is in mH per 1000 turns.
$L I($ in $m H)=(13 / 1000)^{2} \times 49$

$$
\begin{equation*}
=8.28 \mu H \tag{8}
\end{equation*}
$$

Assuming Rb is 135 , the $\mathrm{Rb} / \mathrm{L} 1$ ratio is 16.3 ohms per $\mu \mathrm{H}$. Using the $\mathrm{Rb} / \mathrm{L} 1=15$ ohms per $\mu \mathrm{H}$ curve in Figure 3A as

WHAT'S THE BIGGEST ISSUE IN HAM TV TODAY?

THE NEXT ISSUE OF AMATEUR TELEVISION QUARTERLY

- ACCURATE reporting
- TECHNICAL information
- VALUABLE content
- QUALITY production

SUBSCRIPTIONS:
1 Year \$15 U.S., \$20 Canada, \$25 Elsewhere

1545 Lee Street, Suite 73
Des Plaines, Illinois 60018
(312) 298-2269

WILAM TECHNOLOGY, Div. of
WI-COMM ELECTRONICS INC.
P.O. Box 5174, MASSENA, N.Y, 13662
(315) $769-8334$

BLACK DACRON ${ }^{\text {® }}$ POLYESTER ANTENNA ROPE

- UV-PROTECTED
- HIGH ABRASION RESISTANCE
- REQUIRES NO EXPENSIVE POTTING HEADS
- EASY TO TIE \& UNTIE KNOTS
- EASY TO CUT WITH OUR HOT KNIFE
- SIZES: $3 / 32^{\prime \prime} 3 / 16^{\prime \prime} 5 / 16^{\prime \prime}$
- SATISFIED CUSTOMERS DECLARE EXCELLENCE THROUGHOUT U.S.A.

LET US INTRODUCE OUR DACRON* ROPE TO YOU • SEND YOUR NAME AND ADDRESS AND WE'LL SEND YOU FREE SAMPLES OF EACH SIZE AND COMPLETE ORDERING INFORMATION.

Dealer Inquiries Invited

GALLATIN RADIO SUPPLY

Expert repair of Ehrhorn ALPHA 76A, 374A, 78 and 77D series amplifiers.
Also specializing in state-of-the-art repair and modification of the Collins KWM/HF-380 series radios. Latest up-dates available. Factory Authorized. You won't believe the improvement in your radio when it gets back!

Call for more information or to schedule your work.
Gallatin Radio Supply
Attn: Kirby Van Horn
P.O. Box 60064

Houston, Texas 77205
(713) 320-2324

Authorized MADISON Electronics repair facility.

FIGURE 4

Using a noise bridge I determined the impedance of a 130 -foot endfed wire was nominally 135 ohms resistive. The transformer reflected this to present a $135 / 4=34$ ohms load to the transmitter.

FIGURE 5

For large impedances two 1:4 transformers may be cascaded to realize a 1:16 impedance transformer. However, the inductive reactance of $\mathbf{T 2}$ must be large in relation to the load impedance. (See text.)

Ferrite toroids appear to be the answer. Unfortunately, they're relatively expensive and more susceptible to core saturation. I focused on the R61-050-750 ferrite rod; if you want to experiment with a toroid, the FT-240-61 might be a good prospect.
Consider a 13 -bifilar turn arrangement at 3.5 MHz :
$L l($ in $m H)=(\text { turns } / 000)^{2} \times A l$
Where $A l$ is in mH per 1000 turns.

$$
\begin{align*}
L l(\text { in } m H) & =(13 / 1000)^{2} \times 49 \tag{7}\\
& =8.28 \mu H \tag{8}
\end{align*}
$$

Assuming Rb is 135 , the $\mathrm{Rb} / \mathrm{L} 1$ ratio is 16.3 ohms per $\mu \mathrm{H}$. Using the $\mathrm{Rb} / \mathrm{L} 1=15$ ohms per $\mu \mathrm{H}$ curve in Figure 3A as a guide, you can calculate the resistive $\mathrm{Za} / \mathrm{Rb}$ ratio at 3.5 MHz to be 0.23 . This means the resistive portion of Za seen by the transmitter is $0.23 \times 135=33$ ohms, very close to 135/4. The reactive component, taken from Figure 3B, is less than 5 ohms.
As the frequency increases, the $2 \pi \mathfrak{f L 1}$ becomes increasingly larger in relation to the Zb of 135 ohms, and the transformer operates correctly as a 1:4 transformer. The finished product is shown in Photo A .

Using cascaded 1:4 transformers for matching to larger impedances

You can modify this basic approach to match impedances exceeding 400 ohms to a nominal 50 ohms. See Figure 5 for the circuit.
Consider a 600 -ohm feedpoint impedance. A $1: 16$ impedance transformer consisting of two cascaded 1:4 trans-
formers changes the impedance to $600 / 16=37.5$ ohms, which is "close" to 50 ohms. Note that the Rb seen by the second tranformer is 600 ohms. To meet a requirement of $\mathrm{Rb} / \mathrm{L} 1$ greater than $15, \mathrm{~L} 1=600 / 15=40 \mu \mathrm{H}$ (or 0.04 mH). The number of bifilar turns on a ferrite rod are calculated by:
Turns $=1000 \times \sqrt{(0.04 / 49)}$
$=28.5$ bifilar turns (57 conductors)
This is tight, but not impractical. But the 58 bifilar turns (116 conductors) that would be required on a T-200-2 powder iron toroid, are simply not possible.
Note that the first transformer sees an Rb of $600 / 4=150$. This tranformer can be implemented simply by using the 13 turns on a ferrite rod discussed above.

Observations

Plots of the resistance and the reactance seen on the " a " side for a number of different 1:4 transformers terminated in 200 ohms are shown in Figures 6 and 7. Using a noise bridge, I found that actual resistance measurements agreed closely with this theoretical performance.
The results speak for themselves. If you want to match several hundred ohms on the 40 and 80 -meter bands,

FIGURE 6

Resistive component response for various transformer materials.

FIGURE 7

Reactive component response for various transformer materials.
remember that the $\mathrm{T}-200-2$ is not a $\mathrm{Zb} / 4$ transformer. The resistive portion of the impedance seen on the "a" side isn't anywhere close to one quarter and there's a substantial reactive component. On the other hand, the ferrite rod gives pretty good performance as a 1:4 arrangement across the HF spectrum from 80 meters up, and it might prove usable on 160 meters.

This doesn't rule out the T-200-2 as a matching transformer. You could null out the reactive component with a series capacitor, and use the "1:4 tranformer" to achieve the ratio you want by controlling the number of turns. For example, if you have a 300 -ohm termination that you want to reflect as 50 ohms at $7.0 \mathrm{MHz}, 50 / 300=0.167$. Using Figure 3A, locate the point at X coordinate (7 MHz) and Y coordinate (0.167). I estimate that an Rb/L1 of nominally 130 ohms per $\mu \mathrm{H}$ passes through this point. Therefore $\mathrm{L} 1=\mathrm{Rb} / 130=300 / 130=2.3 \mu \mathrm{H}$. Using a T-200-2 iron powder toroid:

$$
\begin{align*}
\text { Turns } & =100 \times \sqrt{(2.3 / 120)} \\
& =13.8 \tag{10}
\end{align*}
$$

To determine the reactive component use Figure 3B At 7.0 MHz and $\mathrm{Rb} / \mathrm{L} 1=130$, the reactive $\mathrm{Za} / \mathrm{Rb}$ is nominally 0.11. Therefore, Zb reactive $=0.110 \times 300=33$ ohms. This inductive component might be nulled by using a series capacitor on the "a" side: $\mathrm{C}=1 /\left(2 \pi \times 7 \times 10^{6} \times 33\right)=688 \mathrm{pF}$.

Such an arrangement will probably work well across the 40 -meter band. However, it won't work on higher frequency bands. You're simply using the deficiency of the 1:4 arrangement to obtain a $1: 6$ match at a specific frequency.

Use of 1:4 transformers with ladder line

Using my new-found knowledge, I set up the circuit in Figure 8. I put two $1: 4$ transformers (like the ones mentioned above) back to back. A 100 ' length of 450 -ohm ladder line stretching out the back door, around the house, in the front door, and back to the shack provided me with access to both the "transmit" and "antenna" sides for power measurements.
Theoretically, the 50 -ohm dummy load is reflected (transformed) as 200 ohms , and on the other side of the line the 200 ohms is reflected as 50 ohms. This results in a relatively high VSWR on the transmssion line, but relatively little power dissipation.

The results seemed too good to be true. The loss in the transmission line from the low end of 80 meters through the high end of 20 meters was less than 10 percent including the two transformers. Viewed at the transmitter side of the arrangement, the SWR was better than nominally 2:1. On 160 meters the SWR was high, but correctable with a tuner. Even on 160 there was relatively little transmission line loss! Results on the 15 and 10 -meter bands were difficult to interpret; this might be due to a less than ideal dummy load.

I have subsequently run tests on various lengths of ladder line and seem to be able to repeat my results. This leads me to conclude that most of the lost power is dissipated in the transformers. However, the efficiency of each transformer appears to be 95 percent.

Putting it all together

My next step was to apply this "discovery" to feeding dipole antennas normally fed with 50 -ohm coaxial cable.

FIGURE 8

Two 1:4 transformers were connected back to back on the two sides of a 100 -foot length of 450 ladder line. Ninety percent of the power delivered by the transmitter with a $\mathbf{5 0}$-ohm output impedance was delivered to the dummy load for 160 through $\mathbf{2 0}$ meters.

FIGURE 9

It appears feasible to feed $\mathbf{5 0}$-ohm loads using any length of ladder line terminated at each end with a 1:4 ferrite rod transformer over the HF bands from 80 meters and up. Note that the ladder line is balanced, transmitter ground is applied at the center of the transformer.

My previous attempts to feed dipoles with ladder line had drawbacks. One of my techniques involved terminating the ladder line directly at the center of the antenna, and on the transmitter side using a tuner capable of assuming different configurations. This let me load the antenna with "brute force."* The technique worked well, but l'm a firm believer in having a lot of antennas and I can't afford the space or money necessary to devote a tuner of this type to each antenna. My other technique was to use a delta match consisting of wires fanning down to meet the transmission line. I never had much luck with this method, and the family was forever getting entangled in wires that fell from the sky.

The arrangement in Figure 9 has proven successful in feeding simple antennas without a tuning arrangement. The $1: 4$ transformer between the rig and the transmission line is an unbalanced-to-balanced arrangement, and ground is fed to the center of the transformer. The second transformer is mounted at the center of the dipole.

The results have been good. I've used this approach with standard dipoles on 80,40 , and 20 meters. The 40 -meter dipole also performed well on 15 meters. Figure 10 shows summarized results. In all cases except on 80 meters the SWR was better than 2:1 across the entire band. Using a very simple fixed series L/fixed shunt C tuner arrangement, I was able to obtain a match of close to $2: 1$ across the entire 80-meter band.

[^3]
If You Want the Most Advanced TNC Today...

In 26 countries around the world, tens of thousands of amateurs know that Kantronics is the leader in bringing tomorrow's technology to their stations today. They also know they will always be among the first to incorporate justintroduced features and modes with Kantronics software and firmware updates.

And, they know that Kantronics is unique in its ability to seek out, develop and incorporate the most advanced features into each of five different TNC models before anyone else. Why? Because every program Kantronics writes, and every unit Kantronics designs and produces are born right here at the factory in the U.S.A.

Meet Your Mailman

I n this agè of telco LANS, E-mail and FAX,

PBBS is just one of the firsts Kantronics delivered.
you will know you have mail in your Personal Packet Mailbox" when your KAM "STA" LED is blinking. New firmware level 2.85 has also added a handy automatic mailbox user-
connect. So save your computer and monitor life by turning them off when you are away, and never miss a beat on the airwaves.

Version 2.85 KAMs have increased Packet Cluster" compatibility, KA-NODE ${ }^{\text {" }}$ path preservation, KA-NODE recognition of the "NET" nodes and HF baud rates from 50 through 300 ! And there are three new mailbox commands: List Mine, Read Mine and Kill Mine.

and Tomorrow...

Will the Real Dual-Port Please Stand Up?

Read our lips. The KAM" is the only true dual- port when it comes to packet. Your Personal Packet Mailbox" is accessible from both HF and VHF! Version 2.85 has dual-port compatibility with RLI/MBL boards and KISS mode for both ports. You can monitor HF and VHF packet operations at the same time. Users can even gateway from HF to VHF (or in reverse) through your KAM.

Kantronics All-Mode" (KAM) has Packet, WEFAX, ARQ, FEC, RTTY and CW reception. But we have five models to suit your particular taste. Ask your dealer for the best choice today...and tomorrow.

SixteenWaysTo Start AGreat Conversation.

1Maximum singleband HT performance. Yaesu's compact, 2 -meter FT-4ll gives "sophisticated HT operation" a whole new meaning. With 49 memories. Dual VFOs. Keyboard frequency entry. Automatic repeater shift. DTMF autodialer (10 memories, 15 digits each). Built-in PL encode/decode. Extended receive. "Do-re-mi" audible command verification. Backlit display and keypad. Battery saver. Automatic power-off feature. Rotary channel selector: 2.5 -watt battery pack (optional 5-watt pack available). Much more.

2Mini HT packs big perfor-
mance. Choose Yaesu's miniature FT-23R Series for serious pocket-size performance. 2 -meter, $220-\mathrm{MHz}$, and 440
MHz models. Includes 10 memories (7 store odd splits). Memory scan at 2 frequencies per second. High/ low power switch. LCD power output and " S "-meter display. Lots of PL features. Auto battery saver. Aluminum-alloy case.Water-resistant seals. Variety of battery packs available, from 2 to 5 watts. More.

3Interchangeable HT options. To help save you a bundle of money, many HT options are interchangeable throughout Yaesu's HT line. Choose the FNB 1212 -volt, 500 mAh battery pack. The miniature FNB 97.2 -volt, 200 -mAh battery pack. FBA 9 battery case for 6 AAA-size cells. FBA-10 battery case for 6 AA-size cells. DC car adapter/charger. Mobile hanger bracket. External speaker/microphone. Battery chargers. More.

4FM Repeaters. Looking for a repeater? Look no further. Our 2 -meter and $440-\mathrm{MHz}$ models feature 10 watts output. Glass-epoxy circuit boards. Plus theyre FCC type
 accepted and ready for 19 " rack mounting. Yaesu repeaters are the perfect building block for a complete repeater station.

Space Station. Work satellites, moonbounce, troposphere, aurora, and meteor scatter with our FT-736R VHF/UHF base station. SSB, CW, and FM on 2 meters and 70 cm (430-450 MHz!) standard. Slots for optional $50-\mathrm{MHz}$,
 220 MHz , or 1.2 GHz modules. Crossband full duplex capability. Satellite frequency tracking function. 25 watts on 2 meters, 220 MHz ,
and 70 cm (10 watts on 6 meters and 1.2 GHz). 100 memories. RF speech processor. IF shift. IF notch filter. CW and FM wide/narrow IF filters. VOX. Noise blanker. Threeposition AGC selection. Much more.

Mobiles that double as answering machines. Our FT-212R Series mobiles take messages just like an answering machine (with DVS-1 option)! 2 -meter and $440-\mathrm{MHz}$ models. 45 watts output (35 on $440-$ MHz). Autodialer DTMF mic with 10 memories (22-digit memory each). 18 memories. Multiple scanning routines. "Do-re-mi" audible command verification. High/low power switch. Oversize amber display. Much more.

Mobiles you can take on foot.

Our FT-290R Mark II Series (2-meter, $430-450 \mathrm{MHz}$, and 6 -meter models) come standard as mobiles. But remove the heat sink and snap-on the optional battery pack, and you're ready to take your operation on foot! Mobile operation: 25 watts output (10 watts, 6 meters). Battery pack: 2.5 watts output. With SSB,
CW and FM. 10 memories. Dual VFOs. LCD display. Offset tuning. Relative power-output/
S meter More.

Dual-band mobile with remote control head. The FT-4700RH mounts almost anywhere-the "brains" on your dash, visor, or door, the "muscle" under your seat. 50 watts output on 2 meters, 40 watts on 70 cm . Full crossband duplex. Simultaneous monitoring of each band. Volume balance control for dual receive operation. 9 memories (each band). Extended receive coverage. Reverse repeater shift. Bright dual band display. 10 memory autodialer mic (option). More.

9

HF price/ performer. Don't let the FT-747GX's affordable price fool you.This rig really works the DX! 100 watts RF output on 160 to 10 meters. Continuous receive from 100 kHz to 30 MHz . LSB, USB, CW, and AM. Slot for optional FM unit. 20 memories. Splitfrequency operation. CW and AM filters. Plus onetouch noise blanker. Allmode squelch. RIT. 20-dB attenuator. Great receiver with superb overload protection. More.

10HF field-day favorite. Contesters appreciate the portability and performance of Yaesu's FT757GX Mark II. 100watt output. 10 memories. Dual VFOs. Slow/fast tuning selection. IF notch filter. Iambic keyer. $600-\mathrm{Hz}$ CW filter. AF speech processor. 500 kHz to 30 MHz receive. 10 to 160 meters transmit, including WARC bands. All-mode coverage. QSK operation. Continuous RTTY operation up to 30 minutes. More

13Serious VHF/UHF Receiver. Our FRG-9600 is a smart way to monitor 60 to 905 MHz coverage. USB, LSB, CW, AM, FM wide and narrow. Optional NTSC video module. Scanning steps of $5,10,121 / 2,25$ and 100 KHz .99 memories store frequency and mode. Memory scan (also scans between
 memories).
Keyboard frequency entry. 24 hour clock. Multiplexed output. Fluorescent readout. Signal strength graph. AC power adapter. Much, much more.

World-class HF receiver. The FRG-8800's perfect for keeping up with the world. Continuous coverage from 150 KHz to 30 MHz .
 Expanded coverage with optional $118-174 \mathrm{MHz}$ VHF converter. USB, LSB, CW wide/narrow, AM wide/ narrow, FM. 12 memories. Also programmable scanning routines. Keyboard frequency entry. LCD display. SINPO signal graph. Computer interface capability. Two 24 -hour clocks. Recording functions. Much more.
Antenna rotators for your application. Our G-1000DX, G-800SDX/ G-800S, and G-400RC models feature 360° "radio compass" con-
 trol heads, and are compatible with most tower-plate configurations. Plus G-1000SDX and G-800SDX models feature 450° rotation and presets.

AZ-EL rotators for space applications. Into OSCAR or moonbounce? Choose

 our G-5400B or heavy-duty G-5600B AZ-EL rotator. Each is compatible with many vendors tracking software. And for stand-alone elevation control, chooseour
G-500A elevation rotator.

Visit your Yaesu dealer. And discover the full range of Yaesu radios, accessories and options firsthand.

Yaesu.Where great conversations always begin.

YAESU

rfenterprises We Specialize in Antennas \& Towers.

We Ship Worldwide.
hy-gain antennas \& towers

ANTENNAS

CUSHCRAFT:

Tribander Special! A3S \& A4S \$259.95 / \$339.95 A743 \& A744 30/40 meter add-on kits available.
Verticals: AV3, AV5, and the new R4 and APR8
Monobanders: For 10, 12, 15, 20, and 40 meters.
VHF \& UHF: Antennas for FM: SSB \& CW, OSCAR. 617-6B, A50-6, \& A50-5 for 6 Meter Openings! 4218XL \& 3219 for 2 Meter DXing.
Additional Boomers for 220 and 432 MHz OSCAR \& ATV antennas.

If you need a CUSHCRAFT antenna, we can supply it!
KLM World Class Antennas.
KT34A...\$395.90 KT34XA.... $\$ 585.00$ VHF,UHF, \& OSCAR Antennas.
We stock KLM HF Monobanders!

BUTTERNUT

HF6V Vertical HF2V Vertical
RMK II roof mount kit, STR II radial kit. WARC resonators, \& TBR-160 coils. HF5B Compact Beam.

ALPHA DELTA

DX-A... $\$ 46.95$ DX-DD...64.95 DX-KT...\$27.50 DX-CC. $\$ 79.95$ Switches \& Transi-traps in stock!
HUSTLER:
6BTV, 5BTV, G6-144B, G7-144, G7-220
Complete mobile systems. CALL!
MOSLEY: Specials on TA-33, TA-34, CL-33, Pro-67!

ROTORS

TELEX/hy-gain	YAESU
HDR-300	G400/400RC T2X HAM IV
CD 45 II	G600RC
	G5400B

HDR-300 T2X CD 45 II

YAESU

 G400/400RC G5400B
ALLIANCE

HD-73
U-110

Tribanders
TH7DXS Explorer-14 TH5MkIIS Monobanders

204BAS	203BAS	205BAS
155BAS	153BAS	105BAS
103BAS	$64 B S$	$66 B S$

VHF, OSCAR, \& VERTICALS
CALL US FOR HY-GAIN EQUIPMENT!

TOWERS

Crank-up, self-supporting, galvanized steel towers. "SS" series rated at $9 \mathrm{ft}^{2}$, "HD" series rated at $16 \mathrm{ft}^{2}$ HG-37SS HG.52SS HG-54HD CALLFORPRICES: HG-70HD

TOWERS

ROHN

Self-supporting: Rated $\left(\mathrm{ft}^{2}\right)$: $\mathrm{HDBX}=18 ; \mathrm{HBX}=10 ; \mathrm{BX}=6$ Galvanized steel with base and rotor plate. Todays best tower buy! Freight additional but you save with our volume shipper's discount!

HBX40.	\$249.95	HDBX40.	\$315,00
HBX48	\$339.00	HDBX48	. $\$ 424.00$
HBX56.	\$435.00	BX64	\$469.00

Guyed tower sections: Complete packages \& components Sections:25G. $\$ 59.00$ 45G. $\$ 139.00$ 55G. $\$ 179.00$ Call us for all your ROHN requirements!
Fold-over towers:

$$
\begin{array}{llll}
\text { FK2548 } & \$ 1125.00 & \text { FK4544 } & \$. \\
\text { FK2558 } & \$ 1485.00 \\
\text { FK2568 } & \$ 1195.00 & \text { FK4554 } & \$ 1595.00 \\
& \$ 1235.00 & \text { FK4564 } & \$ 1695.00
\end{array}
$$

Prices 10% higher in western states

Tower Hardware:

 1/2"E\&E \& E\&J Preformed "Big Grips" 3/16\& 1/4.................... $\$ 2.49 / 2.99$ Guy Insulators: 500D / 502. \qquad \$1.69/2.99

Phillystran Guy Systems:

HPTG-2100/-4000/-6700 Cable $\$ 0.30 / 0.50 / 0.70 / \mathrm{ft}$ Cable ends and potting compound in stock.
WIRE \& CABLE

BELDEN COAX:

9913 Low loss $\quad . \quad \$ 0.47 / \mathrm{ft}$. RG.8X(9258) $\quad \$ 0.22 / \mathrm{ft}$ RG-213/U(8267) $\quad 0.0 .48 \quad$ RG-11A/U(8261) $\quad 0.43$ RG-8/U(8237) $\quad . \quad 0.038 \quad$ RG-58A/U(8259) $\quad 0.17$ $\begin{array}{lllll}\text { RG-8/U(8214) } & 0.42 & \text { RG-50/U(8241) } & 0.18\end{array}$ RG-214/U(8268) $\quad \$ 2.30 / \mathrm{ft}$ COPPERWELD ANTENNA WIRE:
Solid: $12 \mathrm{ga...0.12;} 14 \mathrm{ga} .0 .09$; Stranded $14 \mathrm{ga} . .0 .10 / \mathrm{ft}$. ROTOR CABLE:
Std.(6-22,2-18)..50.21 Hvy Dty(6-18,2-16). so 38/ft. We stock Andrew Heliax \& Connectors. Full line of Amphenol connectors.

736R VHF-UHF TRANSCEIVER

The new standard in VHF-UHF performance. Call us for all YAESU equipment: HF TRANSCEIVERS MOBILE UNITS HANDHELDS AMPLIFIERS
YES: WE STOCK ACCESSORIES.

MODEL 561 CORSAIR II

OTHER TEN-TEC PRODUCTS:

Model 585 Paragon
Model 425 Titan Linear Amplifier Model 229B Antenna Tuner

Mobile Antennas! Metal Project Boxes.

AMPLIFIERS \& TUNERS
 AMERITRON
 MIRAGE

NYE - VIKING MB-V-A
rf concepts
AMP SUPPLY

MFJ 989C

ASTRON SUPPLIES

RS-4A $\quad \$ 39.95$ RS-7A $\quad \$ 49.95$ RS-12A $\quad \$ 69.95$ RS-20A ... 88.95 RS-35A 139.95 RS-50A 199.95 RS-20M $\quad 109.95$ RS-35M...... 159.95 RS-50M.... 219.95 VS-20M....124.95 VS-35M.......174.95 VS-50M.... 232.95

NEW! RFE is now stocking IIX Equipment

ALINCO-AMERITRON-AMP SUPPLY-ANTENNA SPECIALISTS-ASTATIC-BENCHER-B\&W-CREATE-DAIWA KANTRONICS-LARSEN-MFJ-MOSLEY-PALOMAR-SANTEC-SHURE-TONNA-WELZ-AND MORE

VISA MasterCard Personal checks verified with	Prices subject to change without notice.	1-800-23 (Orders onl	482	rfenterprises HCR Box 43 Merrifield, MN 56465 (Located at Jen. Co. 3 \& 19) 153
TELECHECK	Mirinesota redidents add 6% sales tax.	SHIPPING INFO., TE $218-76$	$\begin{aligned} & \text { IICAL, MN, \& DX } \\ & 54 \end{aligned}$	
Returns require pror authorization and are subject to 15% restocking fee	Shipping additional except as noted.	TELEX: 4933032 RFE UI	FAX: 218-765-3308	

FIGURE 10

Three separate dipoles ($80, \mathbf{4 0}$, and 20 meters) were erected, each with separate feeds consisting of ladder line terminated with ferrite rod transformers. The 40 -meter dipole was also used on 15 meters. Performance on 40, 20, and 15 was excellent with an SWR consistently less than 2:1 across the entire band. No tuner was required. On 80 meters, the bandwidth was relatively narrow and a very simple tuner consisting of a series L, shunt C was inserted on the transmitter side of the transformer.

One of the beauties of ladder line is that it's relatively lossless. Most of us don't have enough property to run 500 feet from the shack to that ideal antenna location - but some may, and this is the way to go.
Many hams want to ragchew on 3.9 MHz and also work CW or the DX window on the low end of the band using the same antenna. This poses a problem when feeding an 80 -meter dipole with coax. You must choose a compromise resonant frequency and use a tuner for frequencies far removed from it. You can measure full power at the tuner, but the loss in the coaxial feed will be high. By using the ladder line in conjunction with the 1:4 tranformers at each end, you can use a tuner on the transmitter side of the transformer and have confidence that most of the power is reaching the antenna.

I've run all my dipoles at 700-watts output CW for several months with no evidence of flashover, saturation, or core heating. Even so, use some care. Attempting to load an 80 meter dipole on 40 meters presents the transformer with an impedance of several thousand ohms. This results in very high potentials, which may saturate the core and cause the windings to flash over.

Construction notes

The design which uses 13 turns on a ferrite rod has become my standard 1:4 transformer for impedances less than 400 ohms. The designs intended for indoor use may be either self-supporting or mounted on any miscellaneous mini box. The outdoor design is packaged in $3 / 4^{\prime \prime}$ PVC pipe. I used epoxy to secure the end caps and sealed the seams externally with RTV silicone. I fastened the entire assembly to a conventional ceramic insulator using cable ties.

Electrical parts are relatively easy to find. But I would stay away from miscellaneous toroids sold at hamfests. The computer industry manufactures many types of toroids to suppress the electromagnetic interference caused by high. speed switching noise, and these seem to have flooded the market. They are not suitable for this transformer application. There appears to be no standard color coding of ferrite toroids; unless you have a lot of faith in the seller, I wouldn't waste my time.

Three Ham Radio advertisters carry toroids and rods: Amidon, Palomar, and Radiokit. Amidon and Radiokit also carry the Scotch no. 27 glass tape I used to bind the two conductors tightly together. They also have a complete line of heavy Thermaleze ${ }^{\text {TM }}$ insulated wire; I used 14 gauge.

Summary

I've provided a way to design and analyze 1:4 impedance transformers and given examples of some successful designs. I've had great success feeding dipoles with ladder line in the same way l'd feed them using coaxial cable. The materials are inexpensive and readily available. You don't need special tools, exotic metalwork, complex instrumentation, or large amounts of money. Give these designs a try, extend them to other types of antennas, and let me know your results. $\mathbf{r r}$

BILAL COMPANY

137 Manchester Dr. Florissant, Colo. 80816 (719) 687-0650

NEW!

The classic "Antenna Bible" now in a thoroughly-revised, much-enlarged edition

ANTENNAS

2nd edition
by John Kraus, W8JK
Ohio State University
Covers both theory and its applications to practical systems. Over 1000 illustrations and nearly 600 worked examples and problems. Over 100 new topics. Complete with design formulas, tables and references

917 pages, hardcover. $\$ 51.95$
Add $\$ 2.50$ per book for shipping and handling U.S., $\$ 5.00$ elsewhere.

CYGNUS-QUASAR BOOKS
P.O. Box 85, Powell, Ohio 43065
Tel. 614-548-7895

UNIVERSAL BRIDGE

ZM-30/URM-90 BRIDGE, military unit measures resistance 0.1 ohms to 11 megohms, capacitance 0.1 pf to 1100 mf , and inductance 0.1 uH to 1100 Hy . Range $0.1-10 \mathrm{KHz}$; with eye tube and gal-
 vanometer.
$10.5 \times 11.5 \times 11,23 \mathrm{lbs}$ sh. Used-reparable $\$ 90$ Checked ...
MANUAL. $\$ 125$
$\$ 10$

> Prices F.O.B. Lima, O. - VISA, MASTERCARD Accepted Allow for Shipping - Write for 1989 Catalog Address Dept. HR - Phone $419 / 227-6573$

RAMSEY ELEMBCNIGS

Quality Test Gear \& Electronic Kits for Professionals and Hobbyists

$\$ 249500$ SERVICE MONITOR THAT WORKS HARDER FOR LESS

 Introducing COM-3 The new service monitor designed by service technicians tor service technicians it works harder tor less giv ing you advanced testing capabilities at a very atfordoable price. FEATURES - Direct entry keyboard with programmable memory Quigh receive sensitivity. less tian 5 Hv $\bullet 100 \mathrm{KHz}$ to 99999995 MHz Continuous trequency coverage • Transmit protection. up to 100 Continuoust requency coverage e ransmit protection up
watis - CTS tone encoder, 1 KHz and external modulation

MINIKITS-EASY TO ASSEMBLE-FUN TO USE

MODEL	FREp RAMGE
ct. 70	20 Hz S50 Mriz
CT-90	10 Hz 600 Mrz
CT-50	$5 \mathrm{~Hz}_{2} 600 \mathrm{MHz}$
CT-125	$10 \mathrm{~Hz}=12 \mathrm{CHHz}$
$\begin{gathered} \text { CT-90 } \\ \text { WTH OV-1 } \\ \text { OPTIOW } \end{gathered}$	10 Hz 600 MHz

CT-50 8 DIGIT 600 MHz

CT-90 9 DIGIT 600 MHz

 CT-125 9 DIGIT 1.2 GHz
 \section*{FREQUENCY COUNTERS
 \section*{FREQUENCY COUNTERS

 parts and labor. We take great price inf eing the largest manutac. parts and labor. We take great price inf eing the largest manutac. Our counters are fuil featured trom audio to UHF. with FET high
impedance input. propet wave shaping circuitry and durable high Our counters are fuil featured trom audio to UHF. with FET high
impedance input. propet wave shaping circuitry and durable high impedance input, propet wave shaping circuitry and durable high impedance input, propet wave shaping circuitry and durable high hoos manutactured in the USA. hoos manutactured in the USA.

 accessories for counters}

 accessories for counters}

Jelescopic whip antenna-0NC plug High impedance probe light loading	$\begin{array}{r}1885 \\ \hline 1808\end{array}$
	\%
Low pass probe. avdie use	1695
Direct probe general purpose use	1395
Tilt baif for CF-70.908 TS	398
Nicad pack for CT-70, 908 25	158

Direct probe peneral

PR-2 COUNTER PREAMP
Phe Pr-2 is ideal for measuring weak
signais trom 10 to 1.000 Mry \& flat
 or sniting RF $\boldsymbol{\text { a ideal receiver fy }}$ PS-2 AUDIO mULTIPLIER
me ri-2 is nandy for high resolution
audio resolution measurements. muitiples Up in trequency • orear for P. tone measurements - multiples
by 10 or $100 \rightarrow 0$ OH Hz resolutions by 10 or $100 \times 000 \mathrm{rzz}$ resolutions
buill-in signal preamp/conditioner

PS-10B 1.5 GHz PRESCALER Extends the range of your present
counter to 15 GHz - 2 stage preame - divide by 1000 circuitry - super sensitive 50 mV trpical) $*$ BNC
connectors $* 15 \mathrm{GHz}$ in, is MHz out - drives any counter.
 Dients

$\$ 4995$ uirne inclutes ${ }^{\text {Pr atapiter }}$

s6995
wirnd 2 kr 549.95
\$8995 - drives any counte:

Dicits	Resotution	Pucte
7	1 Hz .10 Hz .100 Hz	139.96
9	0.1 Hz .10 Hz .100 Hz	163.95
8	1rez. 104z	189.95
9		189.98
9	01 Hz .1 Hz .10 Hz	228.90

RADIOS

40 \& 80 METERS HAM RECEIVERS

QRP TRANSMITTER KITS, 40 \& 80 METERS

${ }^{\text {Cin mers }}$		($5^{\text {cosp }}$ S 12.95
AIRCRAFT RECEIVER KIT		
	Renement	\$12.95
SHORTWAVE RECEIVER KIT		
	\$24.95	

PACKET RADIO

Comperestic.: $\$ 49.95$

FM COMMUNICATIONS/2 METER RECEIVER
Senmive supent high band poicici cals weather of mobile phone calis' Easy to buid recerve, leatures valactor tuning IC muser stage ceramic if fiters and dual conversion despgn with
adjustable spueich Less than liv serisitvity funs on 9 V battery with 50 mw aucio output
Optonal ABS case with Kreenec graphics and machinec aluminum knobi provide a nice pre lessional look

NEW MINIKITS-NEW MINIKITS

$\begin{aligned} & \text { BROADBAND } \\ & \text { PREAMP } \end{aligned}$	LIGHT B COMMU	ATORS	HIGH P WIREL	WER FM S MIKE
	\%	tree	Amph	,
ceam, iseal	\%pois	mes uses	Hament	S
	ton	Heeoper	mix.	
come	cem			
Nry-ther opeation Rus on 9 - 2 VOC 50				
		dine	9-pvoc	
Campere $\mathbf{S} 12.95$			${ }^{5 \times-4 . k n}$	\$9.95
	${ }_{168}$	\$8.95	Senstre	
	${ }_{\text {Regerem }}$	s9.95	comber	\$2.95

2 MTR \& 220 BOOSTER AMP

Raver	Here's a great booster for any 2 meter or 220 MHz hand-held unit. These power boosters deliver over 30 watts of output allowing you to hit the repeaters full quieting while the low noise preamp remarkably improves receptions. Ramsey Electronics has sold thousands of 2 mtr amp kits but now. we offer completely wired and tested 2 mtr as well 220 MHz units Both have all the features of the
- 30 watrs output - LOW NOISE PREAMP - LOW COST - rugged cast aluminum CASE - one year warranty	PA. 102 MTR POWER BOOSTER ($10 \times$ power gain) FA.2020 MHz POWER BOOSTER is \times power gain) Fully wired \& tested $\$ 59.9$

A NOVEL METHOD FOR measuring cable ATTENUATION

By A. E. Popodi, OE2APMIAA3K, Moosstrasse 7, A-5020 Salzburg, Austria

The simplest way to determine cable loss is to measure the difference between input and output power with an RF wattmeter. A more accurate method is to measure the cable input and output voltages with an RF voltmeter and calculate the cable loss in nepers from the formula $\alpha=\log _{E} \frac{V i n}{V \ell}$ where Vin is the input voltage and $V \ell$ the output (load) voltage. Both methods require a power source with an output impedance matching that of the cable and a known characteristic impedance Zo. Accuracy suffers if there is a matching error. Ground currents in the test setup can cause false readings. This method becomes very unreliable if α is small (i.e., the cable is short). If you want to measure the loss of a 2 -meter length of RG- 213 cable at a frequency of 28 MHz using this method, you'll find that the input and output voltage differ by only 0.89 percent. It's very difficult to make credible and meaningful measurements on short cables because of this small input/output voltage differential.

The method I've developed doesn't suffer from this shortcoming. It's based on the unique properties of an unterminated, quarter-wavelength transmission line driven from a low-impedance source. (See Figure 1.)

At the quarter-wavelength frequency, the cable input impedance (Zin) is very low - typically less than 1 ohm. The input voltage (Vin) is at minimum and the cable output voltage ($\mathrm{V} \ell$) is high. Resistor Rs is the source impedance of the voltage source Vo.

The general expression for the ratio of input to output voltage is given in Equation 1
$\frac{V i n}{V \ell}=\cosh (\alpha+j \beta)+\frac{Z o}{Z \ell} \sinh (\alpha+j \beta)$

FIGURE 1

Block diagram of the setup for measuring cable attenuation.
where Zo is the characteristic impedance, Zl is the load impedance, α is the cable attenuation in nepers, and β is the cable length in radians - in our case $\frac{\pi}{2}$. For the ideal case of the unterminated cable, this expression reduces to:

$$
\frac{V i n}{V \ell}=\cosh \left(\alpha+j \frac{\pi}{2}\right)
$$

Using the formula $\cosh (\alpha+j \beta)=\cosh \alpha \cos \beta+j \sinh$ $\alpha \sin \beta$ we have:

$$
\begin{equation*}
\frac{V i n}{V \ell}=j \sinh \alpha \tag{2}
\end{equation*}
$$

Since α is a small number, sinh α is nearly equal to α. (For example, if $\alpha=0.147$ neper, the error caused by this simplification is only 0.5 percent.) The operator (j) indicates a 90 -degree phase shift between the two signals. Using absolute values, you have:

$$
\begin{equation*}
\frac{V i n}{V \ell}=\alpha \text { in nepers } \quad 1 \text { neper }=8.6859 \mathrm{~dB} . \tag{3}
\end{equation*}
$$

FIGURE 2

Schematic of the complete test circuit for determining the voltage ratio for accurately determining the cable attenuation.

The cable attenuation in nepers is very nearly equal to the ratio of the two voltages. As a result, V may be 50 times larger than Vin, depending on cable loss.
Equation 2 is only valid if load impedance $Z \ell$ is infinitely high. In practice, you have a capacitive load impedance
 means you must use Equations 1 and 6 to evaluate the effect on the voltage ratio $\frac{V i n}{V \ell}$.
You don't need a precision RF voltmeter to measure this voltage ratio if you use a capacitive voltage divider for $V \ell$ and compare the divided voltage with Vin in a simple voltage comparator. This gives you the advantage of being able to make Zin very high. Figure 2 shows the schematic of the complete test circuit.
A signal generator is connected to the input of isolation amplifier Q1 that feeds the emitter follower and cable driver Q2. Resistor Rs is a noninductive $1-\mathrm{ohm}$ resistor that presents a low source impedance to the cable input at terminal J1. At the cable output (J2), there is a capacitive voltage divider consisting of a small $2.4-\mathrm{pF}$ fixed capacitor (C1) and a $250-\mathrm{pF}$ variable capacitor (C2). Switch S alternately connects Vin (position 1) or the divided voltage $V \ell$ (position 2) to a post-amplifier (consisting of emitter follower Q3 and amplifier Q4) with high input impedance. The rectified RF signal is amplified in operational amplifier U1 that drives indicator instrument M.
You must carefully choose the biasing of transistor Q1

FIGURE 3

Component layout of the cable-attenuation test circuit.

and emitter follower Q2 to avoid waveform distortion in Q2. Because the cable output waveform is always better than a possibly distorted input signal, voltage comparison may be degraded due to waveform differences between the two signals. Figure 3 shows a recommended layout for the test fixture.

Switch S is mounted between connectors J 1 and J 2 . (I recommend using a silver-plated brass plate as the mounting surface in order to reduce the effect of ground loops.) It's important that the lead lengths to and from capacitor C1 be as short as possible to obtain a frequencyindependent capacitive voltage divider.

Dedicated 17 Meter Monobander With Dedicated Performance

17M-3

ELECTRICAL

- Bandwidth.............. . 18.065-18.170 MHz
- Gain. 6.5 dBd
- VSWR .5:1
- F/B................................... 20 dB
- Feed Imp . 50 Ohms
- Balun.................................. . . 4:1, 5kW

MECHANICAL

- Element Length. 28 ft .
- Boom Length 16'9" \times 3"OD.
- Turn Radius . 17 ft .
- Windload $4.5 \mathrm{sq} . \mathrm{ft}$.
- Weight .25 lbs.
- Mast 2 in. O.D.

The $17 \mathrm{M}-3$ is a high performance monobander for quality installations where larger models are not practical or necessary. It can be stacked with other beams without overloading the tower/rotor capabilities. Many of the superb performance and construction features of the World Class Extra series are yours in the $17 \mathrm{M}-3$.

17 meters is hot now with plenty of DX coming in. So go ahead, improve your air quality with the Mirage/KLM 17M-3.

10 Meters
3 Ways
2nd To None
10M-6 World Class Extra

ELECTRICAL

- Bandwidth . . . 28-30 MHz $\times 1 \mathrm{MHz}$
- Gain. 11 dBd
- VSWR.............. . 1.5:1
- F/B................. 30 dB
- Feed Imp 50 Ohms
- Balun $4: 1,5 \mathrm{~kW}$

ELECTRICAL

- Bandwidth . . . 28-30 MHz $\times 1 \mathrm{MHz}$ 7.7 dBd
- Gain. . 1.5:1
- F/B.................. 25 dB
- Feed Imp...... 50 Ohms
- Balun. \qquad 4:1, 5 kW

ELECTRICAL

- Bandwidth $27-30 \mathrm{MHz}$ $\times 250 \mathrm{kHz}$
- Gain..... 3 dB gnd/plane
- VSWR.............. . . .5:1
- Feed Imp...... . 50 Ohms
JV-10

MECHANICAL

- Element Length. . . 18 ft .
- Boom Length 27.5 ft .
- Turn Radius. $16.5 \mathrm{ft}, 8 \mathrm{in}$.
- Windload. 4 sq. ft.
- Weight. 29 lbs.
- Mast

2 in.

MECHANICAL

- Element Length . . . 18 ft .
- Boom Length. 10 ft .
- Turn Radius 10.5 ft .
- Windload 2.25 sq. ft.
- Weight. 12 lbs.
- Mast. 2 in.
- Windload . . . 1.8 sq. ft.
- Weight 10 lbs.
- Mast 2 in.

here is the next generation Repeater 2 meters - 220-440
 MARK 4CR
 The only repeaters and controllers with REAL SPEECH!

No other repeaters or controllers match Mark 4 in capability and features. That's why Mark 4 is the performance leader at amateur and commercial repeater sites around the world. Only Mark 4 gives you Message Mastertm real speech - voice readout of received signal strength, deviation, and frequency error - 4channel receiver voting - clock time announcements and function control $\bullet 7$ helical filter receiver - extensive phone patch functions. Unlike others, Mark 4 even includes power supply and a handsome cabinet.

Call or write for specifications on the repeater, controller, and receiver winners.

Create messages just by talking. Speak any phrases or words in any languages or dialect and your own voice is stored instantly in solid-state memory. Perfect for emergency warnings, club news bulletins, and DX alerts. Create unique ID and tail messages, and the ultimate in a real speech user mailbox - only with a Mark 4.

TELEX 4932256 Kendecom

508-373-7304

- Advanced Technology
 PacComm • Enturing value 9600 Baud Packet System

 SEE YOU AT DAYTON - BOOTHS 277-279 Introducing the next generation in packet performance: A complete line of affordable 9600 baud packet equipment to support both network nodes and local packet users. The modem is based on PacComm's successful 9600 baud commercial modem design (exclusively licensed from James Miller, G3RUH). It is a high performance FSK design using innovative signal processing techniques to comply with FCC bandwidth limitations on the 6 and 2 meter amateur bands as well as higher frequencies. The modem connects to the radio internally and may not be suitable for use with all existing radios.Other packet manufacturers plan
to offer equipment compatible with to offer equipment compatible with
the PacComm 9600 Packet System.

We accept major credit cards. Order Toll Free: 1-800-223-3511
Technical support line: (813) 874-2980

MODEM CARD - Add on internal modem card for TNC-2 and clones, and all PacComm TNCs. $\$ 99.95$ fully tested and ready to install. (Avail Now) EXTERNAL MODEM - Encased 9600 baud modem with front panel LED displays and cabling for most popular packet controllers including the PK-232
$\$ 15995$ (Avail tate April)
HIGH SPEED DIGITAL RADIO - Digital transceiver consisting of digital 2-5 watt RF deck and 9600 baud modem. $\$ 329.95$ to $\$ 399.95$ (Avail in May) COMPLETE HIGH SPEED PACKET UNIT - Integrated digital transceiver packet TNC, and 9600 baud modem ready to attache to your computer or terminal and antenna. $\quad \$ 449.95$ to 519.95 (Avail in June)

PacComm • 3652 West Cypress Street - Tampa. Florida 33607
Please send info on:
ㅁ FREE Catalog

```
Name Call
Address
State Zip Iip Card \(\#\) Exp Date
MONEY BACK GUARANTEE! Add \(\$ 4.00\) shipping handling per order FL residents add \(6^{\circ}\) sales tax. Major Credit Card give number. expiration and signafure.
FAX 813.872-8696
```

U.S. AMATEUR RADIO MAIL LISTS

Labels, floppy disks, CD-ROM, mag tape.

- Newly licensed hams
- All upgrades
- Updated each week

BUCKMASTER PUBLISHING
Route 3, Box 56
Mineral, Virginia 23117
703/894-5777 visa/mc 800/282-5628

QuicKit ${ }^{\mathrm{K}} 5 \mathrm{RV}$ Loop, $\&$ Dipole Kits

Huge pileups, big city QRN, no spare parts,
and a long way to anywhere. You probably couldn't find a better test of the new SB-1400 All-Mode Transceiver than Heath's expedition to Taipei in the Republic of China.

When working DX, you need sensitivity to dig for the weak ones, but still need dynamic range so the guy down the block doesn't clobber you in the middle of a QSO. Sure, the SB-1400 worked the S9 +30 signals, but out of the pileups it also worked a number of stateside stations running 5 watts or less! And that's not bad for a short path distance of 7600 miles!

SB-1400 A proven transceiver.

The technology that worked the world can work for you, too, in your own ham shack. The SB-1400 is a fully assembled all-band, all-mode (FM optional), continuous duty, 100-watt transceiver. It incorporates an impressive general coverage receiver with dual VFOs for split operation and 20 memories to store your favorite frequencies. The unit includes standard SSB filter plus a narrowband 500 Hz CW filter and wideband AM filter. It also
features clarifier (RIT), front panel AGC, noise blanker, all mode squelch, 20 dB attenuator, computer interface, and a clean, "operator preferred" front panel layout.

The transmitter's PA is cooled by a quiet, thermostatically controlled internal fan and is enclosed in its own diecast aluminum heat-sink chamber, which allows for full power operation in CW, SSB, FM and RTTY, AMTOR, SSTV, and Packet.
"Thanks for country gear sounds great!"

K3YGU, Maryland

Best to start with.
Best to stay with.
Heath Company
Benton Harbor, Michigan 49022
Best to start with.
Best to stay with.
Heath Company
Benton Harbor, Michigan 49022
O1989. Heath Company:
A subsidiary of
Zenith Electronics Corporation.
Best to start with.
Best to stay with.
eath Company
ton Harbor, Michigan 49022
Best to start with.
Best to stay with.
eath Company
ton Harbor, Michigan 49022

Heath

 offers you more.In addition to the SB-1400, Heath offers a full line of preassembled or build-it-yourself amateur radio equipment to completely outfit your ham shack or upgrade your system.

You can also prepare for your next exam (Novice, Technician, General, Advanced or Extra class) with Heath study courses.

Finally, as a Heath-equipped
ham, you can get answers to your technical questions from our tech consultants, who are licensed ham operators, on the Heath Tech Assistance line.

For more information on the SB-1400 or Heath's complete line of amateur radio equipment, call for a FREE catalog: 1-800-44-HEATH
(1-800-444-3284) -

FAST BAND

[^4]\author{

}

[^5]the new -
 ARRL PUBLICATIONS • AEA PRODUCTS • AMPHENOL

- ALPHA DELTA - ASTRON • AUSTIN ANTENNAS • AVANTI
- BELDEN • BENCHER • B \& W • DAIWA • ALINCO
- HUSTLER - KLM • LARSEN • MIRAGE • ROHN
- TELEX/HY-GAIN • TOKYO HY-POWER LABS
- TRAC KEYERS•VIBROPLEX • WELZ•ETC.

OPEN SIX DAYS A WEEK VIISA WELCOMED

- Automatic notch filter
- Removes carriers in less than 2 seconds
- No distortion to audio

FANTASTIC!

DATONG FL-3

Telephone 508/486-3400, 3040
675 Great Rd., (Rte. 119) Littleton, MA 01460 $1 \% / 4$ miles from Rte. 495 (Exit 31) toward Groton, Mass.

MULTI-ROTATING ANTENNAS ONE TOWER with the POWERFUL TIC General Ringrotor

- Steel Ring Construction
- Steel Gear Assembly
- Analog Or Digital Position

Feedback System

- Lower Rotor Position Results

In Fewer Lightening Strikes

- Individual Rotation
- Phased Arrays

RINGROTORS (*New For '89)
*121/2" Face Tower
$\$ 529.00$
"18" Face Tower $\$ 559.00$
28" Face Tower $\$ 938.00$
(PRICES SUBJECT TO CHANGE WITHOUT NOTICE)
路

THIEF RIVER FALLS, MN 56701
CALL: 1-800-423-6417 or (218) 681-1291
SEE US AT DAYTON BOOTH 458

PC Slow Scan \$149.95

A complete slow scan teievision station for your IBM PC or compatble. Send and receive images in up to 10 shades of gray depending upon your graphics card and printer.
Inckudes:
Demodulator Modulator 75 Page Manual Sottware Tutorial Cassette Requires:

Ham transceiver PC with 640 K Parallel Port
Graphics Card Tape Recorder Serial port Stow Scan Formats: 8,12,17,23,34,36,48,72 sec.

Software Systems Consulting 1303 S. Ola Vista
San Clemente, CA 92672 (714) 498-5784

Test procedure

Connect the cable to J 1 and J 2 . Put switch S in position 1 and adjust the signal generator near the estimated quarter-wave frequency for an input voltage minimum, with a meter deflection of perhaps 80 percent. With the switch in position 2, adjust variable capacitor C 2 for equal meter deflection. Capacitor C2 must be measured in the circuit with a capacitance bridge, with capacitor C1 disconnected, and with switch S in position 2. You can calibrate the dial of C 2 directly in nepers or picofarads. Calculate the divider ratio from Figure 4. If, for instance, C2 $=153 \mathrm{pF}$ and C 1 $=2.4 \mathrm{pF}$ the voltage ratio is:

$$
\frac{V \ell}{V i n}=\frac{153}{2.4}+l=64.75
$$

and the cable loss is:

$$
\alpha=\frac{1}{64.75}=0.0154 \text { neper or } 0.133 \mathrm{~dB}
$$

How to find cable loss at other frequencies

Unfortunately, my method supplies cable loss for only one frequency. But if you make a second measurement at three times the frequency (pertaining to a three-quarter wavelength cable), you now have two sets of attenuations $\alpha 1$ and $\alpha 2$ and two frequencies F1 and F2. Using the interpolation method described by K2BT,' you can calculate the loss at any other frequency with the following procedure:
First calculate two constants, m and n :
$m=\frac{\alpha l F 2-\alpha 2 F l}{F 2 \sqrt{F l}-F l \sqrt{F 2}} \quad n=\frac{\alpha 2 \sqrt{F l}-\alpha l \sqrt{F 2}}{F 2 \sqrt{F l}-F l \sqrt{F 2}}$
The cable loss $\alpha 3$ at the frequency F3 is then:

$$
\begin{equation*}
\alpha 3=m \sqrt{F 3}+n F 3 \tag{4}
\end{equation*}
$$

Here's a practical example:
Coaxial cable RG-213, $1=9.58$ meters. The full-wave frequency of the 9.58 -meter cable is:

$$
\frac{300}{9.58} \cdot 0.66=20.668 \mathrm{MHz}
$$

assuming a velocity constant of 0.66 . This means that for a frequency of 5.167 MHz the cable is a quarter wavelength long. This brief calculation only helps you find the approximate value of the measurement frequency. Its exact value depends on the minimum value of Vin . The next minimum occurs at the three-quarter wavelength frequency of 15.417 MHz . In general, the first measurement frequency is the lowest frequency on the frequency dial where Vin has its first minimum.
Assuming that the minimum of Vin occurs at 5.116 MHz , the capacitor settings are: $\mathrm{C} 2=153 \mathrm{pF}$ and $\mathrm{C} 1=2.4 \mathrm{pF}$.
$\frac{V \ell}{V \text { in }}=\frac{153}{2.4}+I=64.75 \quad \alpha J=\frac{1}{64.75}=0.0154 \mathrm{~N}$
The measurement at frequency F2 $=15.348 \mathrm{MHz}$ is: C2 $=79 \mathrm{pF}$ and $\mathrm{C} 1=2.4 \mathrm{pF}$.

FIGURE 4

$\frac{V_{L}}{V_{I N}}=\frac{C 2}{2.4}+1$

Capacitive voltage divider circuit used in the test circuit at the output end of the coax under test.
$\frac{V \ell}{V i n}=33.91$ $\alpha 2=0.0295 N$

Calculating factors m and n from $\alpha 1=0.0145 \mathrm{~N}, \mathrm{~F} 1=5.116$ MHz , and $\alpha 2=0.0295 \mathrm{~N}, \mathrm{~F} 2=15.348 \mathrm{MHz}$ gives $m=0.00582$ and $n=0.000436$.
If you want the loss at frequency F3 $=28 \mathrm{MHz}$:

$$
\alpha 3=m \sqrt{F 3}+n F 3=0.043 \mathrm{~N} .
$$

Measurement accuracy

Now you need to find out how large an error results if you assume the simple relationship $\frac{V i n}{V \ell}=\alpha$ which the test set is delivering.
In reality, the source impedance Rs, even when purely resistive, affects the tuning frequency for minimum input voltage $V \mathrm{in}$. The load impedance $\mathrm{Z} \mathrm{\ell}$ is not infinitely large, and also affects the tuning. In our example, capacitor C1 $=2.4$ pF has a capacitive reactance of $\mathrm{Z} \mathrm{\ell}=-\mathrm{j} 2962$ ohms at 5116 MHz using Equation 1 you get:

$$
\begin{equation*}
\frac{V i n}{V \ell}=\cosh (\alpha+j \beta)+j 0.003857 \sinh (\alpha+j \beta) \tag{5}
\end{equation*}
$$

According to the test procedure, you must adjust the frequency for minimum input voltage. You can calculate Vin from Figure 1 to:

$$
V i n=V o \frac{Z i n}{Z i n+R s}
$$

Since

$$
Z \operatorname{in}=Z o \frac{Z \ell+Z o \tanh (\alpha+j \beta)}{Z o+Z \ell \tanh (\alpha+j \beta)}
$$

we can calculate $\frac{V i n}{V o}$ to:

$$
\begin{equation*}
\frac{\operatorname{Vin}}{V o}=\frac{\operatorname{Zin}}{\operatorname{Zin}+R s}= \tag{6}
\end{equation*}
$$

Zo $\frac{1+\frac{Z o}{Z \ell} \tanh (\alpha+j \beta)}{Z o 1+\frac{Z o}{Z \ell} \tanh (\alpha+j \beta)+R s \frac{Z o}{Z \ell}+\tanh (\alpha+j \beta)}$

FIGURE 5

Typical plot for the results of Equation 6.

FIGURE 6

Plot of $V \ell / V i n$ versus frequency for $\mathbf{Z 1}=\boldsymbol{j} 12962$ ohms and $\alpha=0.0174$ nepers.

A typical plot of Equation 6 is shown in Figure 5 which is drawn for Rs $=1+j 0.2$ ohms, $Z \ell=-j 12962$ ohms, and $\alpha=0.0174 \mathrm{~N}$. It can be shown that the input voltage minimum occurs to the left of the $\frac{\pi}{2}$ point (frequency Fo) if there's a capacitive load $Z \ell$ and resistive Rs. If you have a slightly inductive source impedance Rs and an infinitely high $\mathrm{Z} \ell$, the voltage minimum will occur to the right side of the $\frac{\pi}{2}$ point. Which effect dominates determines the location of the minimum. However, the deviations are very small. Plots 5 and 6 are frequency independent; the point π denotes the quarter-wavelength frequency. All voltage ratios are in absolute values.
Having found the frequency Fo from Figure 5 by using Equation 6, you must insert its value into Equation 5 to find $\frac{V \ell}{V \text { Vin }}$. Figure 6 is the plot of $\frac{V \ell}{V \text { in }}$ versus frequency for $Z \ell=$ - j12962 ohms and $\alpha=0.0174 \mathrm{~N}$ (resistor Rs doesn't affect this ratio).
The maximum value of $\frac{V \ell}{V \text { Vin }}$ occurs at the frequency F 1 of $0.99755 \frac{\pi}{2}$, giving a $\frac{V \ell}{V i n}$ value of 57.46793 , whereas the true voltage ratio for the cable attenuation of $\alpha=0.0174$ N is:

$$
\frac{V \ell}{V \operatorname{Vin}}=\frac{1}{0.0174}=57.47126
$$

This represents an error of only 0.0058 percent for the ideal case when the minimum of Vin occurs at the same frequency as the maximum of $\frac{V \ell}{V i n}$. This isn't always the case, but the deviation is small. You must measure $V \ell$ at the frequency where Vin has its minimum, not at the frequency where $V \ell$ has its own maximum, because the maximum of $V \ell$ doesn't coincide with the maximum of $\frac{V \ell}{V i n}$.

In reality, the frequency Fo may deviate slightly from this ideal F1 value, depending on the canceling effect of Rs and $\mathrm{Z} \mathrm{\ell}$. This error-reducing effect is a welcome and unexpected benefit, since Rs is always slightly inductive because of the difficulty in realizing a noninductive 1 -ohm resistor.
In the example, the frequency Fo for the lowest input voltage is $0.9982 \frac{\pi}{2}$. The corresponding $\frac{V \ell}{V \text { in }}$ ratio, as calculated from Equation 5, is 57.3697. This amounts to an error of only 0.18 percent. The error would be 0.4 percent without the capacitive load. In other words, the "minimum Vin" method is quite accurate, and its accuracy depends mainly on the capacitive voltage divider. It shows that the measurement error in the practical case of capacitive load and inductive source impedance is even smaller than that of the ideal case with infinitely high load impedance.

If you make a direct RF voltage measurement of Vin and $V \ell$ without the test set, you must connect a capacitor whose value is equal to the meter capacitance at the cable output while you adjust the frequency for minimum input voltage. Remove this capacitor when you measure $V \ell$ with the meter, but don't alter the frequency setting. Even if you don't make this substitution, the loss measurement is stili accurate enough for most applications.

Summary

Accurate and credible measurement of cable loss (calculated as the difference between input and output power) is difficult if the loss is small (for a short cable or at low frequencies).

The ratio of output to input voltage of a transmission line that is unterminated and driven from a low source impedance has a maximum value when measured at odd multiples of the quarter-wave frequency. The reciprocal of this ratio is very nearly equal to the cable loss in nepers within an error of less than 1 percent.

There are two ways of finding this maximum. The first involves the direct measurement of Vin and Ve with a calibrated RF voltmeter. The second is based on the voltage comparison between the capacitively divided output voltage and the input signal; it doesn't require a calibrated RF voltmeter. The capacitor dial can be calibrated in picofarads or directly in nepers.

By repeating the measurement at the three-quarter wavelength frequency, you'll get two sets of attenuation and frequency values. You can find the cable loss at any frequency between the measuring points by using a simple interpolation method. However, actual tests show that the equations also render excellent results for frequencies much higher than the measuring frequency. The two error sources of this method, the inductive source impedance and the capacitive load, tend to cancel each other and the measurement accuracy is mainly dependent on the accuracy of the capacitive voltage divider.

One great advantage of this method is that you don't have to know the characteristic impedance of the cable or its velocity factor; therefore, no mismatching error exists. The method is especially useful when the cable loss is small, making conventional loss measurement unreliable. Even a piece of coax as short as 1 meter can be measured accurately.
Practical cable tests, together with the interpolation method, produced excellent agreement with published data sheets. $\mathbf{r r}$
REFERENCE

1. Forrest Gehrke. K2BT, "Real Coax: Impedance and Phase Relationships," Ham Radio, April 1987, pages 8-14

A complete facsimile reception system for the IBM PC or Compatible. Receives up to 16 intensity levels.
Includes:
Demodulator
Software
Frequency List
80 Page Manual Tutorial Cassette Interpretation Guide Features:

Print on Epson, or HP Laser Jet
Disk Save, Zooming, Image processing
Unattended Image Capture and much more
Software Systems Consulting 1303 S. Ola Vista, San Clemente, CA. 92672
 - 162

DOWN EAST MICROWAVE

MICROWAVE ANTENNAS AND EQUIPMENT - Loop Yagis - Power Dividers . Complete Arrays • GaAs FET Preamps -TROPO -EME - Weak Signal - OSCAR Microwave Transverters
$902126912961691 \quad 23043456 \mathrm{MHz}$
2345 LY 45 el 1296 MHz 20 dBi S82 $1345 \mathrm{LY} 45 \mathrm{el} 2304 \mathrm{MHz} 20 \mathrm{dBi} \mathrm{Sc8}$ 3333 LY $33 \mathrm{el} 902 \mathrm{MHz} 18.5 \mathrm{dBi} \$ 82$

Above antennas kits. Assembled available Add S8 UPS $5 / h$ West of the Misciscippl.

MICROWAVE LINEAR AMPLIFIERS SSB, ATV, REPEATER, OSCAR

2316 PA iw in 18 w out $1240.1300 \mathrm{MHz} \$ 265$ 2335 PA 10 in 35 w out $1240-1300 \mathrm{MHz} \$ 315$ 3318 PA iw in 20 w out $900-930 \mathrm{MHz} \$ 265$ 3335 PA 10 in 40 w out $900-930 \mathrm{MHz} \$ 320$ 23LNA preamp 0.7d8 N.F. $1296 \mathrm{MHz} \$ 90$ 33LNA preamp 0.9dB N.F. $902 \mathrm{MHz} \$ 90$
NEW PRODUCT ANNOUNCEMENTS

New Loop Yagle

1845 LY Loop Yagi 1691 MHz 20 dBi 599 945 LY Loop Yagi 3456 MHz 20 dBi 580 Above antennas assembied and tested

Now Preampa

13LNA 0.7 dB N.F. 12 dB 2.3 GHz $\$ 140$ 18LNAZO 0.8dB N.F. 20 dB $1.69 \mathrm{GHz} \$ 140$ SLNA 1.0 dB N.F. 10 dB $2 \cdot 2.7 \mathrm{GHz} \$ 150$

> New Wideband Power Amplifiers

2370 PA 3w in 70 w out $1240-1300 \mathrm{MHz} \leqslant 695$ 2340 PA $2 w$ in $35 w$ out $1240-1300 \mathrm{MHz} \$ 355$ 2318 PAM iw in 18 w out $1240-1300 \mathrm{MHz} \$ 205$ NEW FOR DAYTON

NO TUNE MICROWAVE LINEAR TRANSVERTERS
From SHF SYSTEMS a new line of transverters designed by Aick Campbell KK7B and Jim Davey WABNLC

Available in kit form or assembled/tested
-903 1269129623043456 MHz - miarostrip fiters eliminale tune-up - 2 m i-1, PIN diode switched - sequencer standard in complete unit - Iow profie packaging, mast mountabie

Al active equipment - 13.8 V

SEE YOU AT DAYTON

DOWN EAST MICROWAVE BILL OLSON, W3HQT Box 2310, RR-1 Troy, ME 04987
(207) 948-3741

Bill Orr, W6SAI

ANTENNA TIME

Spring is just anead and it's time to start thinking about worthy antenna projects. l've received a number of letters about unusual antennas that I think are interesting. Here are some of them for your consideration.

The 10-meter "Hentenna" loop

Harold Muensterman, N9DEO, sent me data on this clever little antenna developed by JE1DEU of Sagamihara City, Japan. Local hams were amused by the loop; hence the name - "hen" means curious in Japanese. "Henantenna" was quickly shortened to "Hentenna." It's shown in Figure 1. This antenna's virtue is that it has very little "wingspread" and is quite unobtrusive.

The array has two one-sixth wave radiators separated vertically by a half wavelength. To feed them, connect the tips and tap the vertical wires with a coax feedline. Polarization is horizontal.

Hentenna construction is simple. You use a single mast; try a TV-style pushup one. Make your horizontal sections out of $5 / 8$-inch diameter aluminum tubing bolted to a mounting plate, and attach the plate to the mast with U bolts. Use enamel-coated copper wire for the antenna's vertical sections.

Feed the Hentenna with a balun and coax line. Run your feed wires from the balun to the vertical wires. Adjust for lowest SWR by moving the feed wires up or down the vertical wires. Copper alligator clips are ideal for this; you can remove them and make joint solders when you find the correct points. The points should be about 36 inches above the bottom tube for 10 meters.

The Hentenna provides a figureeight pattern at right angles to the

antenna plane. Gain is estimated at about 2.5 dB over a dipole. Bandwidth is very broad. By changing the length of the vertical wires, you can move the design frequency to any point in the 10-meter band.

A hanging unipole antenna for 160 meters

Phil Morgan, WDOP, uses a simple folded monopole for 160 operation (Figure 2). Phil says, "Being a cheapskate, I put up this antenna made out of Radio Shack loudspeaker cable. I used a tree limb about 46 feet above the ground. I zipped 45 feet of this wire down the middle, soldered the leads together at one end and spaced it
down its length with a half-dozen spreaders made of 6 -inch pieces of $1 / 2$-inch PVC tubing. I grounded one wire at the bottom and fed the other. Since the antenna was too short for 160 operation, I soldered a single wire to the top of the vertical portion and trimmed its length to resonate the whole works in the middle of the 160 meter band. I use my Heath SA-2060 Transmatch to give me access to the whole band.
"I have a pretty good ground system - an old, abandoned underground water tank, plus four 50 -foot radials made of 2 -foot wide chicken wire fencing laid on the ground. I'm not a big DXer, but have worked Hawaii and Cape Verde Islands on 160 using this lash-up. If you change the length of the single wire, the antenna will also work on 80 meters."

Any information on GFI?

In closing, Phil asks if anyone has

FIGURE 1

"Hentenna"' for 10 meters. Adjust tap points for lowest SWR.

RCS-4 FOR CONVENIENT INSTALLATION

No control cable required Selects one of four antennas
VSWR: under 11 to 1 from 18 to 30 MHz
Impedance: 50 ohms
Power capability: 1500 watts
average. 2500 watts PEP maximum

Remote COAX Switches

RCS-8V
FOR SPECIAL APPLICATIONS

Selects up to five antennas
Loss at $150 \mathbf{M H z}$: less than 1 dB VSWR: under 1.2 to 1 DC to 250 MHz
Impedance: 50 ohms
Power capability: 5 kW below $30 \mathrm{MHz}, 1 \mathrm{~kW}$ at 150 MHz

Available at your dealer. Send for a catalog of the complete AMERITRON line.
NNN

Tuned In To Amateur Radio

From Novice to Extra Class Cushcraft has the antenna you need.

Cushcraft offers high performance antennas to make every phase of your ham radio activity more satisfying. We have been creating innovative and exciting new products for more than 35 years. Call or write for a free copy of our full line antenna and accessory catalog or see your local dealer.

BOOMERS. The contest winners and distance record hoiders. Computer enhanced design for better gain, pattern and strength. There are VHF and UHF models for SSB, FM and other activities.

RINGO RANGER II. Still the world's favorite 2 meter, 70 cm or 220 MHz ornni antenna, with more gain. A must for your FM or packet station.

HF TRIBAND BEAM. A3. The most popular compact 10,15, 20 meter bearn. A4S A high performance 18 ' long wideband bearn with all stainless steel hardware. 40 meter add on kits for each

CUSHCRAFT / SIGNALS MOBILES "The choice of professionals* can improve your mobile performance. Models for $70 \mathrm{~cm}, 2$ and 6 meters.

AP8 VERTICAL. Covering $10,12,15,17,20,30,40,80$ Meters. Great choice for Novice to Extra class.

OSCAR PACK. A complete antenna system for satellite users. Includes 70 cm uplink, 2 meter downlink antennas and mounting kit.

R4 HALFWAVE $10,12,15,20$ METER VERTICAL Amazing performance in a small space without ground radials. Automatic broadband operation.

FAST ACTION GAS TUAE LIGHTNING ARRESTERS Protect your valuable radio equipment. High and low power models with SO-239 or N connectors.

SKYWALKEH MONOBAND, 10, 12. 15 and 20 meter yagis for more contacts, less waiting and a better signal. Preferred by contesters and DX-Peditions.

CORPORATION

THE ANTENNA COMPANY

PO. Box 4680,48 Perimeter Road, Manchester, NH 03108 USA Telephone: 603-627-7877 / Telex: 4949472 / FAX 603-627-1764 AVAILABLE THROUGH DEALERS WORLDWIDE

FIGURE 2

The $160 / 80$ meter antenna at WD0P.

The 6 -element, $14-\mathrm{MHz}$ Quad at UA6LA is built on an 80 -foot, trussed boom.
information on Ground-Fault-Interrupter interference (GFI). He's run into these pesky devils in trailer parks and finds they're very sensitive to RF. He notes that the slightest tap of the key or word spoken into the mic will cause these GFIs to trip. Phil has also found GFIs on boat docks, so hams operating around a marina may have the same problem. Any answers to this? Write me if you have a solution.

A six-element quad on an 80-foot boom!

I received a note and photo from Victor Trachenco, UA6LA, Rostov-onDon, USSR. He's the proud owner of a six-element, 20 -meter quad (Photo A). This monster is built on a welltrussed 80 -foot boom. So when you hear the blockbuster signal from UA6LA, you'll know it comes from this giant antenna!

The K6WZ tilt-over tower

I mentioned in a previous column that I'd seen a lot of tilt-over towers in New Zealand, but not many in the United States. Some of you have been kind enough to send me information on homemade tilt-over towers. Here are two interesting designs.

Carl Steavenson, K6WZ, of Herington, Kansas, built the wood tower shown in Photo B and Figure 3. It's about 30 feet high. The fixed, bottom portion is made of two 2×6 pieces of pressure-treated lumber 16 feet long. They are treated, before assembly, with Thomson's Waterseal. The 2 $\times 6$'s are sunk about 4 feet in the ground.

The top tilt-over portion of the tower is made of a single section of 2×6 material 20 feet long. It's pivoted near the top of the two lower sections with a heavy bolt. The pivot point on the top section is placed so that about 17 feet extend above the lower supports, and there's a 3 -foot lever arm below the pivot point. The pivot is made of a short piece of half-inch pipe with a heavy bolt running through it.

A rotating mast of 10 -foot TV mast sections runs up the wood mast. The rotor is about 8 feet above ground and turns the mast sections which support the antenna. The mast sections are attached to the wood tower by large eye bolts whose "eyes" are opened just enough to pass the rotating metal mast. The rotor sits on a small metal shelf bolted to the tilt-over section. To counterweight the tower, a few pieces

FIGURE 3

Layout of K6WZ tilt-over tower.

PHOTO B

The tilt-over tower at K6WZ. Made of 2×6 lumber. The tower is about 30 feet high. Rotor is placed near ground level and antenna is turned by supporting pipe.

FIGURE 4

Tilt-over tower support at K9BX.
of scrap metal are bolted to the shelf below the rotor.

To tilt the tower, Carl loosens two top back guys and removes the keeper bolt. He uses a little care and safety ropes, and over it comes!

Carl built the original tower in California 15 years ago. It was so successful that he built a duplicate when he moved to Kansas. He's worked 214 countries on RTTY with this low-cost, simple tilt-over antenna system, using a small triband beam!

The K9BX tilt-over tower

"Doc" Roberts, K9BX, of Rothschild, Wisconsin, has adapted a commercial tower to a tilt-over design (Figure 4). He's had this arrangement for 20 years and is very pleased with it.
The tilt-tower support frame is 18 feet tall and made of salvaged pipe. Each arm is built from 2-1/2 inch schedule 40 pipe on the bottom section, and 2 . inch pipe on the top section. Running across the top of the tower is a 37 -inch crossarm of 2 -inch pipe welded into ears at the tops of the vertical legs. A 2-3/4 inch pipe, about 24 inches long.
fits over the crossarm of the tower and functions as a pivot point. It is fastened to the tower.

The base of the tower (a 40 -foot aluminum model) is bolted into a base mount anchored in concrete. The tower sits alongside a flat-roofed garage: two of the vertical legs are anchored to the garage about 8 feet above ground.

To lower the tower, a pulley and rope system is attached to the bottom, the bolts anchoring the tower to the base plate are removed, and the tower is lowered manually. When the tower reaches a horizontal position, the rope is secured. The tower is then about 7 feet above the roof level, and the antenna is in an ideal position to work on. (Doc has a two-element quad on the tower.)

Doc says that after 20 years of wind action on the tower, the bolt holes near the tilt-over joint have become slightly elongated. He's reinforced these points and has added a set of top guy wires. Up to this time it had been a freestanding tower, anchored only at the top of the garage.

Crystals for many applications

For over 37 years. ICM has manufactured the finest in quartz crystals for every conceivable purpose.

A wide selection of holders are available to fit most any requirement. Our computer database contains crystal parameters for thousands of equipment types.

Need crystals for communications, telemetry. industrial. or scientific applications? Let !CM's sales department assist you to determine which type of crystal is best for you.

Can we solve your crystal problem?

For special purpose crystals, special holders. special sizes, call our crystal sales department. We will be pleased to provide recommended data

International Crystal Manufacturing Co., Inc.

PO Box 26330, 701 W Sheridan. Oklahoma City. OK 73126-0330 Phone (405) 236-374 1 Telex 747-147
Facsimile (405) 235-1904

EVERY ISSUE of

HAM RADIO

now available on microfiche!
The entire run of Ham Radio Magazine (March, 1968 thru last year) is ready to ship to you in one, easy to use format.
Our $24 \times$ microfiche is easy to read and very compact. We offer a hand held reader for $\$ 75$, and a desk model for $\$ 200$. Libraries have these readers.
As a bonus, you will receive Ham Radio Horizons ($3 / 77$ thru 12/80) free.
Everything is included, front cover to back-ads too!
Annual updates will be offered for $\$ 10$.
Send $\$ 185$ payment (visa/mc accepted) to:

HUCKMMASTER

BUCKMASTER PUBLISHING
Route 3, Box 56
Mineral, Virginia 23117
703/894-5777
visa/mc
800/282-5628

TOWERS
 by ALUMA

HIGHEST QUALITY ALUMINUM

- TELESCOPING (CRANK-UP)
- GUYED (STACK-UP)
- TILT-OVER MODELS

Easy to install. Low Prices. Crank-ups to 100 feet. EXCELLENT FOR 40 AMATEUR COMMUNICATIONS Over 36 types aluminum towers made-specials designed and manulacturedwrite for details.

> ALUMA TOWER CO. BOX 2806HR
> VERO BEACH, FL 32961-2806 (407) 567-3423 TELEX 80-3405 FAX (407) 567-3432

DELTA LOOP ANTENNAS

DL-TRI "Big Horn"

- "Open and Close the Band" with our Delta design, full wave DX performance mono. band, duoband and triband antennas
- High Quality construction using 6061-T6 Aluminum and Stainless Steel hardware
- Heavy duty design • "Quiet" DX reception
- Excellent Gain, FB Ratio and SWR
- 50 ohm gamma feed $\cdot 2 \mathrm{kw}$ power
- DL 202: 2 el. 20 meter, 9^{\prime} boom $\$ 397$. DL 152: 2 el. 15 meter, 6^{\prime} boom $\$ 329$. DL 103: 3 el. 10 meter, 9 ' boom $\$ 397$. DL 102: 2 el .10 meter, 5^{\prime} boom $\$ 297$.
- DL 1015: 4 el. duobander $\$ 489$.
$2 \mathrm{el} .10 \mathrm{~m} .-2 \mathrm{el} .15 \mathrm{~m} .7^{\prime}$ boom
- DL-TRI: 7 el. tribander $\$ 897$. $3 \mathrm{el} .10 \mathrm{~m} .2 \mathrm{el} .15 \mathrm{~m} .-2 \mathrm{el} .20 \mathrm{~m}$. 13.5 ' boom-wt. 81 \#-12.7 sq. ft.
- See our Product Review in June 1988 CQ Magazine by Lew McCoy, W1ICP

DELTA LOOP ANTENNAS, INC. 12 BRUSH DR., P.O. BOX 8063 NEW FAIRFIELD, СT 06812 (203) $746 \cdot 6368$

FIGURE 5

Frequency-agile ('hopping') signal.

Radar "chirp" signal.

"Jitter" signal.

Things that go "bump' in the night!

Back in the "good old days," emission was either phone or CW. As time went on, things became more complicated. A0 Emission was unmodulated carrier, A1 was CW, A2 was tonemodulated CW. A3 was phone, A4 was facsimile, and A5 was television. There were also "F-type" emissions covering FSK, FM, and so on. Things were getting confusing!

Today there's a half-page of "emission classifications" in the ARRL Handbook! Single sideband, suppressed
carrier (SSB) is listed as J3E (formerly A3J). That's simple enough. But if you're running "angle modulation" (FM) with $5-\mathrm{kHz}$ deviation and a maximum modulation frequency of 3 kHz , your emission classification is $16 K O F 3 E J N$. If you use phase modulation, your classification is 16K0G3EJN. And poor old Morse code is now 150HA1AAN (if you're sending 60 wpm$)$.

What this means is that hams now hear a lot of funny signals in and out of the ham bands. They may or may not have emission classifications but, for the most part, they certainly aren't ham signals. Here are some of the more interesting ones.

Figure 5 is a sketch of a frequencyagile ("hopping") signal which varies frequency in a predetermined manner, with the receiver locked to the rapidly

FIGURE 8

Top: Commercial 10-meter beam. Bottom: Commercial beam optimized. Constants listed are frequency, gain, F/B ration, input impedance, and SWR.

.
 ICOM KENWOOD YAESU

IC. 781
HF Equipment
IC-781 Super Deluxe HF Rig IC-765 New, Loaded with Features IC-761 Loaded With Extras
IC. $735 \mathrm{Gen} . \mathrm{Cvg}$ Xevr
IC.751A Gen. Cvg. Xcvr IC-725 New Ultra-Compact Xcvr IC. $575 \mathrm{~A} 10 \mathrm{~m} / 6 \mathrm{~m}$ Xcvr
Receivers
IC-R7000 25-1300 + MHz Rcvr IC-R71A. $100 \mathrm{kHz} \cdot 30 \mathrm{MHz}$ Rcvt VHF
IC-228A New 25w Mobile IC-228H New 45 w Mobile IC-275A All Mode Base w/PS IC. 275 H All Mode Base 100 w IC-28A FM Mobile 25w IC-28H FM Mobile 45 w IC-2GAT, New 7w HT IC-900 Six Band Mobile UHF
IC-475A All Mode 25w
IC-475H All Mode 75 w IC-48A FM Mobile 25 w IC-4GAT, New 6 w HT IC-4AT FM HT IC-04AT FM HT
IC-448A, 25 w Mobile
IC-32AT Dual Band Handheld IC-3210 Dual Band Mobile
220 MHZ
IC-375A All-Mode, 25w, Base Sta IC-38A 25w FM Xcvr
IC-37A FM Mobile 25 w
IC-3AT FM HT
1.2 GHz

IC-12GAT Super HT

List Juns $\$ 5995.00$ Call \$ TBA Call\$ 2699.00 Call \$ 1099.00 Call \$ 1699.00 Call \$ 949.00 Call \$ 1399.00 Call \$
1199.00 Call \$ 999.00 Call\$
509.00 Call \$ 539.00 Call \$ 1299.00 Call \$ 1399.00 Call \$ 469.00 Call\$ 499.00 Call \$ 429.95 Call \$ 639.00 Call \$
1399.00 Call \$ 1599.00 Call \$ 509.00 Call \$ 449.95 Call \$ 349.00 Call $\$$ 449.00 Call \$ TBA Call \$ 629.95 Call \$ 739.00 Call \$
1399.00 Call \$
489.00 Call $\$$ 499.00 Call \$ 349.00 Call \$
529.95 Call \$

HF Equipment
TS-940S/AT Gen. Cvg Xcvr TS.440S/AT Gen. Cvg Xcvi TS. 140 S Compact, Gen Cvg Xcvr TS-680S HF Plus 6 m Xcvr TL.922A HF Amp
Receivers
R- $5000100 \mathrm{kHz} \cdot 30 \mathrm{MHz}$
R- $2000150 \mathrm{kHz} \cdot 30 \mathrm{MHz}$
RZ-1 Compact Scanning Recv.
VHF
TS.711A All Mode Base 25w TR-751A All Mode Mobile 25w TM-231A Mobile 50w FM TH-215A, 2 m HT Has it All TH-25AT 5 w Pocket HT NEW TM-721A $2 \mathrm{~m} / 70 \mathrm{~cm}, F M$, Mobile TM. $6212 \mathrm{~m} / 220$, FM, Mobile UHF
TS.811A All Mode Base 25 w TR-851A 25w SSB/FM
TM.431A Compact FM 35w Mobile TH-45AT 5w Pocket HT NEW
TH. 55 AT 1.2 GHzHT
TM. 531 A Compact 1.2 GHz Mobile

220 MHZ

TM. 3530A FM 220 MHz 25w TH-31BT FM, 220 MHzHT TM-321A Compact 25 w Mobile TH-315A Full Featured 2.5w HT

List Juns
$\$ 2499.95$ Call \$ 1449.95 Call \$
949.95 Call\$
1149.95 Call \$
1649.95 Call \$
1049.95 Call \$
799.95 Call \$
599.95 Call \$
1059.95 Call \$
669.95 Call \$

TBA Call \$
399.95 Call \$
369.95 Call \$
729.95 Call \$
729.95 Call \$
1.265.95 Call \$
771.95 Call \$

TBA Call\$
389.95 Call \$
524.95 Call \$

TBA Call\$
519.95 Call \$
299.95 Call\$
469.95 Call\$
419.95 Call \$

HF Equipment FT.767GX
FT. 747 GX New Economical Performer FT. $757 \mathrm{GX} \| \mathrm{Gen}$. Cvg Xcvt
FT. 7674 Band New
FL. $700015 \mathrm{~m} \cdot 160 \mathrm{~m}$ Solid State Amp
Receivers
FRG-8800 $150 \mathrm{kHz} \cdot 30 \mathrm{MHz}$
FRG. $9600060-905 \mathrm{MHz}$
FT. 411 New 2 m "Loaded" HT FT. 212 RH New $2 \mathrm{~m}, 45 \mathrm{w}$ mobile FT-290R All Mode Portable FT-23R/TT Mini HT
UHF
FT. $712 \mathrm{RH}, 70 \mathrm{~cm}, 35 \mathrm{w}$ mobile
FT. 711 RH FM Mobile 35 w FT-2311R $10 \mathrm{w}, 1.2 \mathrm{GHz}, \mathrm{FM}$
VHFIUHF Full Duplex
FT. 736 R , New All Mode, $2 \mathrm{~m} / 70 \mathrm{~cm}$
FEX. $736.506 \mathrm{~m}, 10 \mathrm{w}$ Module
FEX. 736 - 220220 MHz , 25w Module FEX-736-1.2 1.2 GHz, 10 w Module FT-690R MKII, 6m, All Mode, port.
Dual Bander
FT-4700RH, 2m/440 Mobile 889.00 Call $\$$
220 MHZ
FT-312RM, Mobile TBA Call\$
Repeaters
FTR-2410 2 m Repeaters $\quad 1269.95$ Call $\$$
FTR-5410 70 cm Repeaters $\quad 1289.95$ Call $\$$

List Juns
889.95 Call \$ 1129.95 Call \$ 1929.00 Call \$ 995.00 Call \$
759.95 Call \$ 699.95 Call \$
399.95 Call \$
459.95 Call \$
599.95 Call \$
344.95 Call \$
499.95 Call \$
449.95 Call \$
559.95 Call \$
749.95 Call \$
259.95 Call \$
279.95 Call \$
539.95 Call\$
569.95 Call \$

Call For These Quality Brand Names

Free catalog and winding chart on request.

paromar Enchiters

Box 455, Escondido, CA 92025
Phone: (619) 747-3343

AMATEUR TELEVISION

SURVIVES 100,000 FT. FALL

KPA5 1 WATT ATV XMTR ON 434 MHZ WORKED PERFECTLY IN WB8ELK LIVE CAMERA BALLOON THROUGH 100,000 FT AND BACK TO CONTINUE RUNNING EVEN AFTER FREE FALL IMPACT IN THE MOJAVE DESERT! VIDEO SEEN FOR 300 MILES.

KPA5-E board \$169 Shouldn't your ATV transmitter be as reliable? Weather you want to put one in a balloon, R/C model, Robot, use as portable ATV xmtr, or get one in our ready to go TX70-1 for the shack, with P.C. Electronics you see the best! Companion receiving downconverter board TVC$2 G \$ 49$, or ready to go in a cabinet - TVC-4G $\$ 89$.

TX70-1

TVC-4G RECV CONV.

THE ATV TWINS
Hams, Call or Write for our latest catalog of ATV gear! Transmitters sold only to Tech or higher licensed amateurs varified in latest Callbook or copy of new license.

5/89

(818) 447-4565 m-t 8am-5:30pm pst.	Visa, MasterCard
P.C. ELECTRONICS	Tom (W6ORG)
2522 Paxson Ln Arcadia CA 91006	Maryann (WB6YSS)

W6SAI BOOKS

published by Bill Orr, W6SAI and Stu Cowan, W2LX BEAM ANTENNA HANDBOOK
Completely revised and updated with the latest computer generated information on BEAM Antenna design. Covers HF and Yagis and 10,18 and 24 MHz WARC bands Everything you need to know. 204 illustrations. 268 pages. ©1985. Revised 1st edition RP-BA

Softbound $\$ 11.95$

ALL ABOUT VERTICAL ANTENNAS

Theory, design, construction, operation-are fully covered. Here's what this exciting book covers: Horizontal vrs vertical-which is best? Top loaded and helical antennas. 5 high efficiency Marconi antennas for 80 and 160, verticals and TVI-Is there a problem? The effects of ground on vertical antennas and a how to make an effective ground system, the Bobtail beam, construction data for 25 different antennas, matching circuits of all descriptions-which is best, plus P-L-E-N.T-Y more! 1st edition, 192 pages (c) 1986
DRP-VA
Softbound $\$ 10.95$

RADIO HANDBOOK 23rd Edition

Here are some of the highlights of this exciting new edition: New easy-to-use charts for Chebyshev and elliptic filter configurations, new data on power MOSFETS, how to use state-of-the-art OP-AMPS, and home computer RITY to name just a few examples. New projects include: GaAsFET preamps for 902 and 1296 MHz , easy-to-build audio CW filter. Economy two 3-500Z, 160 meter amplifier. multiband amp using two $3 \mathrm{CX800A7}$'s, and a deluxe amplifier with the
3CX1200A7 tube. New antenna projects include: efficient Marconi design for 160 and 80 meters, computer generated dimensions for HF-Yagis, and a 2 meter slot beam. Get your copy today. 23 edition (c) 1986
[22424 (Reg. \$29.95) Hardbound \$26.95

THE RADIO AMATEUR ANTENNA HANDBOOK

A wealth of projects that covers verticals, long wires, beams as well as plenty of other interesting designs. It includes an honest judgement of gain figures. how to site your antenna for the best performance. a look at the Yagi-Quad controversy, baluns, slopers, and delta loops. Practical antenna projects that work! 190 pages. 1978. 1st edition.
RP-AH
Softbound $\$ 11.95$
Please enclose $\$ 3.50$ for shipping and handling.

BOOKSTORE
GREENVILLE, NH 03048
(603) 878-1441

Nom
anm Cund num s, , mism 0 Nom ver
 $\sin +1$
 + pimsinm nerum en

IF YOU ARE INTO ELECTRONIGS AND SAVING MONEY IS IMPORTANT TO YOU, THEN YOU OWE IT TO YOURSELF TO TRY NUTS E VOLTS MAGAZINE. DISCOVER WHY THOUSANDS OF SMART PEOPLE NATIONWIDE TURN TO NUTS E VOLTS EACH MONTH TO MEET THEIR ELECTRONIG NEEDS. WHETHER YOU'RE BUYING, SELLING, OR JUST TRYING TO LOCATE THOSE UNIOUE OR HARD-TO-FIND ITEMS, FIND OUT HOW NUTS \& VOLTS CAN HELP!

SUBSCRIBE TODAY!

CHECK \square MONEY ORDER \square VISA \square MC

Name

Address
City
State \qquad Zip

Exp. Date
CALL FOR ADVERTIBING INFORMATION DIGTRIBUTOR INGUIRIES INVITED

Subscription Rates

S FUNDS REQUIRED

3rd Class Mail - USA

One Year $\$ 12.00$
Two Years $\$ 21.00$ Lifetime $\$ 60.00$

1st Class Mail

One Year - USA . . $\$ 20.00$ Canada \& Mexico . . $\$ 22.00$

Air Mail
Foreign - 1 Year
$\$ 55.00$
Includes one FREE 40-word
Classified Ad

$$
175
$$

shifting signal. The hopping sequence often lands the signal in a ham band; you hear a quick burst of voice or other modulation, and the signal is gone. Does anyone know who the "hopper" is? I don't.
Figure 6 shows a representation of a "chirp" emission. This is often used with a radar, where the frequency varies with time. Figure 7 illustrates a "jitter" signal. The jitter varies with frequency, within a predetermined time frame.

There are other weird signals including: the well-known Soviet "Woodpecker". OTHR (Over-the-Horizon Radar), and Soviet missile tracking radars that occasionally pop up in the 10 and 12-meter bands. American OTHR is also on the air, but hops about randomly, and so far has caused no lasting interference in the hams bands. Other OTHRs on the air in various countries sometimes appear in an Amateur band.

Countless other curious things (like single-letter beacons) abound, and they often cause QRM in and out of the ham bands. There are also mysterious "numbers" stations, which repeat coded number groups throughout the HF range.

All of these signals cause QRM in an already jammed radio spectrum. Unfortunately, it's often easy to turn them on but not so easy to turn them off! Happy listening!

The Yagi optimizer disk

Brian Beezley, K6STI, has come up with another interesting disk for IBMPC and compatible users. It's called the "Yagi Optimizer, YO version 1.00." This program automatically optimizes
a Yagi antenna for maximum forward gain, best pattern, and minimum SWR. The package includes models for matching networks, element tapering, element-to-boom mounting plates, frequency scaling, and element taper scaling.
The YO program also plots antenna radiation patterns at the central design frequency and at the band edges. Best of all, YO has been designed to work alone or in conjunction with MININEC3, the high-accuracy general purpose antenna analysis program. This makes it convenient to analyze and optimize a Yagi previously analyzed with MININEC3.
Figure 8 shows an example of "before" and "after" optimization of a commercial 5 -element 10 -meter Yagi. Interested? Write to Brian (507-1/2 TayIor Street, Vista, California 92084) for full details.

The Dead Band Contest

I appreciate all the letters and cards I've received in response to this little

FIGURE 9

What is input resistance?
exercise. Thank you all very much! This month's quiz is an easy one. I'll give the answer next month. Find the input resistance to the network in Figure 9. Each resistor is 10 ohms.

DIGITAL VIDEO STABILIZER REMOVES ALL VIDEO COPY PROTECTION

While watching rental movies, you will notice annoying periodic color darkening, color shift, unwanted lines, flashing or jaggededges. This is caused by the copy protection jemming signals embedded in the video tape, such as Macrovision copy protection. THE DIGITAL VIDEO STABILIZER COMPLETELY ELIMINATES ALL COPY PROTECTIONS AND JAM. MING SIGNALS AND BRINGS YOU CRYSTAL CLEAR PICTURES.

WARNING

THE DIGITAL VIDEO

 STABILIZER IS INTENDED FOR PRIVATE HOME USE ONLY, IT IS NOT INTENDED TO COPY RENTAL MOVIES or COPYFighted video TAPES THAT MAY CONSTITUTE COPYRIGHT FEATURES- Easy to use and a snap to install
- The best and most exciting video stabilizer in the market
- State-of-the-Art Microchip Technology
- 100\% automatic
- Works on all VCRs \& TVs
- Similar units sold elsewhere for $\$ 99$
- Light weight \& compact
- Uses a standard 9 Volt battery (lasts 1-2 years); battery not included - Fast Shipping
- Air Shipping Available
- UNCONDITIONAL 30 days money back guarantee - 1 year warranty Special INFRINGEMENT.

ToOrder: Visa, M/C, COD M-F: 9-6
1-800-445-9285 or 516-568-9850 SCO Electronics Inc. Dept. CH6 581 W.Merrick Rd Valley Stream NY 11580

THE MULTIPLE RECEIVER SOLUTION

4 Channel Signal-to-Noise Voter

- Expandabie to 32 Channel by dust Adding Cards
- Contirubus Voting
- LED Indicators of COR and Voted Signals
- Builitin Caitibator
- Remote Voted Indicators Pinned Out
- 4) $\times 6$ Double Sided Goid Plated 44 Pal Card
- Remote Disabie inputs
- MORE

Built. tested and calibrated with manual $\$ 350.00$

Telephone interface now available For more information call or write

DOUG HALL ELECTRONICS

Voter Department
815 E. Hudson Street
Columbus, Ohio 43211
(614) 261-8871

HAM-COM 1989

NAMI: \qquad CAI. ADDRISS CITY \qquad STATE \qquad 7IP

PIIONI: (\qquad)
Single IIam-Com Pre-Registration, 57.00 Fach S
Family Pre-Registration for 1 Ilam \& Non-llams (Max of 3) in my immediate Family, $\$ 10.00$Fea Market Tables - Max of Threce, \$15.00 DachAdditional Flea Market Tables, tables in addition to your first three, \$25.00 Iach.Flea Market Electrical Outlet, \$25.00 FachTour \# 1, Shopping Tour to Dallas Galleria Mall and Olla Podrida Center, \$12.00.Tour \#2. Tour to Dallas' Old City Park and Ilistorical West End Market Place, \$17.00Saturday Morning DX Breahfast. \$8.85 Fach.Sunday Morning () (WA I Iospitality Continental Breakfast. \$3.50 IachARRI. Saturday Night Banquet \& Program. \$16,00 Each

ARLINGTON CONVENTION CENTER ARLINGTON, TEXAS
ARRL "DIAMOND JUBILEE" NATIONAL AMATEUR RADIO CONVENTION JUNE 2-4, 1989

Single Itam-Com Pre-Registration, 57.00 Each	S
Family Pre-Registration for 1 Ham \& Non-Hams (Max of 3) in my immediate Family, \$10.00......	\$
Fea Market Tables - Max of Three, \$15.00 Each.	\$
Additional Flea Market Tables, tables in addition to your first three, \$25.00 Each	\$
Flea Market Electrical Outlet, \$25.00 Each..	5
Tour \#1, Shopping Tour to Dallas Galleria Mall and Olla Podrida Center, \$12.00...	5
Tour \#2, Tour to Dallas' Old City Park and Ilistorical West End Market Place, \$17.00.	5
Saturday Morning DX Breakfast. \$8.85 Fach Sunday Morning ()(WA Ilospitality Continental Breakfast, $\$ 3.50$ Fach	5
ARRL Saturday Night Banquet \& Program. \$16,00 Each...	\$
I have enclosed my check or moncy order in the amount of	s

Registration and Ilotel Information........... (214) 423-76.36
1'lca Market Information............................. (214) 437-3578
I Xhibit and Gencral Information. \qquad (214) $521-9430$

PRE-REGISTRITION DEADIIAE: MAY 26, 1989

Mail Your Check or Money Order To:
Ham-Com, Inc.
P.O. Box 861829

Plano, Tevar 75086

R-7000 Widespan Panadaptor

Panadaptor especially designed for the R-7000 receiver. For use with a standard scope. Variable span width from 1 to 10 Mhz . Uncover unknown elusive signals. Complete with all cables, \& 90 day warranty. $\$ 349.95$ Shipped. Pa. res. add 6\%.

GTI Electronics

RD 1 BOX 272
Lehighton, Pa. 18235
717-386-4032

THE RF CONNECTION

"SPECIALIST IN RF CONNECTORS AND COAX"
Part No.
321-11064-3
BNC 2 PST 28 volt coaxial relay. Price Amphenol Insertion loss: 0 to 0.75 GHz , 0.10 dB

Power rating: 0 to $0.5 \mathrm{GHz}, 100$ watts $\mathrm{CW}, 2 \mathrm{kw}$ peak
Isolation: $0.1 \mathrm{GHz} 45 \mathrm{db}, 0.2 \mathrm{GHz}$ $40 \mathrm{db}, 0.4 \mathrm{GHz} / 35 \mathrm{db}$
83.822 PL-259 Teflon. Amphenol PL-259/S1 UHF Male Silver Tefion, USA UG-21D/U N Male RG-8, 213, 214. Amphenol N Male RG 8, 213, 214. Kings N Male Pin for $9913,9086,8214$ $\begin{array}{ll}9913 / \mathrm{PIN} & \text { N Male Pin for } 9913,9086,8214 \\ & \text { hits UG-21D/U \& UG-21B/U N's } \\ \text { UG-21D/9913 } & \text { N Male for RG-8 with 9913 Pin }\end{array}$ $\begin{array}{ll}\text { 9913/PIN } & \begin{array}{l}\text { N Male Pin for } 9913,9086,821 \\ \\ \text { hits UG-21D/U \& UG-21B/U N's }\end{array} \\ \text { UG-21D/9913 } & \text { N Male for RG-8 with 9913 Pin }\end{array}$ UG-21D/9913
UG-21B/9913
N Maie for RG. 8 with 9913 Pin UG. 146A/U NMale to S0-239. Teftion USA UG 83A/U N Female to S0-239. Teflon USA THIS LIST REPRESENTS ONLY FRACTION OF OUR HUGE INVENTORY"'
THE R.F. CONNECTION 213 North Frederick Ave. \#11 Gaithersburg, MD 20877
(301) 840-5477

VISA/MASTERCARD: Add 4% Prices Do Not Include Shipping

VHF-UHF rowerowoens

RF power dividers provides the
STAIDSEERG ENGINEERING, CD.

- PO. Box 7973 • Shreveport, LA 71107 • USA Phone (318) 865-0523

THE MICROFARAD COUNTER

By Hans Evers, PADCX, Wintererstrasse 3, D-7800
Freiburg, W. Germany

You can often find second-hand electrolytic capacitors at amazingly low prices at flea markets and surplus stores. The reason? Nobody trusts them (the capacitors, that is).

It isn't always easy to check the quality of a polarized capacitor. The number of microfarads may exceed the range of your measuring bridge, and it's rather unusual to find provisions for applying the necessary DC polarization during the measurement. Also, a quick assessment of possible leakage in a large capacitor could lead to problems.

With these considerations in mind, I decided to build a basic test box. My efforts resulted in an almost suspiciously simple schematic diagram. Yet the test box (though small enough to fit in your pocket) measures not only how many microfarads there are with reasonable accuracy, but whether the capacitor under test leaks. Although the circuit consists of only a few discrete components, it boasts an elementary "digital display."

The amount I spent for materials (practically all were supplied by my modest junkbox) was rapidly paid off when I used my new gadget to sort a shoe box full of old, partly used electrolytic capacitors. The contents of the box had become the subject of more and more distrust over the years, and I was actually at the point of throwing the whole lot overboard.

The principle

The principle of the microfarad counter is that of a capacitor charged through a resistor. When voltage is applied, the capacitor voltage builds up exponentially starting from zero, just as the textbooks specity. Something interesting occurs when the elapsed time (in seconds) becomes equal to R (in ohms) times C (in farads). You'll find the voltage across the capacitor has grown from zero to 63.2 percent of the supply voltage*.

If, for example, the supply voltage is 10 volts and $\mathrm{A}=1 \mathrm{meg}$ (as shown in Figure 1), you reach a voltage of 6.32 across a $1-\mu \mathrm{F}$ capacitor after 1 second. For an $n-\mu \mathrm{F}$ capacitor this would take n seconds. Thus, microtarads can be measured by counting seconds. It isn't too difficult to give the circuit a differ-

[^6]
FIGURE 1

Charging a capacitor through a resistor.

ent "measuring range." If you make $R=100 \mathrm{k}$ (ten times smaller), each second will represent 10 microfarads.

Putting this simple principle into practice is altogther something else. The voltmeter necessary to determine the 6.32 volts would unavoidably establish a bypass around the capacitor. This, in turn, would behave like a "leaky" capacitor. Because of the leakage, it would take more time to reach the threshold

FIGURE 2

Principle of the Microfard Counter.

voltage, making the capacitor look larger than it actually is.
You're left with two choices. You can measure the voltage over R and then subtract it from the supply voltage. Or use a voltage indicator that, at least untik the threshold is reached, looks like an electrical insulator. I found that the second option was the simplest. A wristwatch (or even a stopwatch) isn't the most practical time indicator in this case.

An improved counting system

There's a better system for counting the seconds. Figure 2 shows how it's done. The stopwatch has been replaced by a light-emitting diode (LED) that produces light flashes for counting the charging time - or rather the microfarads. This counting mechanism is switched on as soon as the capacitor starts charging, and is switched off when the capacitor voltage reaches 6.2 volts (near enough to the ideal 6.32 volts, for the moment). Q2, the actual switching element, acts as a temporary short across the base of LED driver Q5.

The initial capacitor voltage is zero with the power supply connected. The base of Q1 begins by looking at -5 volts; Q1 blocks the base current of Q2 which, therefore, can't conduct. So while the capacitor starts charging, nothing prevents the LED from blinking.

The capacitor voltage grows, and when the Q1 base voltage arrives at +1.2 with respect to ground, both Q1 and Q2 start conducting because their base-emitter junctions now have the required 0.6 volt across them. The emitter-collector path of Q2 forms a short and the LED stops blinking. When this happens, the capacitor (situated between -5 volts at the bottom and +1.2 volts at the top) has been charged up to 6.2 volts, indicating that $\mathrm{t}=\mathrm{RC}$ or: $C=\frac{t}{R}$.

Because the base voltage of $Q 1$ remains virtually constant, the voltage across the capacitor doesn't rise, and remains stabilized at 6.2 volts. With the measurement completed, the current through R no longer flows into the capacitor; it finds its way through the transistors to ground instead. The microfarad meter isn't complete yet. As you saw before, the capacitor would cause a false reading if there's leakage. So for the measurement to make sense, it's essential to know whether the capacitor under test is leakproof.

Leakage detection

A conventional leakage-current meter would be quite something to design. Even leakage currents as low as several microamperes can be significant (remember they are DC), especially in smaller sized capacitors. The measured current should be totally independent of charge and discharge currents; this requires that a capacitor voltage remain untouched when the meter circuit is introduced. Fortunately, the concern when using the test box is whether the leakage is serious enough to spoil your measurements. You need not worry about the actual amount of current leaked

I based my method on the following statement: "Onily if you extract the same amount of electricity from the capacitor as you've put in can you be sure that the capacitor isn'tleaking." In other words, if the capacitor after testing is discharged under the same conditions as it was charged, the charging and discharging processes should take the same amount of time.
You have to use an unusual technique to discharge the capacitor under the same conditions. Instead of being discharged passively across a parallel resistance (a method that would be unsuitable here as the process would follow a different portion of the characteristic), the capacitor is discharged actively when it's supplied with the same current in the opposite polarity.

The capacitor connections (charged to 6.2 volts as the result of the previous microfarad measurement) are reversed with a toggle switch. The positive side of the capacitor is now connected to a point that carries +1.2 volts and the negative side is connected to R (see Figure 3).

Initially, the base of Q1 sees a voltage of +1.2 volts in series with -6.2 volts, equaling -5 volts. Thecurrent through R discharges the capacitor. When the capacitor is fully discharged, the voltage across it is zero, and the base voltage of Q1 has arrived at +1.2 volts. This stops the process.

Q1 doesn't differentiate between charging or discharging, and the LED blinks in both cases. When measuring a healthy leak-proof capacitor, the LED blinks the same number of times for discharge as it does for charge. If there are fewer flashes, some of the electric charge was lost and you can conclude that the capacitor leaks.

During the entire charge-discharge cycle, the capacitor is never subjected to any voltage higher than 6.2 volts. The capacitor is left completely discharged after the capacity and leakage check.

The counter

It seemed appropriate to do some basic research before designing the blinking LED mechanism. I found that the once-per-second flashing rhythm would be exasperatingly slow. After doing some experimenting, I decided that a more suitable counting rate would be two flashes per second. The blinking is relatively fast, but not so fast that you risk losing count.

FIGURE 3

How the capacitor under test is discharged.

PARTS LIST

CAPACITORS

$10.68{ }_{\mu} F 25$ volt tantalum
$14.7 \mu \mathrm{~F} 25$ volt electrolytic or tantalum

POTENTIOMETER
100 k Radio Shack RS271-220

RESISTORS (all resistors $1 / 4$ watt)
R1-R5 see text, 5 percent
122 ohm
1560 ohm
14.7 k

1 100k
$1560 k$
$15.1 k$
$156 k$

SEMICONDUCTORS

Q1-Q5 ECG 123AP or equivalent
$278 \mathrm{LO5}$
2 1N4148 or equivalent
1 LED

MISCELLANEOUS

1 PCB FAR Circuits*
1 DPST miniature toggle switch
1 DPDT miniature toggle switch
1 SP5P rotary switch
2 9-volt battery connectors

All items obtainable from Radiokit, Box 973, Pelham, NH 03076, except as noted.
*18N640 Field Court, Dundee, IL 60118

FIGURE 4

Schematic diagram.

COMPUTERIZE YOUR SHACK

YAESU 747, 757GX, 757GXII, 767, 9600.
KENWOOD TS 140, 440, 940, 680, R5000.
ICOM R71A, R7000, 735, 751A, 761, 781, AND ALL VHF, UHF, CI-V. DRIVERS FOR RADIOS ARE MODULAR.
JRC NRD 525.
COMPLETE PROGRAM ENVIRONMENT
MENU DRIVEN AND DESIGNED FOR EASE OF USE
SCAN FUNCTION ADDED TO RADIOS THAT DO NOT SUPPORT IT ERGONOMETRICALIY DESIGNED FOR EASE OF OPERATION. MOST FUNCTIONS REQUIRE SINGLE KEYSTROKES.
PROGRAM COLOR CODED FOR EASE OF USE, ALTHOUGH WILL STILL
RUN IN A MONOCHROME SYSTEM
MENUS FOR THE FOLLOWING:
AMATEUR HF-AMATEUR VHF- AMATEUR UHF
AM BROADCAST-FM BROADCAST-TELEVISION BROADCAST
SHORT WAVE BROADCAST
AVIATION HF(SSB)-AVIATION VHF-AVIATION UHF
HIGH SEAS MARINE-VHF MARINE
MISCELLANEOUS HF, VHF, UHF
MOST POPULAR FREQUENCIES ALREADY STORED
ADDITIONAL LIBRARIES AVAILABLE
COMPLETE LOGGING FACILITY
ALL FREQUENCY FILES MAY BE ADDED TO, EDITED OR DELETED
AVAILABLE FOR IBM PC, XI. AT, 80386256 K RAM
1 SERIAL PORT AND 1 FLOPPY MINIMUM
PROGRAM WITH INITIAL LIBRARIES
RS- 232 TO TTL INTERFACE ONLY (NEEDED IF DON'T HAVE MANUFACTURERS INTERFACE) EXTERNAL INTERFACE ALLOWS 4 RADIOS

DATACOM, INT.

8081 W. 21ST LANE
HIALEAH, FL 33016
AREA CODE (305) 822-6028

HAM RADIO LOG BOOKS
 back by popular demand!

Room for over 2100 QSO-that's over twice as many as the other log books. For contesters, each page contains 30 QSO's for easy counts. You also get the latest up-to-date frequency spectrum chart. ITU callsign list and ARRL DXCC list. Spiral bound to lay flat on your desk. Unquestionably the best log book value around. 1988.

HR-LB
Spiralbound \$2.95
HR-3LB Special
Buy 3 Price. Save 22\%
Get 3 offer $\$ 6.95$

$\underbrace{\text { ATELIT }}_{\text {ESSENTIALS }}$

Satellite TV is still full of the wonderment that made it so popular in the early ' 80 s. The tinkerers are there, the programming is there, and never has the cost of becoming a dish owner been so low.
So, how do you find out about this exciting entertainment?

Through publications devoted specifically to satellite TV, that's how!

America's Weekly Guide To Satellite TV
OnSat is unsurpassed for the most up-todate listings of satellite programming. Dr. Dish, Mailbag, and the Transponder Service Watch are all geared to help you make the best use of your satellite TV system. A sample issue can be obtained for only $\$ 1$.

STVinaf

The Complete Monthly Guide To Satellite TV
STV Guide contains over 300 pages of programming information, product reviews, home troubleshooting, and information about satellite TV. A sample issue can be obtained for only $\$ 2$.

Both OnSat and STV Guide contain listings for over 120 channels and Prime Time Grids for over 50 channels. Subscribe to either the weekly OnSat or the monthly STV Guide for only $\$ 48$ per year.
To start receiving the best in satellite TV guides and information, call toll-free (800) 234-0021. VISA ${ }^{\text {e }}$ and MasterCard ${ }^{\text { }}$ accepted.

It's obvious that, with the LED flashing twice as fast, you have to correct the RC time to maintain the principle of one count per microfard. I compensated for this by changing R2 in Figure 4 from 1 meg to 510 k . Although this is slightly more than the ideal of 0.5 meg , the difference takes care of the approximately 1.5 -percent error in the 6.2 -volt threshold (which.ideally should have been 6.32 volts). I also had to consider the actual light/flash duration. I soon found out that a 50/50, on/off LED ratio isn't convenient for visual counting and that shrinking the length of the light pulsemade counting easier. There are limits, of course - you can't make the length so small that visibility begins to suffer. Thirty ms seems to be a good compromise.
The drastic reduction in light/pulselength has more advantages. You can subject the LED to considerably more current than the 20 mA usually recommended. The 68 mA that flows through the LED (mainly determined by 22 ohms in the Q5 collector lead, and to a lesser extent by the collector resistor of Q3) visibly increases the brightness. Nevertheless, the average LED current still isn't more than a very reasonable 4 mA .

Calibration and accuracy

Calibration doesn't require a capacitor of any standard value. The accuracy of calibration depends entirely on the voltages (the output voltages of the $78 \mathrm{LO5s}$, as well as the constant voltage drops over the diodes and transistor junctions), the resistors (R1 and R5 may be as accurate as desired), and the counting time. You can adjust the factor time by shorting the measuring leads (to make the LED flash) and by tuning R6 for exactly two counts per second.
The microfarad counter's total accuracy depends largely on the time you spend on measurement. If you measure a certain capacitor in 5 seconds, the unavoidable uncertainty of the last digit may cause an error of 10 percent. But if you're willing to spend almost a minute on the same measurement by switching to a lower range, and if the capacitor under test is leakproof, the digital error will be limited to 1 percent. In this respect, the elementary counting system of the microfard counter is in good company with other forms of digital displays, which also leave an uncertainty of at least plus or minus one digit.

Other design considerations

I designed the circuit with low power supply requirements in mind. See Figures 5 and 6 for the pc board layout and component placement guide. That's why I chose the LED as an indicator, rather than something like an acoustic bleeper. To ensure long-term battery consumption, it seemed necessary to use two batteries with a double-throw "power" switch. The 78L05 regulators appeared to provide the cheapest solution for maintaining reliable voltages.
The battery for positive supply must deliver an average current of 11.5 mA (it can be as high as 20 mA in the $\times 1000$ position). The battery for the negative supply has to produce 3.5 mA : this means it should last longer.
Use any common, low-power, silicone, NPN-type transistors. I used BC 237As from my junkbox. You must make an exception for Q1. A BC 109C works well because of its high beta at very low currents (in the "times 0.1 " position the base current is only $0.8 \mu \mathrm{~A}$). If you can live without the times 0.1 range, you can use a more conventional transistor for Q1.

DUPLEXERS

VARI-NOTCH ${ }^{\text {TM }}$ A state of the art design for the suppression of transmitter noise. A combination of the deepest notch, lowest loss, best passband roll-off. $51 / 4^{\text {" }}$ high rack mount models for $144-174 \mathrm{MHz}, 220 \mathrm{MHz}, 406-512 \mathrm{MHz}, 890-960, \mathrm{MHz} \quad 1.2-1.3 \mathrm{GHz}$.

5 1/4 HIGH RACK MOUNT

Bandpass, ATV, Notch, and Mobile duplexers are also available

TX RX SYSTEMS,INC..

PO. BOX 105, 8625 INDUSTRIAL PARKWAY. ANGOLA.N.Y. $14006(716) 549-4700$

- 179

Make the
 most of your general
 coverage transceiver with Monitoring Times!

Every month Monitoring Times brings everything you need to make the most of your general coverage transceiver: the latest information on international broadcasting schedules, frequency listings, international DX reports, propagation charts, and tips on how to hear the rare stations. Monitoring Times also keeps you up to date on government, military, police and fire networks, as well as tips on monitoring everything from air-to-ground and ship-to-shore signal to radioteletype, facsimile and space communications.

ORDER YOUR SUBSCRIP. TION TODAY before another issue goes by. In the U.S., 1 year, $\$ 18$; foreign and Canada, 1 year, \$26. For a sample issue, send $\$ 2$ (foreign, send 5 IRCs). For MCNISA orders (\$15 minimum), call 1-704-837-9200.

Monitoring Times

Your authoritative source, rover month.
P.O. Box 98 A

Brasstown, N.C. 28902

FIGURE 5

Foil side of pc board.

FIGURE 6

Component placement guide (component side).

Precautions

Some electrolytic capacitors have a maximum voltage rating lower than 6.5 volts. Don't measure these with the microfarad counter; they may be damaged. Capacitors with maximum voltage ratings at the other end of the scale also require a word of warning. When dealing with high-voltage capacitors, whether they are electrolytic, tantalum, or just ordinary paper-insulated type, you must always be aware of residual electric charges. They can develop even if the capacitor has been entirely discharged by a complete, longlasting, full short. It's a good habit to short any capacitor (even if it's been lying around for some time) before doing something with it.
In any case, it seems advisable to put Q1 and Q2 where they can be easily replaced if disaster strikes.

Operating instructions

WARNING: Residual electric charge on high-voltage capacitors may damage the test instrument. Discharge the capacitor before connecting.

- Connect the capacitor, with the switch in position "-C." Observe correct polarity.
- Set the switch in position "+C." The LED will start flashing. Count the flashes until they stop. Each flash represents $1 \mu \mathrm{~F}$ (or $10 \mu \mathrm{~F}, 100 \mu \mathrm{~F}$, and soon, depending on the position of the range switch).
- Switch to position "-C." The LED will start flashing again. Count the number of flashes until they stop. If the number is less than before, the capacitor is leaking current.

Observations

The use of electrolytic capacitors is usually regarded as an unavoidable evil. Some common problems you may experience with these caps are: limited life expectancy, exaggerated tolerance in value, and excessive leak current. After building my microfarad counter and using it to test a large variety of capacitors, I've found it necessary to reevaluate my opinion. Not only did there appear to be more leakproof electrolytic capacitors in my collection than I dared hope for, but their accuracy was generally much better than I expected. Most stayed within a tolerance of about ± 15 percent.

Wideband Preamp 10-1000 Mhz

Dual GasFet low noise preamplifier for HF, UHF or VHF systems. Just perfect for the R7000. Excellent for Spec Analyzers, Scanners, etc. Gain 20 $\mathrm{Db}+/-1 \mathrm{DB},-3 \mathrm{Db}$ at 2 \& 1100 Mhz. 1 Db compression of >10 Dbm. Intercept points $>45 \mathrm{Dbm}$. New shipped price of only $\$ 124.95$. Pa. residents please add 6% state tax.

GTI Eiectronics

RD 1 BOX 272
Lehighton, Pa. 18235
717-386-4032

LOGWRITE ${ }^{\text {" }}$

Aring your station into the computer age with LOGWRITE, the menu diven, user triendly logging program writien by Ed Troy ©NG3V, LOGWRITE is the perfect accessory for the complere hann station of in mplties your operation and gives sorks with all IBM PCO and compatitien.

LOGWRITE, unique split stren feature allows for simul: aneous logging and text processing logging features include.
instant call sign or prefix search
Print, Edit, or View records
Plenty of room for notes \& addresses Automatic time/date stamping
fert proceswr features automatic word wrap, hackapace cor rect, and scrolling Throw away your pen and papert
To order your copy of LOGWRITE complete with instruction manual, send $\$ 2495$ tPa residents add $\$ 1.50$ sales tax) w:

Aerospace Consulting
PO. Box 536. Buckingham. PA 18912
(215) $345-7184$

Or call 1 , 800 , 454156 ext 4 to order with Visa/Mastet
Card (Please specity 35 or 5.25 unch floppy.)

For the best buys in town call: 212.925-7000 os Precios Mas Bajos en Nueva York WE SHIP WORLDWIDE!

KITTY SAYS: WE ARE NOW OPEN 7 DAYS A WEEK Saturday \& Sunday 10 to 5 P.M. Monday Friday 9 to 630 PM Thurs. to 8 PM Come to Barty's for the best buys in town

ALINCO
D. 5001 DA-110T

\qquad
Digital Fatoutncy Counters

HEIL EQUIPMEN

BENCHIEA PADOLES.

MALUNS. LOW PASS FILTERS
IN STOCK
MIRAGE AMPLIFIERS

"Aqui Se Habla Espanol"
BARAY INTERNATIONAL TELEX 12.7670 MERCHANDISE TAKEN ON CONSIGNMENT FOR TOP PRICES

iAT/LEX Spnng 5 St Staton Subways: BM Prince St Statoon iND- F Train-Bwy Staton Bus: Broadway 26 to Spring Si Path-9in St $/ 6 \mathrm{th}$ Ave Bus: Bra

COMMERCIAL RADIOS
STOCKED - Ral
\qquad

ALL SALES FINAL
 final

Barry Electronics Commercial Radio Dept. offers the Best in two-way communications for Businesses, Municipalities, Civil Defense, Broadcasting Companies, Hospitals, etc. Sales and Service for all brands: Maxon, Yaesu, Icon, Tad, Octagon, Regency/Wilson, Midland, Standard, Uniden, Shinway, Fujitus, Seas, Spillsbury, Neutec, etc. Call or write for information. 212-925-7000.

Iron Powder and Ferrite TOROIDAL CORES

Shielding Beads, Shielded Coil Forms Ferrite Rods, Pot Cores, Baluns, Etc.

Small Orders Welcome Free 'Tech-Data' Flyer

AMIDON

ssociates

Since 1963

12033 Otsego Street, North Hollywood, Calif. 91607
$\vee 189$

Practically Speaking

Joe Carr, K4IPV

PART 1
 HIGH-FREQUENCY DIPOLE ANTENNAS

An unfortunate myth arose in Amateur Radio circles some time ago. People came to believe that large antenna arrays were absolutely necessary for effective communications - especially for DX work. They tend to overlook basic, but effective, antennas that anyone can erect and make work. The simple dipole or doublet antenna is a case in point. This antenna is sometimes called the Hertz or Hertzian antenna, because radio pioneer Heinrich Hertz is said to have used it in his experiments.

The dipole is a balanced antenna with two quarter-wavelength radiators (Figure 1), making a total of a half wavelength. The antenna is usually installed horizontally, producing a corresponding horizontally polarized signal.
In its most common configuration (Figure 1), the dipole is supported at each end by rope and insulators. The rope supports are tied to trees, buildings, masts, or some combination of structures.
As I said before, the antenna length is a half wavelength. Remember that the physical length of the antenna and the theoretical electrical length often differ by about 5 percent. In free space, a half wavelength is found from:

$$
\begin{equation*}
L=\frac{492}{F_{M H z}} \text { feet } \tag{1}
\end{equation*}
$$

Equation 1 gives you the physical length of a perfect, self-supporting antenna that's many wavelengths away from any object. But for real antennas, the length calculated using this equation is too long. The physical length is about 5 percent shorter because of the capacitive effects of the end insulators. A more nearly correct approximation (remember that word; it's important) of a half-wavelength antenna is:

$$
\begin{equation*}
L=\frac{468}{F_{M H z}} \text { feet } \tag{2}
\end{equation*}
$$

Where:
L is the length of a hall-wavelength radiator, in feet.
$\mathrm{F}_{\mathrm{MHz}}$ is the operating frequency in megahertz.

Example 1

Calculate the approximate physical length for a half-wavelength dipole operating on a frequency of 7.25 MHz . Solution:
$L=\frac{468}{F_{M H:}} f$ fect
$L=\frac{468}{7.25}$ feet $=64.55$ feet
or, restated another way:
$L=64$ feet 6.6 inches
Unfortunately, a lot of people accept Equation 2 as a universal truth - perhaps because of books and articles on antennas that fail to tell it all. For example, you must consider resonance. An antenna acts like a complex RLC network. At some frequencies it will appear as an inductive reactance (X_{1}
$=+j \mathrm{X}$, and at others as a capacitive reactance $\left(X_{C}=-\mathrm{jX}\right)$. At a specific frequency the reactances are equal in magnitude but opposite in sign, so they cancel each other out: $X_{1}-X_{c}=$ 0 . At this frequency the impedance is purely resistive, and the antenna is resonant.

The goal in erecting a dipole is to make the antenna resonant at a frequency that's inside the band of interest - preferably the portion of the band most often used by your station. I'll discuss some of the implications of this later, but for now assume that you have to custom tailor the antenna length. Depending on several local factors (among them nearby objects, the antenna conductor's shape, and the conductor's length/diameter ratio), you may have to add or trim the length a bit to reach resonance.

The dipole feedpoint

The dipole is a half-wavelength, center-fed antenna. Figure 2 shows the voltage (V), current (I), and impedance (Z) distributions along the length of the half-wavelength radiator element. The feedpoint voltage is at a minimum and the current is at a maximum, so you can assume that the feedpoint is a current "loop" or "antinode."
The impedance of the feedpoint at resonance is $R_{0}=V / I$. R_{0} is made up of two resistances. First there are ohmic losses that generate nothing but heat when the transmitter is turned on. These losses result because conduc-

Standard coaxial cable fed half-wavelength dipole antenna.

For literature or more information, locate the Reader Service number at the bottom of the ad, circle the appropriate number on this card, affix postage and send to us We'll hustle your name and address to the companies you're interested in.
$\begin{array}{llllllllllllllllllllllllllll}101 & 113 & 125 & 137 & 149 & 161 & 173 & 185 & 197 & 209 & 221 & 233 & 245 & 257 & 269 & 281 & 293 & 305 & 317 & 329 & 341\end{array}$
 $\begin{array}{llllllllllllllllllllllllllllllllll}103 & 115 & 127 & 139 & 151 & 163 & 175 & 187 & 199 & 211 & 223 & 235 & 247 & 259 & 271 & 283 & 295 & 307 & 319 & 331 & 343\end{array}$ $\begin{array}{llllllllllllllllllllllllllllllllllll}104 & 116 & 128 & 140 & 152 & 164 & 176 & 188 & 200 & 212 & 224 & 236 & 248 & 260 & 272 & 284 & 296 & 308 & 320 & 332 & 344\end{array}$ $\begin{array}{llllllllllllllllllllllllllllllllll}105 & 117 & 129 & 141 & 153 & 165 & 177 & 189 & 201 & 213 & 225 & 237 & 249 & 261 & 273 & 285 & 297 & 309 & 321 & 333 & 345\end{array}$ $\begin{array}{llllllllllllllllllllllllllllllllll}106 & 118 & 130 & 142 & 154 & 166 & 178 & 190 & 202 & 214 & 226 & 238 & 250 & 262 & 274 & 286 & 298 & 310 & 322 & 334 & 346\end{array}$
 $\begin{array}{llllllllllllllllllllllllllllllllllll}108 & 120 & 132 & 144 & 156 & 168 & 180 & 192 & 204 & 216 & 228 & 240 & 252 & 264 & 276 & 288 & 300 & 312 & 324 & 336 & 348\end{array}$ $\begin{array}{lllllllllllllllllllllllllllllllllllll}109 & 121 & 133 & 145 & 157 & 169 & 181 & 193 & 205 & 217 & 229 & 241 & 253 & 265 & 277 & 289 & 301 & 313 & 325 & 337 & 349\end{array}$
 $\begin{array}{lllllllllllllllllllllllllllll}111 & 123 & 135 & 147 & 159 & 171 & 183 & 195 & 207 & 219 & 231 & 243 & 255 & 267 & 279 & 291 & 303 & 315 & 327 & 339\end{array}$ $\begin{array}{llllllllllllllllllllllllllllllllll}112 & 124 & 136 & 148 & 160 & 172 & 184 & 196 & 208 & 220 & 232 & 244 & 256 & 268 & 280 & 292 & 304 & 316 & 328 & 340\end{array}$

NAME \qquad CALL \qquad ADDRESS CITY \qquad STATE \qquad ZIP \qquad
PLEASE USE BEFORE JULY 31, 1989

ATTN: Reader Service Dept.
tors have electrical resistance, and because electrical connections aren't perfect (even when properly soldered). Fortunately, in a well-made dipole these losses are almost negligible. The second contributor is the antenna's radiation resistance $\left(R_{r}\right)$. This resistance is a hypothetical concept that accounts for the fact that the antenna radiates RF power. The radiation resistance is the fictional resistance that would dissipate the amount of power radiated away from the antenna.

For example, suppose you're using a large diameter conductor as an antenna, and it has negligible ohmic losses. If you apply 1,000 watts of RF power to the feedpoint, and measure a current of 3.7 A , what is the radiation resistance?
$R_{r}=P / I^{2}$
$R_{r}=(1,000$ watts $) /(3.7)^{2}$
$R_{r}=73 \mathrm{ohms}$

FIGURE 2

Plot of current, voltage, and impedance distribution along half-wavelength dipole.

It's important to match the feedpoint impedance of an antenna to the transmission line impedance. Maximum power transfer always occurs when the source and load impedances (in any system) are matched. If some applied power isn't absorbed by the antenna (as happens in a mismatched system). then the unabsorbed portion is reflected back down the transmission line towards the transmitter. This results in standby waves, and the so-called standing wave ratio (SWR or VSWR).

Matching antenna feedpoint impedance may seem easy because the free space feedpoint impedance of a simple dipole is about 72 ohms. You'd think this would be a good match to 75 -ohm coaxial cable. Unfortunately, the 72 -ohm feedpoint impedance is almost a myth in practical situations. Figure 3 shows a plot of approximate radiation resistance (R_{r}) versus height
above ground (as measured in wavelengths). As before, you must deal in the approximations found in Figure 3; here the ambiguity is introduced by ground losses.

Despite the fact that Figure 3 is based on approximations, you can see that radiation resistance varies from less than 10 to almost 100 ohms as a function of height. At heights of many wavelengths, this oscillation of the curve settles down to the free space impedance (72 ohms). At the higher frequencies it may be possible to install a dipole many wavelengths high. On the 2 -meter band (144 to 148 MHz) one wavelength is around 6.5 feet (2 meters $\times 3.28$ feet/meter), so it's relatively easy to achieve "many" wavelengths at reasonably attainable heights. In the 80 -meter band (3.5 to 4.0 MHz), however, one wavelength is about 262 feet, so many wavelengths is a practical impossibility.

There are three tactics you can follow. The first is to ignore the problem altogether. In many installations, the height above ground will be such that the radiation resistance is close enough to present only a slight impedance mismatch to a standard coaxial
cable. You'd calculate the VSWR as the ratio (among other ways):

$$
\begin{align*}
& Z_{\theta}>R_{r}: \\
& \quad V S W R=Z_{\theta} / R_{r} \tag{3}\\
& Z_{O}<R_{r}: \\
& \quad V S W R=R_{r} / Z_{\theta} \tag{4}
\end{align*}
$$

Where:
Z_{0} is the coaxial cable characteristic impedance.
R_{r} is the radiation resistance of the antenna.

Consider an antenna mounted at a height somewhat less than a quarter wavelength, with a radiation resistance of 60 ohms . While not recommended as good engineering practice, there are many practical reasons why it's necessary to install a dipole at less than optimum height. If so, what are the implications of feeding a 60-ohm antenna with either 52 or 75 -ohm standard coaxial cable? Some calculations are revealing:

For 75-ohm coaxial cable:

$$
\begin{aligned}
& V S W R=Z_{o / R} \\
& V S W R=75 \text { ohms } / 60 \text { ohms }=1.25: 1
\end{aligned}
$$

FIGURE 3

Feedpoint Impedance versus height above ground.

ATTENTION: WOMEN WHO SOUGHT EMPLOYMENT WITH THE VOICE OF AMERICA (VOA), THE UNITED STATES INFORMATION AGENCY (USIA), OR THE UNITED STATES INTERNATIONAL COMMUNICATION AGENCY (USICA) BETWEEN OCTOBER 8, 1974 AND NOVEMBER 16, 1984.
 YOU MAY BE A VICTIM OF SEX DISCRIMINATION ENTITLED TO A MONETARY AWARD AND A POSITION WITH THE AGENCY. UNITED STATES DISTRICT COURT FOR THE DISTRICT OF COLUMBIA

CAROLEE BRADY HARTMAN, et al., Plaintiffs,

Civil Action No. 77-2019
v.

CHARLES Z. WICK, Defendant

Judge Charles R. Richey

PUBLIC NOTICE

On November 16, 1984, the United States District Court for the District of Columbia found in this class action lawsuit that the United States Information Agency (USIA or the Agency), including the Voice of America (VOA), is liable for sex discrimination against female applicants for the following positions at the Agency. The USIA was also formerly known as the United States International Communication Agency (USICA). On January 19, 1988, the Court issued its opinion ordering relief in avariety of forms to potential class members. Accordingly, this case is now in the remedia phase.

JOBS COVERED
Specitically, the Court has found that the Agency has discriminated against women in hiring in the following jobs:
-Electronic Technician (Occupational Series 856)

- Foreign Language Broadcaster (Occupational Series 1048)
-International Radio Broadcaster (Other) (Occupational Series 1001)
-International Radio Broadcaster (English) (Occupational Series 1001)
- Production Specialist (Occupational Series 1071)
- Witter/Editor (Occupational Series 1082)
-Foreign Information Specialis/Foreign Affairs Specialis//Foreign Service Information Officer/Foreign Service Oflicer (Occupational Series 1085 and 130)
-Radio Broadcast Tectnician (Occupational Series 3940)

WHO IS INCLUDED

All women who sought employment whith the Agency in any of the jobs listed above between October 8, 1974 and November 16, 1984 and were not hired may be eligible for reliet. Also induded are those women who were discouraged from applying for these positions ouring that time period. Even those wormen subsequently hired by the Agency in some capacity may be entitied to participate in the remedial phase of this case.

Women who sought employment with the Agency as Foreign Service Officers or Foreign Service information Offlcers may be eligible lor difierent kinds of relief depending upon the date of application and whether they sought employment at the entry level or mid-level. Wornen who sought employment with the Agency as entry lovel Foreign Service Officers or Foreign Service Information Officers in the years 1974-1977 must use the procedure outlined below. Women who sought employment with the Agency as mid-leyel Foreign Service Officers or Foreign Service Information Officers in the years 1974-1984 must also use the procedure out lined below. However, women who sought employment with the Agency as entry level Foreign Service Officers or Foreign Service Information Officers in the years 1978-1984 cannot use the procedure outlined below, since the Court has ordered an alternative formof relief for them and selected women in this group will be notified individually as to their rights.

RELIEF AVAILABLE AND HOW TO OBTAIN IT

Rellef avallable to class members may include a monetary award and/or priority consideration for a current postion with the Agency. If you think you may be enthed to relief, you must obtain a claim form, complete in fuly, and return it to counsel for the plaintiff class, Bruce A. Fredrickson. Esq.. Webster \& Fredrickson, 1819 H Street, N.W., Suite 300, Washington, D.C. 20006 (202I 659-8515). postmarked no later than July 15. 1989.

You may obtain aclaimiormin persen and/or in writing fromseveral sources: counsel for the plaintift class, whose address is listed above; in person from USIA, Front Lobby, 301-4th Street, S. W., Washington, D.C. (8:15am-5:00pm), Office of Personnel Management (OPM). Federal Job Information Center (First Floor, Room 1425), 1900 E Street, N.W., Washington, D.C. (830am2:30pm), or from area OPM offices throughout the country; in writing, VOA-Hartman, P.O.Box 400, Washington, D.C.20044. You should carefully consider all questions on the claim form, eign it, and return it to counsel for the plaintifts. Do not, under any circumslancee, return the claimform to the Judge, the Court or the Clerk of the Court. The Judge, the Cour and the Clerk of the Court will not eccept the claim forme and will not forwerd clain forms to plaintifis' counsel.

PROCESSING OF CLAIMS

The process for handing claims has not been finally decided. Thus tar, the Court has ordered that responding class mernbers demonstrate their potential entitlement to relisf at an individual heering to be scheduled at a later date. However, the Court has reserved the right to reconsider this procedure in the event the number of claims filed makes this approach unmanageable.

Should individual hearings be used, you will be fully informed as to the date and time of your hearing. Moreover, you will be entitled to legal representation by counselfor the plaintilt class or his designee at no cost to you. Legal counsel will discues your claim with you prior to your hearing, help you prepare your case and represen you at your hearing. You may, of course, retain your own attomey to represent you, it you so desire.

At the Indvidual hearing. you will be asked to demonstrate your potential entitlernent to relief by stowing that you applied for one of more of the covered positions during the period Ocrober 8 . 1974 and November 16, 1984 and that you were rejected, or that you were discouraged from applying. Evidence may be required in the form of testimony, documents, of both. Once you have demonstrated these facts, USIA is required to prove, by clear and convincing evidence, that you were not hired (for each position for which you applied) tor a legitimate, non-discriminatory reason, such as fallure to possess requisite qualifications. Should USIA make such a showing. you would then beentitled to demonstrate that the Agency's reas on is merely a cover for sex discrimination or unworthy of belief.

Following the hearing, the Presiding Official will decide whether you are entited to relief and, if so, what relief is appropiate. You may be entited to wages and benefits you would have earned II you had been hired (back pay) from the date of your rejection until the date relief ks approved. Under the law, back pay is offset by earnings you may have had during the period. In addition, you may be lound to be entitied to front pay (that is, compensation imto the future until an appropriate position is affiorded you). Similarly, you may be found to be entitled to pribrity consideration for employment with the Agency. It hired, you may further be entitied to retroactive seniority with the associated benelits and the value of any prornotions you would likely have had it you had not suffered discrimination.

REQUIRED STEPS TO FILE YOUR CLAIM
To participate in the rernedial phase, you mulat fully complete the claim form and seturn it, POSTMARKED NO LATER THAN July 15 , 1989 , to couns el for the plaintitt class. Your failure to do so wili result in your los ing all rights you may have in this lawsuit. If you have questlons about your rights or procedures available to you, you may contact counsel for the plaintiff class:

Bruce A. Fredrickson
Webster \& Fredrickson
1819 H Street, N.W.. Suite 300
Washington, D.C. 20006
(202/659-8515)
October 4, 1988
/s/Judge Charles R. Richey
Date

For 52 -ohm coaxial cable

$$
\begin{aligned}
& V S W R=R_{r} / Z_{o} \\
& V S W R=60 \mathrm{ohms} / 52 \mathrm{ohms}=1.15: 1
\end{aligned}
$$

In neither case is the VSWR created by the mismatch very significant.

The second approach is to mount the antenna at a convenient height and use an impedance-matching scherne to reduce the VSWR. You'll find information on suitable impedancematching methods (including Q sections, coaxial impedance transformers, and broadband RF transformers) in any good antenna textbook. Homebrew and commercial transformers can cover most impedance transformation tasks.

The third approach is to mount the antenna at a height (see Figure 3) where the expected radiation resistance crosses a standard coaxial cable characteristic impedance. The best height seems to be a half wavelength. The radiation resistance is close to the free space value of 72 ohms, and is a good match for 75 -ohm coaxial cable (like RG-11/U or RG-59/U).

The dipole radiation pattern

When discussing antennas I keep returning to the concepts of directivity and gain, which are actually different expressions of the same fundamental concept. Antenna theory recognizes a point of reference called the isotropic radiator. This device is a theoretical construct consisting of a spherical point source of omnidirectional RF radiation. It creates an ever-expanding sphere as the RF wave front propagates outward. Antenna gain is a measure of how the antenna focuses available power away from a spherical wave front in a limited number of directions (two, for a dipole). This is how the concepts of directivity and gain are related.

Always remember that directivity and gain are specified in three dimensions. Many times authors (including me) simplify the topic too much by publishing only part of the radiation pattern (i.e., azimuth aspect as seen from above). You, in turn, wind up with a pattern viewed from above that shows the directivity in the horizontal plane. A signal doesn't propagate away from an antenna in an infinitely thin sheet, as such presentations seem to imply, but has an elevation extent in addition to the azimuth extent. Proper

Radiation pattern of dipole in free space as seen from two planes (A and B), and three dimensionally (C).
antenna evaluation takes both horizontal and vertical plane patterns into consideration.

Figure 4 shows the radiation pattern of a dipole antenna in free space "in the round." When the horizontal plane is viewed from above (Figure 4A), the pattern is a "figure eight" that exhibits bidirectional radiation. Two main "lobes" contain the RF power from the transmitter, with sharp nulls of little or no power off the ends of the antenna axis. This is the classic dipole pattern published in most antenna books.

I've also shown the vertical plane pattern for a dipole antenna in free space. Note that the radiation pattern is circular when sliced in this aspect (Figure 4B). When the two patterns are combined, you see a three-dimensional doughnut-shaped pattern (Figure 4C) that most nearly approximates the true pattern of an unobstructed dipole in free space.

When a dipole antenna is installed close to the ground and not in free space, as is the case at most stations, the pattern is distorted from that of Figure 4. You must take two effects into consideration. First and most important is that the signal from the antenna is reflected from the surface and
bounces back into space. This signal will be phase shifted by both the reflection and the time required for the transit to occur. At points where the reflected wave combines in phase with the radiated signal, the signal is reinforced; in places where it combines out of phase, the signal is attenuated. Thus the reflection of the signal from the ground alters the pattern from the antenna. The second factor to consider is that the ground is lossy, so not all of the signal is reflected; some of it heats the ground underneath the antenna. Consequently, the signal is attenuated at greater than inverse square law, further altering the expected pattern.
Figure 5 shows patterns typical of dipole antennas installed close to ground. The views in this illustration correspond to Figure 4B in that they are looking at the vertical plane from a line along the antenna axis. The antenna is represented by " R " in each case shown. Figure 5A shows the pattern for a dipole installed at one-eighth wavelength above ground. For this antenna, most of the RF energy is radiated almost straight up (now very useful). This type of antenna is basically limited to groundwave and very short skip (when availa-
ble). The second case (Figure 5B) shows the pattern when the antenna is a quarter wavelength above the ground. Here the pattern is flattened, but still shows considerable vertically reflected energy (where it is useless). Now look at the pattern obtained when the antenna is installed a half wavelength above the surface. In Figure 5C, the pattern is best for long distance work because energy is redirected away from the vertical into lobes at relatively shallow angles.

Dipole construction and installation techniques

According to "conventional wisdom," the ideal dipole antenna should be installed at a very high altitude where its performance resembles the free space model. Unfortunately, complying with conventional wisdom is impossible - even for antennas in the higher end of the HF spectrum. Given that the dipole feedpoint impedance is a good match for 75 -ohm coaxial cable, and that the pattern is ideal for long distance work when the antenna is installed at a height of a half wavelength above the surface, it's a good idea to
try installing the antenna at that height.
Building and installing simple dipoles isn't terribly difficult. Figure 6

FIGURE 5

B)

Vertical aspect radiation pattern of dipole close to earth's surface: (A) $1 / 8$-wavelength, (B) 1/4-wavelength, and (C) 12/2-wavelength.
shows the method for building the antenna. First, cut the wire radiator elements to the approximate length indicated by Equation 2 plus an additional 12 to 24 inches; each element will finally be a quarter wavelength long. The wire can be either hard-drawn copper wire or Copperweld ${ }^{(\pi)}$. The latter is a special tough-service steel core antenna wire coated with copper. The RF resistance of this wire at frequencies above 1 MHz is the same as that of solid copper wire because of the "skin effect" (alternating currents like RF flow on the outer surface of the conductor only). At 160 meters the skin effect depth is only 50 microns (2 mils). while at 10 meters it's only 12 microns (0.5 mils). This means you have the advantage of copper conductivity along with the strength of steel wire.

You'll need two end insulators, and both are assembled in the same way. Pass the wire through the hole in the insulator (see Figure 6) to a length of about 12 inches. Wrap the wire back on itself and wind it around the portion of the wire that's left on the other side of the insulator. Make this a permanent

FIGURE 6

Construction details of dipole antenna (from TAB Handbook of Radio Communications by J.J. Carr).

FIGURE 7

Use of a 1:1 balun transformer at the feedpoint (from TAB Handbook of Radio Communications by J.J. Carr).
connection by soldering it and clipping off the excess wire. The solder won't provide mechanical strength. Its purpose is to make a good electrical connection in the presence of corrosion.

Fix the antenna wires to the center insulator in the same way, unless you plan to use one of the special center insulators now on the market. Make these connections temporary until after you've tuned and tested the antenna. You may have to either lengthen or shorten the radiators when tuning your dipole.

Connect the transmission line (usually coaxial cable) to the antenna wire at the center insulator as shown. Attach the center conductor to one radiator element and the shield of the coax to the other. You need to provide strain relief for the coaxial cable; if you don't the cable will break after only a short period of service. The easiest strain relief method is shown in Figure 6. Simply wrap the cable once around the insulator and tie it off with twine.

Some commercial center insulators offer a strain relief hole or other mechanism. Many people prefer to use a $1: 1$ balun transformer at the dipole's feedpoint (see Figure 7). The transformer has a $1: 1$ impedance ratio, so it doesn't provide any matching. Instead, it's said to balance the currents flowing in the two radiators, and prevent radiation from reaching the feedline. While this claim has been controversial for some time, and the issue is still not resolved, the best evidence suggests that the pattern of a dipole close to ground is most nearly like the ideal pattern if a 1:1 balun transformer is used at the feedpoint. In Figure 7 the balun transformer also acts as the center insulator, so no other arrangement is needed.

Next month...

This month I looked at the basic resonant dipole. In part 2, I'll discuss tuning methods for the standard dipole, and some additional variations on the dipole theme. [ra

antenneX。

"The Magazine For Antenna Experimenters" IF YOU -

- Have a lousy mobile signal on all bands?
- Need an inexpensive beam for 10 meters?
- Unsure about using vert vs horiz antenna?
- Need a low noise antenna for 160 meters?
-Want to design an antenna just for you?
- Need a program for design and plotting?
- Need to solve a unique problem?
- Know the best antenna for hamsats,etc.?
- Need a disguised mobile antenna?
-Want a cheap automatic coupler system?
- Just want to learn more about antennas?

THEN SUBSCRIBE TO - antenneX.
12 MONTHLY ISSUES is only $\$ 11.97$ for USA and possessions. $\$ 17.00$ foreign.

antenneX。

P.O. Box 8995 Dept. 19

Corpus Christi, TX 78412

$\checkmark 190$

Electronic Repair Center Servicing

Amateur Commercial Radio
The most complete repair facility on the East Coast.
Large parts inventory and factory authorized warranty service for Kenwood, Icom and Yaesu.

SEND US YOUR PROBLEMS

Servicing "Hams" for 30 years, no rig too old or new for us.

4033 Brownsville Road
 Trevose, Pa. 19047 215-357-1400

> INDUSTRIAL OUALITY REPLACEMENT BATTERIES FOR COMMUNICATIONS
> Nickel-Cadmium,Alkaline,Lithium,etc.

Repair Packs For
ICOM®, KENWOOD, YAESU,
SANTEC, AZDEN, TEMPO, CORDLESS PHONES....AND MORE
NEW! I.C.E. PACK ${ }^{\mathbf{5}} \mathbf{4 9}{ }^{95}$

- 191

HF-Amplifier arcs, pops and loud bangs are not normal After hearing one of these unpleasant noises, did you discover: a deceased amplifier-tube, burned bandswitch contacts, pitted tuning-capacitor plates, a shorted Zener
bias diode, or other kaput amplifier parts? if the answer to one or more of these questions is yes, the damage was almost certainly not your fault and not the fault of the tube manufacturer even it the amplifiet-tube was replaced under Eimac's\% very generous warranty. The real problem is that it is quite likely that your amplifier has an intermittent VHF parasitic oscillation
if you know how
rected by replacing the orig. this problem is easily [High VHF .Q] "parasitic suppressors"(?) with Low VHF.Q parasitic-suppressors (For more information, see QST Magazine, Oct. 1988, page 361 All materials, components, instructions, diagrams and a $430^{\circ} \mathrm{F}$ silversolder kit included, nothing else to roundup, Low VHF-Q Parasitic-Suppressor* amplifier retrofit-kits are now available from the author of thus article. Prices start at $\$ 12$ delivered via First Class Mailv, for a (1) or (2) 3-500Z, or 3 . $400 Z$, amplifier retrofit-kit. For increased duty-cycle option. add \$2. D-i.vit-kits are also available for HF-amplifiers that use 572B, 8122, 8873, 8874, 8875, 3CX800A7, 3. $1000 \mathrm{Z} .3 \mathrm{CX} 1200 \mathrm{A7}$ and 8877 tube types
\rightarrow Also available. Telephone RF-Interfer ence filter kits with diagram and instructions, four (4) for $\$ 5$. delivered va First Class Maild
\# you would like to receive detailed information and a price list, use the reader service card, or write direct to: Richard L (Rich) Measures. AG6K, 6455 La Cumbre Road, Somis, CA, 93066, or $¥ 805 \cdot 482 \cdot 3034$. Please include your home telephone number it you write or order a kit.

Factory-less, jumper-less, ROM-less programming.

With the new S-COM 5K Repeater Controller, you'll be able to configure your repeater remotely-using DTMF commands. Only the 5 K offers this capability for just $\$ 195$, wired and tested.

S-COM Industries
P.O. Box 1718 Loveland, CO 80539 (303) 663-6000

- Signals from space.
- Catch some free.
- We know how.
- You can tool
- Join AMSAT
- Free brochurefor SASE

AMSAT
POBOX 27
WASHINGTON, DC 20044

1500 + WATT TRANSMATCH KIT \$169.95
 OTHER KITS

BASIC KIT-INDIVIDUAL ITEMS

1. rotary inductor $28 \mu \mathrm{~h}$.
. $\$ 59.00$
2-6:1 ball drives $\$ 9.00$ ea
2. 0-100 turns counter
$\$ 65.75$
1- turns counter, economy (Groth) ... \$19.95
2 - variable capacitors
$25-245$ pt 4500 v .
$\$ 44.00$ ea

OPTIONS—

enclosure (pictured in Sept. 86 CQ) $\$ 64.00$
$4: 1$ balun kit.
$\$ 22.50$
dials, terminals, chassis, ceramic standofts, hardware,

Digitar TWR-3 Weather Station

Like most New Englanders, I'm very interested in the weather. I wanted to own weather instru. ments that would provide good data, but found the cost of most systems prohibitive because of fancy features.

The Digitar series of handheld weather stathons meet my standards. The TWR-3, advertised as the world's smallest computer weather station, "packs a wallop" of information including wind speed (3 to 250 mph), wind direction (in degrees, two scales), wind gust record, temperature (-70 to +270 degrees F), high/low temperature record, and has an optional rainfall gauge at extra cost.

The TWR-3 reads in English or metric units and can be programmed to scan through its var. ious functions. It operates on house current, 12 . volt DC supply, or its own internal battery support. I installed it easily in less than an hour.

The model TWR-3 is made by Magnaphase Industries. Inc., and is available from Azimuth Weather Star, 11845 W. Olympic Blvd., Suite 1100, Los Angeles, California 90064, for \$159.95
de N1GCF
Circle \#301 on Reader Service Card.

Mobile data unit

The TEMPO MPP1 TNC/printer combination is a compact unit for mobile or portable use. The processor portion of the unit is compatible with TAPR TNC 2 and makes use of the complete command set. With 32 K ROM and 32K RAM it's possible to.

- store and print all messages received while operating.
- store all messages for printing withm the ROM unit.
- store messages to a selected terminal for immediate or delayed printing
Specifications:
Protocol
AX. 25 level 2
Modem
AFSK ($1200-2200 \mathrm{~Hz}$)
Processor
Z80 sotware compatible

Mermories

ROM 32K, RAM 32K (lithium battery backup)
Communication speed 1200 bps (radio link)
Terminal data rate 120 bps (300 to 9600 selectable), RS 232C compatible
Power requirement 13.8 volts DC at 700 mA

Printer

Thermal Series dot, 40 characters/line, 24
characters/second
Paper
Thermal, 3-1/8 inch paper tape
Controls
ON/OFF, manual/auto select, paper feed Indicators

POWER on. Tx, Rx, STAtus, CONnected, PTR
Connections Radio interface (5 pin)
Terminal interface (DB-9)
Power DC (2 pin)
The mobile data terminal is shipped complete with cables for connections to a transceiver, computer serial port (RS 232C), and DC power source. Also included are the installation and user's manual and a spare roll of thermal paper. An AC Adapter tor supplying DC power from the 117 VAC line and a technical manual complete with schematic are optional. The technical manual is recommended for understanding the circuitry. It's very nelpful if you're just getting started in packet, as the installation and user's manual is brief.

Instructions for connecting the unit to your VHF transceiver and computer are straightforward and well documented. You'll have to provide the proper radio and computer plugs to match your equipment, but the MPP1s are already mounted on their cables with the other ends left as flying leads.
I tested the unit with three different transceivers. ICOM-25A, Kenwood TM-221A, and Kenwood TM-621A. The ICOM and Kenwood units had different connections, so I made an adapter to interchange the units easily. I also used two different computers, an IBM PC-XT and a Radio Shack Model 100 (lap top) unit.

Initialization of the MPP1 was easy and well outlined in the manual provided. You must load the terminal's RAM with the proper defaults and your callsign on initial setup. Then your terminal is ready for base or remote use.

I did base station testing with the transceivers connected to a stacked pair of Yagis. 1 made contacts with stations as tar away as Montreal, Canada by using digipeaters. The unit was very tolerant of audio level variations, and did not drop messages during periods of fading or when the audio level was intentionally varied using the gain control. My mobile testing included traveling a route that passed through known weak signal and multipath areas. I copied a couple of bulletin boards without tault and left messages for other users.

This unit is ideal for emergency communications. Amateurs involved in ARES activities should consider it for remote oberation. The TNC portion of the unit is a complete processor in itself and directly controls the printer; it can be used as a receive only monitor for messages, with printout activated when convenient.

My only difficulties were due to "cockpit errors" because I have limited packet experience. It's well worth the extra cost to order the technical manual.

I'd like to thank Bill Burden, WB1BRE, for riding copilot and operator during the mobile testing.

The MPP1 sells for $\$ 395$ and is available from HENRY RADIO, 2050 S. Bundy Drive, Los Angeles, California 90025.
de WA1TKH
Circle \#302 on Reader Service Card.

Cushcraft 124WB-element, 2-Meter boomer antenna

Here's a neat compact antenna that can be used in a number of applications. It's perfect for packing to the top of a mountain or high hill; fire it up on 2 -meter SSB, or use it for repeater DXing. Apartment dwellers can sneak this antenna into almost any location and get the benefit of directivity and gain. For me, it simplified connecting into the local DX-spotting packet network.

In the past. I had been using either a horizontally polarized antenna or a $5 / 8$-wave vertical. Unfortunately, anytime I rotated the triband beam, I lost the packet network. There was also a $20-\mathrm{dB}$ signal loss between my horizontal beam and the packet cluster's vertically polarized antenna. The vertical, well, it never worked right.

Cushoraft's 4 -element boomer is elegant in it's simplicity. Construction is straightforward and takes just a lew minutes. Because of the small size, this antenna can be shoehorned into almost any location.

The 124WB will tune $144-148 \mathrm{MHz}$ with a less than 2.1 SWR. Cushcraft rates the forward gain at 10.2 dBd , with a front-to-back ratio of 19 dB . Assembled wind area is less than 6 inches and the antenna weighs less than three pounds. The retail price is $\$ 60$. If you want more gain, stacking instructions are included.

From the top of the tower to the attic (where mine is), installation is not a problem and takes just a few minutes. Later this spring, l'll move the antenna to the tower to gain a few additional vertical feet. Now that I'm using the 124WB. I can get into the packet network with ease. The forward gain and directivity gives me a better chance at connecting into the network. even during its busy times.

For further information contact Cushcraft Corp. PO. Box 4680, Manchester, New Hampshire 03108.
de N1ACH
Circle \#303 on Reader Service Card.

Ham Radio's guide to help you find your local Amateur Radio Dealer

CALIFORNIA

A.TECH ELECTRONICS

1033 Hollywod Way
Burbank, CA 91505
(818) 845-9203

New Ham Store and Ready to Make a
Deal!
JUN'S ELECTRONICS
3919 Sepulveda Blvd.
Culver City, CA 90230
(213) 390-8003
(800) 882-1343 Trades

Habla Espanol

COLORADO

ALLIED APPLIANCE \& RADIO
4253 South Broadway
Englewood, CO 80110
(303) 761-7305

1 (800) 321-7305 (Orders only)
Rocky Mts Amateur/Shortwave Specialists,
Ten-Tec, Yaesu, JRC-NRD, Sony, MFJ
KLM, and other fine gear. New and used. Visa/MC. Antennas, books, discount prices too!

COLORADO COMM CENTER
525 East 70th Ave
Suite One West
Denver, CO 80229
(303) $288-7373$
(800) 227.7373

Stocking all major lines
Kenwood Yaesu, Encomm, ICOM

CONNECTICUT

HATRY ELECTRONICS
500 Ledyard St. (South)
Hartford, CT 06114
(203) 527-1881

Call today. Friendly one-stop shopping
at prices you can afford.

DELAWARE

AMATEUR \& ADVANCED
COMMUNICATIONS
3208 Concord Pike
Wilmington, DE 19803
(302) 478-2757

Delaware's Friendliest Ham Store.
DELAWARE AMATEUR SUPPLY
71 Meadow Road
New Castle, DE 19720
(302) 328-7728
(800) 441-7008
lcom, Ten-Tec, Microlog, Yaesu, Kenwood, Santec, KDK, and more. One mile off I-95, no sales tax.

FLORIDA

AMATEUR ELECTRONIC SUPPLY
1898 Drew Street
Clearwater, FL 33575
(813) 461-4267

Clearwater Branch
West Coast's only full service
Amateur Radio Store.
Hours Mon.-Fri. 9-5:30, Sat 9-3
AMATEUR ELECTRONIC SUPPLY
621 Commonwealth Ave.
Orlando. FL 32803
(305) 894-3238

Fla. Wats: 1 (800) 432-9424
Outside Fla: 1 (800) 327-1917
Hours Mon.-Fri. 9-5:30, Sat. 9-3

HAWAII

HONOLULU ELECTRONICS
819 Keeaumoku Street
Honolulu, HI 96814 (808) 949-5564

Kenwood, ICOM, Yaesu, Hy-Gain, Cushcraft. AEA, KLM, Tri-Ex Towers, Fluke,
Belden, Astron, etc.

IDAHO

ROSS DISTRIBUTING COMPANY
78 South State Street
P.O. Box 234

Preston, ID 83263
(208) 852.0830

Mon. 9-2; Tues.Fri. 9-6; Sat. 9-2
Stock All Major Brands
Over 7000 Ham Related ltems on Hand

ILLINOIS

ERICKSON COMMUNICATIONS, INC.
5456 N. Milwaukee Avenue
Chicago, IL 60630
(312) $631-5181$

Hours: 9:30-5:30 Mon., Tues., Wed. \& Fri.; 9:30-8:00 Thurs; 9:00-3:00 Sat.

INDIANA

THE HAM STATION
220 N. Fulton Avenue
Evansville, IN 47710
(800) 523-7731
(812) 422-0231

ICOM, Yeasu, Ten-Tec, Cushcraft, Hy-Gain, AEA \& others.

MARYLAND

MARYLAND RADIO CENTER
8576 Laureldale Drive
Laurel, MD 20707
(301) 725-1212

Kenwood, Ten-Tec, Kantronics. Full service dealer.
Mon.-Fri. 10-7, Sat. 9-5

MASSACHUSETTS

TEL-COM, INC
675 Great Road, Rte. 119
Littleton, MA 01460
(508) 486-3400
(508) 486-3040

The Ham Store of New England You Can Rely On.

MISSOURI

MISSOURI RADIO CENTER
102 NW Business Park Lane
Kansas City, MO 64150
(800) 821-7323

Missouri: (816) 741-8118
ICOM, Kenwood, Yaesu
Same day service, low prices.

NEVADA

AMATEUR ELECTRONIC SUPPLY
1072 N. Rancho Drive
Las Vegas, NV 89106
(702) 647-3114

Dale Porray "Squeak," AD7K
Outside Nev: 1 (800) 634-6227
Hours M-F 9-5:30, Sat. 9-3

NEW HAMPSHIRE

RIVENDELL ELECTRONICS
8 Londonderry Road
Derry, N. H. 03038
(603) 434-5371

Hours Mon.-Sat. 10-5; Thurs. 10-7
Closed Sun/Holidays

NEW JERSEY

ABARIS SYSTEMS
276 Oriental Place
Lyndhurst, NJ 07071
(201) 939-0015

Don WB2GPU
ARRL, Astatic, Astron, B\&W, Belden,
Bencher, Hustler, Kenwood, Larsen, RF
Concepts. Tonna and much, much more!
Tues.-Fri. 10AM-7:30PM
Thurs. 10AM-9:00PM
Sat 10AM-4:00PM
Visa/MC
KJIELECTRONICS
66 Skytop Road
Cedar Grove, NJ 07009
(201) 239-4389

Gene K2KJI
Maryann K2RVH
Distributor of: KLM. Mirage, ICOM, Larsen,
Lunar, Astron. Wholesale - retail.

HAM MART

NEW YORK

BARRY ELECTRONICS
512 Broadway
New York. NY 10012
(212) $925 \cdot 7000$

New York City's Largest Full Service Ham and Commercial Radio Store.

VHF COMMUNICATIONS
280 Tiffany Avenue
Jamestown, NY 14701
(716) 664-6345

Open 8:00 AM till 5:30 PM
Evenings, Saturday and Sunday by appointment. Western New York's finest Amateur dealer. Featuring ICOM "The World System:"

OHIO

AMATEUR ELECTRONIC SUPPLY
28940 Euclid Avnue
Wickcliffe, OH 44092 (Cleveland Area) (216) $585 \cdot 7388$

Ohio Wats: 1 (800) 362-0290
Outside Ohio: 1 (800) 321-3594
Hours Mon Fri. 9-5:30, Sat 9-3

DEBCO ELECTRONICS, INC.
3931 Edwards Road
Cincinnati, OHIO 45209
(513) 531.4499

Mon-Sat. 10AM-9PM, Sun. 12 Noon-6PM We buy and sell all types of electronic parts.

UNIVERSAL AMATEUR RADIO, INC.
1280 Aida Drive
Reynoldsburg (Columbus), OH
43068
(614) 866-4267

Featuring Kenwood, Yaesu, Icom. and other fine gear. Factory authorized sales and service. Shortwave
specialists. Near I-270 and airport.

PENNSYLVANIA

HAMTRONICS,
Div. of Trevose Electronics

4033 Brownsville Road
Trevose. PA 19047
(215) 357.1400

Same Location for over 30 Years

TEXAS

K COMM dba THE HAM STORE 5707A Mobud
San Antonio. TX 78238
(512) 680-6110
(800) 344-3144

Stocking all major lines. San Antonio's Ham Store Great Prices - Great Service Factory authorized sales and service.
Hours: Mon.Fri. 10-6: Sat. 9-3

```
MADISON ELECTRONICS SUPPLY
3621 Fannin
Houston, TX 77004
(713) 520-7300
Christmas?? Now?
MISSION COMMUNICATIONS
11903 Aleit Clodine
Suite 500 (Corner Harwin \& Kirkwood) Houston, Texas 77082
(713) 879-7764
Now in Southwest Houston-full line of equipment. All the essentials and extras for the "ham."
```


WISCONSIN

AMATEUR ELECTRONIC SUPPLY 4828 W. Fond du Lac Avenue Milwaukee. WI 53216
(414) $442 \cdot 4200$

Wisc. Wats: 1 (800) 242-5195
Outside Wisc: 1 (800) 558-0411
Mon. Fri. 9-5:30, Sat 9.3

Dealers:

YOU SHOULD BE HERE TOO! Contact Ham Radio now for complete details.

ANTENNA ANALYSIS

The new MN program will analyze almost any antenna made of wire or tubing. Compute forward gain, F/B, beamwidth, sidelobes, current, impedance, SWR, near fields, and far-fields, in free space or over realisticallymodeled earth. Plot antenna radiation patterns on your graphics screen. MN can compute the interaction among several nearby antennas. The $5-1 / 4 \mathrm{MN}$ disk contains over 100 files, including libraries of antenna and plot files, a file editor, and extensive documentation. MN is an enhanced, easy-to-use version of MININE:C for IBM PC. \$75 (\$80 (CA \& foreign)

YAGI OPTIMIZER

The remarkable new YO program automatically adjusts Yagi element lengths and spacings to maximize forward gain, optimize pattern, and minimize SWR. Radiation patterns at band center and edges are updated on your screen during optimization. YO is extremely fast, computing several trial Yagi designs per second with 8087 . YO is a complete Yagi design package for IBM-PC, containing models for gamma and hairpin matches, element tapering, mounting plates, and frequency scaling A library of Yagi files and extensive documentation are included. \$90 (\$95 CA \& foreign).
To order, send a check to

Brian Beezley, K6STI, 507-1/2 Taylor, Vista, CA 92084

SMART REPEATER \& UNK CONTROLLER - dtma mutng - inteligentioter - AUXLLARY OUTPUTS

- REPEATER I LNK COURTESY TONES
- LOW POWER, 22 ma 12 V
- TELEMETHY RESPONSE TONES - NAAM MONITOA INPUT
- SYNTHESIZED UNK/ REMOTE BASE CAPABILTTY WITH OPTIONAL PHP10/S SYNTHESIZER BOARD
SRC-10 - $\$ 149.00 / \mathrm{PF}$ - $10 / \mathrm{S}-\$ 39.00$
REPEATER/UNK AUDIO MIXER INTERFACE
- FIVE AUDIO INPUTS
- THREE AOJUSTABLE AUDIO OUTPUTS
- CTCSS DECODER ON UAl-2O ONLY
- CONTROLED DTMF ROUTING
- LOW POWER, 19 ma (c12V
- EASY TO INTEAFACE
- LINK MONITOA-MIX/MONITOR MUTE CONTROL
UAI-10 - \$44.00/UA1-20 - \$89.00
ASSEMBLED \& TESTED
ONE YEAR WARRANTY
CREATIVE CONTROL PRODUCTS
3185 Bunting Avenue Grand Junction, CO 81504
(303) 434-9405

NEW PRODUCTS

Ultra-compact IC-725 HF transceiver

ICOM has introduced a new compact IC-725 HF transceiver. The all-mode IC-725 features

- USB/LSB/CW transmitting and receiving AM receiving. Optional module no. UI. 7 for FM transmit/receive and $A M$ transmit
- 26 tunable memories with band stacking registers.
- DDS (Direct Digital Synthesizer) system.
- Built-in AH-3 controller Optional AH-3 auto-
- matic antenna tuner available.
- Three scanning systems: programmable, memory, and selected mode scan
- Prority watch.
- $105-\mathrm{dB}$ dynamic range receiver
- 160 through 10 -meter operation. Short-wave reception from 30 kHz to 33 MHz .
Other features include: Panel-selectable RF preamp and attenuator, dual VFOs , noise blanker, RIT, semi-break in CW, selectable AGC, full-duty cycle, and optional narrow CW filter.
The suggested retail price of the IC-725 is $\$ 949$.
For more information contact ICOM America. Inc. 2380 116th Ave, N.E. PO Box C-90029, Bellevue. Washington 98009-9029

Circle \#304 on Reader Service Card.

Handheld frequency counter

Optoelectronics, Inc. introduces its new handheld frequency counter model 2210. It has low frequency coverage down to 10 Hz and microwave coverage up over 2.2 GHz . The counter runs on internal NiCd batteries and comes with a metal cabinet and precision quartz timebase oscillators. A full line of accessories includes antennas, probes, and carry case

Input sensitivity is less than 10 mV from 10 Hz to $2 \mathrm{GHz} ; 3 \mathrm{mV}$ is typical. Accuracy is 1 PPM with temperature compensated crystal oscillators. Resolution is 1 Hz below and 100 Hz above 12 MHz A full 16 -hour recharge yields 2 hours of battery operation. Use an AC adapter/charger to operate when recharging
The model 2210 sells for $\$ 189$ complete with NiCd batteries and charger. The model TA-100S telescoping whip antenna is $\$ 12$ and the vinyl carry case is $\$ 10$. For more information contact Optoelectronics. Inc. 5821 N.E. 14th Avenue, Fort Lauderdale, Florida 33334

Circle \#305 on Reader Service Card.

Super performance battery packs

Periphex, Inc. offers battery packs that are compatible with the following Yaesu radios: FT. 727R, 109RH. 209R/RH. 709R. 103R, 203R and 703R.

The FNB-4SH, 12-volt 1-Ah battery is double the capacity of the original FNB-4/4A battery pack, and is compatible with the Yaesu NC-15 base charger. The FNB-4SH is priced at $\$ 71$.

The FNB-4SL. 12 -volt 0.75-Ah battery has 150 percent of the capacity of the original FNB4/4A battery pack, and is also compatible with the Yaesu NC-15 base charger, NC-18B, and PA-3 trickle charger. This pack is priced at $\$ 65$

The FNB-3S, 9.6-volt 1.2-Ah battery is almost triple the capacity of the original FNB-3/3A battery, and is designed as a long-life battery pack. The FNB-3S is completely compatible with the Yaesu NC-15 base charger, NC-18B, and PA-3 trickle charger. The price of the FNB-3S is $\$ 60$.

All battery packs include overcharge, over temperature, short-circuit protection, and a 1 . year warranty.

For more information contact Periphex. Inc 149 Palmer Road. Southbury. Connecticut 06488

Circle \#306 on Reader Service Card.

New free catalog from MFJ

MFJ Enterprises, Inc. announces their new fullline 16 -page 1989 MFJ Amateur Radio Accessories Catalog.

Over 80 Amateur Radio accessories are featured, including the MFJ-1278 Multi-mode Data Controller, the MFJ. 931 Artificial RF Ground, and over ten new MFJ products.

Also feature is MFJ's full line of keyers, filters, packet radio controllers, computer interfaces, dummy loads, ham software, antenna switches, speaker, wattmeters, R-X noise bridge antenna bridge, antenna current probe, code practice oscillator, clocks, and other ham equipment
To receive your free copy call toll free 800-647. 1800 or write MFJ Enterprises, Inc., PO Box 494. Mississippi State Mississippi 39762
Circle \#307 on Reader Service Card.

Macintosh WeFaxWorks

WeFaxWorks is a program for the Apple Macintosh computer that allows reception of weather maps and charts on a standard Macintosh using Kantronics' KAM, all-mode interface During live reception, the screen scrolls automatically. Synchronization is simple: point the mouse at the sync mark and click once. This causes the received and displayed signal to be aligned with the left edge of the Macintosh screen.

The entire picture is saved into a buffer as it's being received. Once you exit the receive mode. you can select the buffer display, and the captured picture will appear on the screen.

The buffer contents can be saved to disk by choosing "Save.." from the File menu, and a saved WeFaxWorks map can be recalled from disk with the "View File. " selection. The buffer contents are erased when you enter the "Receive Live" mode, or when a map is recalled from the disk.

Maps are printed with MacPaint format files The portion you want to print is brought to the screen using the Display Buffer mode and scroll bar. These files are in MacPaint format and can be opened, touched up, and printed with MacPaint.

For more information contact Kantronics at 1202 E. 23rd Street. Lawrence, Kansas 66046

Circle \#308 on Reader Service Card.

Have you been trawling the bounding main for a new product? We have just netted it-the TP-38 microprocessor controlled community repeater panel which provides the complete interface between the repeater receiver and transmitter. Scuttle individual tone cards, all 38 EIA standard
 CTCSS tones are included as well as time and hit accumulators, programmable timers, tone translation, and AC power supply at one low price of $\$ 595.00$. The TP-38 is packed like a can of sardines with features, as a matter of fact the only additional option is a DTMF module for $\$ 59.95$. This module allows complete

$\$ 595.00$ each

 \$59.95 DTMF module \$149.95 Digital CTCSS module offsite remote control of all TP-38 functions, including adding new customers or deleting poor paying ones, over the repeater receiver channel.Other features include CMOS circuitry for low power consumption, non-volatile memory to retain programming if power loss occurs, immunity to falsing, programmable security code and much more. The TP-38 is backed by our legendary 1 year warranty and is shipped fresh daily. Why not set passage for the abundant waters of Communications Specialists and cast your nets for a TP-38 or other fine catch.

BATTERIES "R") US... You've bought our replacement batteries before... NOW YOU CAN BUY DIRECT FROM US, THE MANUFACTURER!

ICOM
CM2, PB2 7.2v @ 500MAH CM5, PB5 10.8v @ 500MAH SUPER 7S \& 8S
13.2v (a) 1100MAH 9.6 v @ 1200MAH (base charge only $-1^{\prime \prime}$ longer) Introductory Offer! SUPER 7S \& 8S - \$64.95 each

MAY SPECIAL!
YAESU complete battery packs 10\% off sheet price for May only.

EXTRA SPECIAL THIS MONTH: Inquire: CAMCORDER battery replacements available now.

Look for June special.

YAESU/MAXON
FNB-10 7.2v@ 600MAH FNB-12 12v@ 500MAH ${ }^{}$ FNB-10(S) 7.2 v @ 1000MAH * same size case as FNB-12 Introductory Offer!
P4W 11v @ 500MAH - $\$ 22.63$ FNB-2 11v@ 500MAH - $\$ 22.63$

CUSTOM MADE BATTERY PACKS \& INSERTS Made to your specifications. Introductory Offer! KENWOOD INSERTS PB-21-\$13.75, PB-25-\$20.00, PB-26 - $\$ 20.00$
ICOM INSERTS
BP-5 - \$23.00, BP-3 - \$18.95, BP-7, BP-8 di SOURCE FOR ALL YOUR COMMUNICATION BATTERY REPLACEMENT NEEDS. W \& W ASSOCIATES 29-11 Parsons Boulevard, Flushing, N.Y. 11354

SEE US IN DAYTON BOOTHS 558 \& 559, FOR SHOW SPECIALS!

Bring things down for safety and convenience.

Never climb your tower again with this elevator system. Antennas and rotator mount on HAZER, complete system trams tower in vertical upright position. Satety lock system operates while raising or lowering. Never can tall.
Complete kit includes winch, 100 ft . of cable, hardware and instructions. For Rohn 20 and 25 G Towers.
Hazer 2.Heavy duty alum. 12 sq . ft. load $\mathbf{\$ 3 1 1 . 9 5} \mathbf{p p d}$ Hazer 3-Standard alum. 8 sq. ft. load $\$ 223.95 \mathrm{ppd}$. Hazer 4 -Heavy galv, steel 16 sq. ft. load $\$ 291.95$ ppd.

NEW for ROHN 45 and 55 Towers Hazer 8-Heavy duty galv, steel 16 sq . ft. load CALL Ball Thrust Bearing TB-25 for any of above $\mathbf{\$ 6 9 . 5 0} \mathrm{ppd}$. Send for free detalis of aluminum towers specifically engineered for use with the Hazer. Two sizes; M-13 (13- wide) and $\mathbf{8 - 1 8}$ (18 8° wide). All bolted construction, no wolds. Easy to Install hinge base, walk up erection. Complete tower UPS or air freight shippable. Pre-assembled or kit form.
Satisfaction guaranteed. Call today and charge to Viss, MasterCard or mall check or money order.

GLEN MARTIN ENGINEERING INC.
Rte 3, Box 322

NEMAL ELECTRONICS

${ }^{*}$ Complete Cable Assembly facilities MIL-STD-45208
*Commercial Accounts welcome- Quantity pricing * Same day shipping most orders
${ }^{\bullet}$ Factory authorized distributor for Alpha, Amphenol, Belden, Kings, Times Fiber
Call NEMAL for computer cable, CATV cable, Flat cable, semi-rigid cable, telephone cable, crimping tools, D-sub connectors, heat shrink, cable ties, high voltage connectors.

CONNECTORS-MADE IN USA NET2O Type N plug for Baliden 9813 NET23 Type N lock for Baiden 0013. PL2594M Amphenol PL250
PL259TS PL259 tofon ins/siver plefed.... \qquad PL2584M Amphenol fomale-fernale (barrel). UG 175 /VG 178 reducer for RG58/50 (spocil). UG21DS N plug for RGQ,213,214 Siver.. UG838 N jeck to PL259 adapter, tefion \qquad UG146A SO239 to N plug edapter, toflon
UG255 SO239 to BNC plug adapter, Amphenol SO239AM UHF chassis mt receptacle,Amphenol. UG88C BNC plug RG58. 223, 142

GROUND STRAP-GROUND WIRE (per Ht)
GS38 $3 / 8^{\circ}$ tinned copper braid GS $121 / 2^{\prime}$ tinned copper braid
GS200 $1-1 / 2^{\circ}$ heavy tinned copper braid 2 AW14 Bga insulated stranded wire t......................... 39 AW14 14ga stranded Antenna wire CCS

Prices do not include shipping. $\mathbf{\$ 3}$ minimum, Visa/Mastercard $\mathbf{\$ 3 0} \mathbf{~ m i n}$, COD add $\$ 3.00$ Call or write for complete price list Nemal's new 40 page CABLE AND CONNECTOA SELECTION GUIDE is available at no charge with orders of 550 or more, or af a cost of $\$ 4$ with credit against next qualifying order.

NEMAL ELECTRONICS, INC. 12240 NE 14th Ave. N. Miami, FL 33161
(305) 893-3924 Telex 6975377 24hr FAX (305)895-8178

THE MOST AFFORDABLE REPEATER

ALSO HAS THE MOST IMPRESSIVE PERFORMANCE FEATURES
(AND GIVES THEM TO YOU AS STANDARD EQUIPMENTI)

KIt, ONLY \$675

WIRED $\$ 975$
VHF OR UHF

FEATURES:

- SENSITIVITY SECOND TO NONE! GaAsFET front end on vhf models gives 12 dB SINAD of $\varnothing .12 \mathrm{uV}$ (vhf), $\varnothing .15 \mathrm{uV}$ (220). UHF model 0.25 uV std, 0.1 uV with optional helical resonator preamp.
-SELECTIVITY THAT CAN'T BE BEAT! Both 8 -pole xtal filter \& ceramic filter for $>\mathbf{1 0 0 d B}$ at only $\pm \mathbf{1 2 k H z}$. Helical resonator front end to combat desense \& intermod.
-CLEAN, STABLE TRANSMITTER, up to 18 W output standard: 50 W with accessory power amplifier.
-FCC TYPE ACCEPTED for commercial high band and uhf.
-Courtesy beep, field-programmable CWID, flutter-proof squelch, automatic frequency control to compensate for off-frequency transmitters (all standard features).
-Full range of options available, such as autopatch, phone line or radio remote control, sub-audible tones, duplexers.

HICH PERFORMANCE TRANSMITTERS \& RECEIVERS FOR REPEATERS AUDIO \& DIGITAL LINKS, TELEMETRY, ETC.

-FM EXCITERS:

Kits \$99, W/t \$179. 2W continuous duty. TCXO \& xtal oven options available.
-TA51 for $\mathbf{1 0 M}, 6 \mathrm{M}, \mathbf{2 M}$,
$150-174,220 \mathrm{MHz}$.
-TA451 for uhf.

FCC type accepted for commercial bands.
-Call for latest information on 900 MHz transmitters.
\bullet VHF \& UHF AMPLIFIERS. For FM, SSB, ATV. Output from 10 to 50 Watts. Several models, kits starting at $\$ 79$.
-R144/R220 FM RECEIVERS for 2M, $150-174$, or 220 MHz . GaAs FET front end, $\varnothing .12 \mathrm{uV}$ sensitivity! Both crystal \& ceramic filters plus helical resonator front end for exceptional selectivity: $>100 \mathrm{~dB}$ at $\pm 12 \mathrm{kHz}$ (best available anywhere)!
Flutter-proof squelch. AFC tracks drifting transmitters.
Kit \$149, w/t \$229.

-R451 UHF FM RCVR. Similar to above. Tuned line front end, 0.25 uV sens. (0.1 uV with optional hel. res, preamp). Kit $\$ 149$, w/t $\$ 229$.
-R901 FM RCVR FOR 900 MHZ. Triple-conversion, GaAs FET front end, $\varnothing .2 \mathrm{u}$ sens. Kit $\$ 169$, w/t \$259.
-R76 ECONOMY VHF FM RCVR for 10M, 6M, 2M, 220. Without hel res or afc. Kits only $\$ 129$.
-Weather satellite \& AM Aircraft receivers also avail.

FCC TYPE-ACCEPTED TRANSMITTERS \& RECEIVERS AVAILABLE FOR HIGH-BAND AND UHF. CALL FOR DETAILS.

GaAs FET PREAMPS
at a fraction of the cost of comparable units!

LNG -(*) GaAs FET PREAMP
 onLr \$59! Wireditested

FEATURES:

-Very Low Noise: 0.7 dB VHF, 0.8 dB UHF -High Gain: $13-20 \mathrm{~dB}$, depending on frequency -Wide Dynamic Range: to resist overioad -Stable: new-type dual-gate GaAs FET

- Specify tuning range desired: 26-30, 46-56, 137.150, 150.172, 210.230, 400.470, or 800.960 MHz

GaAs FET Preamp
similar to LNG, except designed for low cost \& small size. Only $5 / 8^{\circ} \mathrm{W} \times 1.5 / 8^{\prime \prime} \mathrm{L} \times 3 / 4^{\circ} \mathrm{H}$. Easily mounts in many radios.

- Specify tuning range desired. 25-35, 35-55, $55-90,90 \cdot 120,120 \cdot 150,150-200,200-270$. or 400.500 MHz .

LNS-(*)

IN-LINE PREAMP onLy \$79/kit,
 \$99

Wired/ested
GaAs FET Preamp with features similar to LNG series, except automatically switches out of line during transmit. Use with base or mobile transceivers up to 25 W .
-Specify tuning range desired 120-175. $200 \cdot 240$, or $400 \cdot 500 \mathrm{MHz}$

HELICAL RESONATOR PREAMPS

Low-noise preamps with helical resonators reduce intermod \& cross-band interference in critical applications.
MODEL HRA-**), $\$ 49 \mathrm{vhf}, \$ 84 \mathrm{uhf}$.

- Specily tuning range desired: 142-150, 150 162, 162-174, 213-233, 410-454, or 454-475

COR-3 REPEATER CONTROLLER kit. Features adjustable tail \& time-out timers, solid-state relay, courtesy beep, and local speaker amplifier. $\$ 49$

CWID kit. Diode programmed, adjustable tone, speed, and timer, to go with COR-3. $\$ 59$
NEW COR-4 kit. Complete COR and CWID all on one board for easy construction. CMOS logic for low power consumption. Many new features. EPROM programmed; specify call letters.. $\$ 99$
NEW TD-3 SUBAUDIBLE TONE DECODER/ENCODER kit. ...\$24

TD-2 DTMF DECODER/CONTROLLER kit. Full 16 digits, with toll-call restrictor, programmable. Can turn 5 functions on/off. Great for selective calling, too! $\$ 79$

AP-3 AUTOPATCH kit. Use with above for repeater autopatch Reverse patch and phone line remote control are std. $\$ 79$

AP-2 SIMPLEX AUTOPATCH Timing Board kit. Use with above for simplex operation.
\$39
MO-202 FSK DATA MODULATOR kit. Run up to 1200 baud digital signals through any fm transmitter with full handshakes. Radio link computers, telemetry gear, etc.

DE-202 FSK DEMODULATOR kit. For receive end of link. $\$ 39$
9600 BAUD DIGITAL RF LINKS. Low-cost packet networking system, consisting of new MO-96 Modem and special versions of our 220 or 450 mHz FM Trans mitters and Receivers. Interface directly with most TNC's. Fast, diode-switched PA's output 15 or 50 W . Call for info on the right system for your application!

RECEIVING

converitias

	Anterne: Receiver	
	28.32	144.148
6 25	S0.52	28.30
	S0-54	144.148
VHF	136.138	28.30
MODELS	144.146 145.147	28.30 28.30 88
Kit with Case $\quad \mathbf{\$ 5 9}$	146-148	28.30
Kit less Case $\quad \mathbf{\$ 3 9}$	220.222	28.30
Wired w/case $\quad \mathbf{8 9}$	2202224 222284	50.54 28.30
UHF MODELS	432434	28.30
Kit with Case \$69	$435-437$ 432436	$\begin{array}{r}28.30 \\ 144148 \\ \hline 0.18\end{array}$
Kitless Case $\quad \mathbf{5 4 9}$	432.436	50.54
Wired wicase $\quad \mathbf{9 9 9}$	43925	6125
	902.926	422.448 430.450
	702922	$430-1$

See catalog for full line of 2 w transmitting converters for vhf \& uhf. Kits only $\$ 79$ Linear Amplifiers avail. up to 50 w .

[^7]
ANTENNA BOOKS

beverage antenna handiook

by Victor Misek, W1WCR

Misek delves deep into the secrets of the single wire Beverage and SWA (Steerable Wave Antenna) with helpful hints and tips on how to maximize performance based upon wire size, height above ground, overall length and impedance matching. Transformer design information for both termination and feedine matching is completely revised. ©1987 80 pages 2nd Edition
VM-BAH Softbound $\mathbf{\$ 1 4 . 9 5}$

hF ANTENNAS FOR ALL LOCATIONS

by L.A. Moxon, G6XN

As a rule, Amateurs in the U.K. are subject to more restrictive antenna regulations than we are. As a result, they have done extensive work on optimizing performance of less than full sized antennas. This book is divided into two parts. Part I covers theory and how antennas work. Part II puts theory to work with beams, wire arrays, invisible antennas, mobile and portabie antennas plus much more. E 1982, Ist Edition.
\square RS-HF
Softbound $\$ 14.95$

TRANSMISSION LINE TRANSFORMERS

by Jerry Sevick, W2FMI

Contains a complete explanation and discussion of transmission line transformers and how to use them. Written by one of the experts in the field-this book is full of helpful information. (9) 1987 1st Edition 144 pages.
\square AR-TLX
Softbound $\$ 9.95$

YAGI ANTENNA DESIGN

by Dr. James Lawson, W2PV

W2PV was known world-wide as one of the most knowledgeable experts on antenna design and optimization. This book is full of his contest winning "trade secrets." Eight chapters cover: Performance calculations, Simple Yagi antennas, Yagi antenna performance optimization, Loop antennas, The effects of ground, Stacking, Practical design, and Practical Amateur Yagi antennas. Every Ham should get a copy for their booksheif. © 19861 1st edifion DAR-YD

Hardbound \$14.95

the amateur radio vertical
 HANDBOOK

by Cpt . Paul H. Lee, USN (Ret.), N6PL
Based upon the author's years of work with a number of different vertical antenna designs, you'll get plenty of theory and design information along with a number of practical construction ideas. Included are designs for simple $1 / 4$ and $5 / 8$-wave antennas as well as broadband and mult-element directional antennas. ©1984, 2nd edition.
CCO-VAH
Softbound $\$ 9.95$

W1FB's ANTENNA NOTEBOOK

by Doug DeMaw, W1FB

Antennas have been one of DeMaw's passions in Amateur Radio He has worked with countless designs of all shapes and configu rations. This fully llustrated book gives you how-to instructions on a number of different wire and vertical antennas. Also includes information on radial systerns, tuners, balun and impedance transformers. 191987, 120 pages.
DAR-AN
Softbound $\$ 7.95$

ARRL ANTENNA COMPENDIUM

by ARRL Staff

OST gets far more antenna articles than it can publish. This collection is taken from the best submissions and represents a wide range of subjects - from quads and loops to general information - this book has it!. ©51985. 1st Edition.
\square AR-AC
Softbound $\$ 9.95$

ARRL ANTENNA BOOK

by Jerry Hall, K1TD, NEW 15th Edition

The all new 15th edition of this antenna classic represents over two years of hard work by editor KITD. It's doubled in size too - from over 300 to over 700 papes big' 950 figures and charts cover just about every subject imaginable. Some of the highlights are: Chapters on Loop antennas, mult-band antennas, low frequency antennas, portable antennas, VHF and UHF systems, coupling the antenna to the transmitter and the antenna. plus $p+e-n-t-y$ more. Like the 1989 HANDBOOK and new OPERATING MANUAL, the new ANTENNA BOOK is going to be a smash hit. Order yours today. 15th Edition, $900+$ pages, -1988.
DAR-AM
Softbound \$17.95

Please enclose $\$ 3.75$ shipping and handling.
HAM RADIO'S BOOKSTORE GREENVILLE, NH 03048
(603) 878-1441

Madsor sHOPPE:

CALL FOR ORDERS
1 (800) 231-3057
1 (713) 520-7300 OR 1 (713) 520-0550
TEXAS ORDERS CALL COLLECT
FAX 1 (713) 771-7759
ALL ITEMS ARE GUARANTEED OR
SALES PRICE REFUNDED

New Icorn IC 78
Trades wanted
Kenwood TH215A, TH25AT
rade in yout old Ht

Kenwood TS 140S Call tor trade New Kenwood TM. 721A. motile Call New Kenwood

IS 790A Superion 2 Meter 70 cm rig

$12 \mathrm{GH} z$ Option Avaiable Call
Call

COM 765 Externat relay bo

ICOM Exlernal relay box
Specity Radio and Amp
HEIL BM 10 Boom Mike
Call
HEIL BM 10 Boom Mike wired 8 pin 690

HEIL HMS Desk Mike 6200
NYE MB5A Tuner
Alpha Delta Transitrap HV
CSI Private Patch V 46900
Ameco PT 3 Pre Amp 9900
Larsen 2 meter on glass 9900 4995
Anteco 2M. 5/8. Mag Mount Comp $\quad 2500$
Van Gordort Windorn WA? 44.00

Bird 43 . elements/stock.
Thousands of panel meters $\quad 395$ up CALL
Belden $9913,8267,8214$ Stock Call
New Ten Tec Omn V DX rig extraordinare 189500
MICA Capacitors Call
Arista SWR Bridge 3.30 MHz 1995
831 SP PL 259 Siverplate (Amphenoi) $\quad 150$
82.61 N Male (Amphenol) $\quad 350$
82.202.1006 N Male (9913) $\quad 3.50$

Double Female UHF
UG176 RG8X
UGI76 RG8X each 40
Surplus Elbow PL259-SO239 each \$1
$\begin{array}{lr}\text { Receiving tutes } 50-909 \mathrm{off} \text { ist price } & \text { Call } \\ \text { Santec Boom Mike/Headset (fits ICOM) } & 20.00\end{array}$
$\begin{array}{lr}\text { Santec Boom Mike/Headset (fits ICOM) } & 2000 \\ \text { Rohn SA 25G } 67 \text { (} 67 \text { inside arm) } & \text { each } 12500\end{array}$ STUPH
$\begin{array}{ll}\text { Throat Mike (new mil surplus) } & 500 \\ \text { ANBH } 16009 \text { Headphones (new mil surplus) } & 500\end{array}$
ANBH-1 6002 Headphones (new mil surplus) 84900 New Demo Units for Sale 84900
ICOM R 71 A
84900

USED EQUIPMENT

All equipment used, clean with 90 day wattanty and 30 day tral Six months full trade against new equipment Sale price refunded if not satished
(800) 231.3057

POLICIES

Minmum order $\$ 10.00$ Mastercard. VISA. or C O D All prices FOBHouston except as noted Prices subpect to changewithout notice items subjectto pror sale Call anytme to check the status of your order Texas residents add sales tax All iterris futf fac tory warranty plus Madison warranty
Bird and Belden products in stock. Call today

CRYSTEK CORPORATION

$2351 / 2371$ Grystal Dr - Ft Myers. FL 33907 P.O. Box 06135 - Ft Myers, FL 339066135

TOL FREE 1-800-237-3061
(813) 936-2109 - TWX 510-951-7448

DK Forecaster

Garth Stonehocker, KøRYW

1988 PROPAGATION SUMMARY

September 1986 was definitely the month of sunspot minimum, with the smoothed sunspot number (SSN) equal to 12.3. That makes 1988 the second year of solar cycle 22. The solar flux minimum of 67.6 occurred in June 1986, but September of that year also brought the smoothed value minimum of 72.9 , along with the sunspot minimum. In 1988, the sunspot number started out at 58 and ended at about 137 while the solar flux started at 108 and ended at 200. These numbers made it the steepest climbing year of the cycle as SSN and solar flux are expected to taper off to a maximum of 185 for SSN and 225 for the solar flux near the end of 1989. While the 1987 values were slightly above the highest in cycle 19, the 1988 values slope crossed cycle 19's, so these forecast values are probably reasonable.

In 1988, midlatitude noontime maximum usable frequencies (MUFs) monthly median increased from 19 to 27 MHz for a $3000-\mathrm{km}$ hop. The increase wasn't linear throughout the year because the summer F2 layer was 15 percent less than it was the rest of the time, with the equinoxal periods having the highest MUF. This increase in MUF levels off for SSNs greater than 150, as does the solar flux. Most solar flux to SSN conversion formulas don't take this into account. This also shows how the MUF follows solar flux values above 150 instead of the SSN; this will be the condition during 1989. The MUF formula for monthly medians is MUF $=2.65 \times(0.0165 \times S S N+8.4)$.

During 1988, propagation was affected adversely by several periods of geophysical events. In March I discussed how to forecast propagation conditions a day or two in advance using the trend in solar flux and geomagnetic A values. Now l'd like to show how MUFs correlated with flux and A indexes during several large events in 1988. The first occurred on

February 20th during a decreasing solar flux (107 to 102). A small solar flare started a high-latitude geomagnetic event which spread down to the midlatitudes by the 22 nd . The A value went to 67 and decreased MUFs 48 percent to 10 MHz . The MUFs were 25 percent on the 23rd, 19 percent on the 24th, and 15 percent on the 25th before recovering. On March 25th, a small flare was probably the cause of a polar cap absorption and small geomagnetic disturbance. The MUF increased 33 percent over the first two days, then decreased 17 percent for the next two. The solar flux had just increased 7 units, but was level during the disturbance. A corresponding increase in MUF occasionally occurs as it did here, when the solar flux is on the increase or if the disturbance starts as the sun is rising on the propagation path. The next notable event began with a gradual disturbance of unknown cause on April 3rd through the 7th, which dropped the MUFs 46 percent during an A of 57 . The solar flux was decreasing from 128 to 115.
Another large disturbance (A index =63) began gradually near the end of May 5th and lasted one day. The MUF decreased 66 percent before it was over. The solar flux decreased 5 units during this period. The last significant event affecting propagation was on October 10th, caused by a small solar flare and solar flux burst. The geomagnetic disturbance measured 57 on the A index and the MUF decreased nearly 40 percent as the solar flux was going down. You'll notice that most of these events happened as the solar flux was decreasing and that the MUF decrease was greater at those times than it was during those disturbances when the solar flux was increasing. The MUF decrease averages 2 percent per A unit when the
solar flux is decreasing, as opposed to a 0.8 -percent MUF decrease per A unit when the solar flux is level or increasing. The solar flux factor for the beginning of 1988 was 1 percent MUF change per unit of solar flux; later in the year it increased to 2 units of solar flux for a 1 -percent MUF change.

You can use these factors during this phase of the SSN cycle to predict the best band for daily operation. There are more bands to jump to now and in July. Good luck!

Last-minute forecast

The higher frequency bands (10 to 30 meters) are expected to have the best openings the first and the last week and a half of May. These openings may include some 6 -meter long skip when WWV solar flux values indicate the very peak of the 27 -day solar cycle. Transequatorial (TE) single longhop openings will probably be available towards the evening early in May; these openings are scarce during June, July, and August. Periods of disturbance around the 5th and 13th may enhance the possibility of TE openings. Another expected disturbance date, the 22nd, may come too late to help TE but may affect east-west paths on the lower bands. These lower bands should be best the second and third weeks of the month, when the solar flux is expected to be at minimum. The higher minimums restrict daytime DX distance from weak signals.

The full moon occurs on the 20th; the lunar perigee is on the 3rd and 31st. An Aquarid meteor shower (for meteor scatter and meteor burst DXers) peaks between May 4th and 6 th, with rates of 10 and 25 per hour for the northern and southern hemispheres, respectively.

Band-by-band summary

Ten, 12, 15, 17 and 20 meters will support DX propagation from most areas of the world during daylight hours and into the evening, with long skip out to 2000 miles (3500 km) per hop. Signals on the upper three bands will be strongest from the southern countries and occur near local noon.

MAY	$\stackrel{1}{8}$		8	8	$\stackrel{8}{8}$	\％			8 \％	$8{ }^{\circ}$		8	8			8	8	8	$\stackrel{\rightharpoonup}{8}$	矿	$\stackrel{\rightharpoonup}{8}{ }^{\text {¢ }}$	\％${ }^{\text {g }}$	8 \％	8 \％ 8	$\stackrel{1}{8}$	8 \％		
		N	促	जc	$\because 0$	\％	\％	O	$\stackrel{0}{0}$	ज	ज	－	号	E	\sim	\bigcirc	\cdots	－ 0	$\underset{\sim}{0}$	解	ज	ज	～	$\stackrel{\text { N }}{ }$	N＊	$\stackrel{\sim}{n}$	$\rightarrow z$	
Europe		u	促	G	二	$\stackrel{\sim}{\sim}$	$\stackrel{\rightharpoonup}{0}$	$\stackrel{0}{\circ}$	5	－	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	云	ज	E	${ }_{5} 6$	$\bigcirc{ }^{\circ}$	\％ 0	\％ 0	\bigcirc	\bigcirc	$0^{*} \times$	\bigcirc	\bigcirc	－N	0	\m	
s．africa				≈ 0	0	$\stackrel{\rightharpoonup}{0}$	－	－	5	50	\bigcirc	\bigcirc	－	下	－	\sim_{0}	动	\cdots	$\approx \sim$	$\stackrel{\sim}{\sim}$	N＊	$\approx \sim$	\sim	$\stackrel{\sim}{\circ}$	$\stackrel{\sim}{\circ}$	ज	$\downarrow m$	
s．a				50	5	－	$\stackrel{\square}{\circ}$	0	5	0°			－	ज		N	N	$0 \sim$	N 心	\checkmark ज	ज	$=$	，	$\stackrel{\sim}{\sim}$	－	－		
antactica				こ			的	ज	\square_{0}	${ }_{0}$		－	－						N	5	\bigcirc					－	σ^{∞}	
ano			5	\bigcirc	－	－	N	\sim	～	～	\bigcirc	\cdots	u	心		N	二	\sim	\sim						－	$\stackrel{\square}{0}$		C
OCEANIA AUSTRALIA			5	50	5	\sim	0		\％	－	－	\％	0	O			r	\sim	\cdots	\bigcirc	$\square 5$	－	－		－	\square		
japan			$\stackrel{\square}{2}$	－	－		N						\％						－		－	－						
	8		$\stackrel{\circ}{8}$	号	n	$\stackrel{\rightharpoonup}{8}$			$\stackrel{\rightharpoonup}{8}$ 矿	$\stackrel{\rightharpoonup}{8}$	${ }_{8}$	8	\％ั		$8{ }^{8}$	${ }_{8}$	$\stackrel{\text { ¢ }}{ }$	\％	${ }^{\text {\％}}$	8 8	砶言	$\stackrel{\rightharpoonup}{8}$ 产	\％${ }_{8}$	8 \％	8 \％	8	$\underline{3}$	
			0°	$\stackrel{0}{0}$	0	部	唇	－	云	二		去	$\stackrel{\sim}{n}$			ज	ज	0	O	0	N	ज	ज	ज		伿	$\rightarrow 2$	
Europe			S	－	二	－	－	$\stackrel{\square}{\circ}$	N	二	$\stackrel{\sim}{\sim}$	co	－	－	－	5	\bigcirc	$\bigcirc{ }^{\circ}$	$0{ }^{\sim}$	\bigcirc	O 0	N	$\bigcirc 0$	0 N	N 0			
			$\stackrel{\sim}{\sim}$	\checkmark	\checkmark	\checkmark	－	$\stackrel{\square}{\circ}$	$\stackrel{\circ}{\circ}$	0	\bigcirc	\cdots	$\stackrel{\square}{\circ}$				\cdots	G E	G	G	ज	\cdots	\bigcirc	\bigcirc		－	b ${ }^{\text {m }}$	
s．America			$\stackrel{\square}{0}$	5	\bigcirc	$\stackrel{\square}{0}$	\bigcirc		$\stackrel{\square}{\circ}$	$\stackrel{\rightharpoonup}{0}$	\bigcirc	\bigcirc	$\stackrel{\sim}{\sim}$					NN	N	\bigcirc	品灾	\cdots	云	$\stackrel{\sim}{\sim}$	$\stackrel{0}{0}$	$\stackrel{\circ}{\circ}$		
нсттса			N	こ	$\stackrel{\sim}{2}$		扸	～	－	${ }^{\sim}{ }_{0}^{0}$	－	${ }_{0}$	\bigcirc	$\stackrel{\sim}{0}$		ω_{0}	\％	－	\％	O	O	－	－	－ज		$\stackrel{\sim}{\sim}$	$\cdots{ }^{-\infty}$	
newzealano			\square	\bigcirc	－		N	へ	$\stackrel{\rightharpoonup}{\sim}$	$\therefore \sim$	～	－	－				G	$\stackrel{\text { ¢ }}{\sim}$	$\stackrel{\square}{\circ}$	－	$\stackrel{\square}{\circ}$	$\stackrel{\square}{-1}$	0	－			1号	
OCEANIA australla			－	\bigcirc	\square	\sim	\％		～	\bigcirc	－	\％	N	$\stackrel{0}{0}$		H	－	ת	～	$\stackrel{\sim}{\circ}$	$\stackrel{\square}{0}$	$\stackrel{\square}{0}$	\bigcirc	$\stackrel{\rightharpoonup}{0}$	－	$\stackrel{\square}{\square}$	1 ¢	
JAPAN			$\stackrel{\sim}{\sim}$	\cdots	ज				N	－	\bigcirc	动	－	5	N	\bigcirc	N	$\begin{aligned} & \tilde{N} \\ & 0 \\ & \hline \end{aligned}$	$$	$\stackrel{F}{v}$	ज	ज	只	$\stackrel{\sim}{0}$	$\stackrel{\rightharpoonup}{\circ}$	\square	－	
	8		${ }_{8}^{\circ} \mathrm{g}$	$\stackrel{\text { ¢ }}{8}$		\％				$\stackrel{\overline{8}}{8}$			8			8	88	8	菏	8	${ }_{8}{ }_{8}$	产	产	$\stackrel{\square}{8}{ }^{\circ}$	${ }_{8}{ }^{\circ}$	\％	$\stackrel{\square}{9}$	
	8		${ }^{\circ} \mathrm{g}$	${ }_{8}$	$\stackrel{\text { \％}}{8}$	8	\％			${ }_{8}$		$\stackrel{\rightharpoonup}{8}$					${ }_{8}^{8}$	${ }_{8}$	$\stackrel{\text { B }}{8}$	${ }^{4}$ \％		号	产	$\stackrel{\square}{8}$ 矿	\％${ }_{8}^{8}$	\％ 8	$\xrightarrow{2}$	
$\underset{\substack{\text { AsiA } \\ \text { AREASt }}}{ }$			5	\bigcirc	$\stackrel{\sim}{0}$			，	\vec{r}	$$		$\stackrel{N}{N}$					\sqrt{v}	$\begin{array}{ll} \hline \mathrm{G} \\ \hline \mathrm{v} \end{array}$	$\begin{array}{l\|l} \hline 0 \\ \hline 0 & 0 \\ \hline \end{array}$	$$	N	～ 0	\bigcirc	G	G		$\begin{aligned} & \rightarrow \mathbf{z} \\ & \lambda_{m}^{2} \end{aligned}$	
\％ope			－	ज	\sim	\sim	$\stackrel{\sim}{\sim}$	\sim	$\stackrel{0}{0}$	$\stackrel{\square}{-}$	－	$\stackrel{\sim}{\sim}$					ज	\bigcirc	$\stackrel{\sim}{0}$	－	N N	N	－	0	－ 0	－		
				~ 0			－		－	－ 0	0					N	\sim	\bigcirc O	O＊T	促	ज 心	\cdots	－	－N	－ज	ज	$1 \mathrm{~m}$	
CARIBEEAN 8．AMERICA			\square	\bigcirc	－	$\stackrel{\rightharpoonup}{0}$	$\stackrel{\square}{-}$	$\stackrel{\square}{-}$	－	$\stackrel{\square}{0}$	$\stackrel{-}{-}$	－				$\stackrel{\sim}{0}$	ज	\cdots	N	－	可気	ज	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\circ}{0}$	\bigcirc		
Atica			N	二	こ	哴	in	促	\％	\bigcirc	${ }^{\circ}$	－	¢			$\stackrel{\sim}{0}$	\cdots	0	$\stackrel{\sim}{\circ}$	－	\bigcirc	\bigcirc	\bigcirc	$\stackrel{0}{0}$	－	G	$\cdots{ }^{2}$	
newzealand				\bigcirc	－	$\stackrel{0}{0}$	N	N	N	－	－	－	N	G		动	动	\cdots	二	\bigcirc	\bigcirc	$\square^{\circ}{ }^{\circ}$	$\stackrel{\circ}{\circ}$	\square°	$\stackrel{\circ}{\circ}$	$\stackrel{\square}{\circ}$		
${ }_{\substack{\text { Oceanin } \\ \text { AUSTALI }}}$			－	\bigcirc	－	N	－		N	\bigcirc						5	ज	$\stackrel{\square}{\mathrm{c}}$	ज	$\stackrel{\sim}{\sim}$	$\stackrel{\rightharpoonup}{0}$	$\stackrel{\square}{0}$	$\square^{\circ}{ }^{\circ}$	－${ }^{\circ}$	0	$\stackrel{\square}{\circ}$	－${ }^{1}$	
			N	N	$\stackrel{\sim}{0}$	ज	品	jum	\sim_{0}^{\sim}	$\stackrel{\sim}{0}$	\bigcirc				ज	ज	G0	0°	\cdots	$\stackrel{\sim}{0}$	N	G ज	\cdots		N		0]	

The propagation direction will follow the sun across the sky. It will be to the east in the morning, the south at midday, and the west in the evening. Sporadic-E short skip will be available at local noon on some days toward the end of the month.
Thirty, 40, 80, and 160 meters are the nighttime DXers' bands. The direction of propagation follows the darkness path across the sky: evening to the east, around midnight to the north and south, and toward the west in the predawn hours. Distances will generally decrease to 1000 miles (1600 km) for skip on these bands. Sporadic-E openings will be most frequently observed around sunrise and sunset toward the end of the month.

Electronics Supply

HOUSTON, TEXAS 77004

N
ow receive or leave messages with other local hams using the 16 K Bulletin Board featured on the smallest TNC available the Heath ${ }^{*}$ HK-21 Pocket Packet.
The BBS operates under your call with simple commands like Send or Write a message, Kill a message and read the File messages currently on the system. And the HK-21 Pocket Packet is fully TNC-2 compatible. Hookup is easy. Plug in supplied cables
> even when no one is listening.
> Get your message across... n cable into your mobile or base VHF or UHF rig. Connect your

"NEW' SUPER LINEAR ANTENNA SYSTEM									
model	freauency		gain	Power	LENGTH	USE	PRICE		
CA-2x4z	146 MHZ446 MHZ		$\begin{aligned} & 8.2 \mathrm{~dB} \\ & 1.15 \mathrm{~dB} \end{aligned}$	200 w	$15^{\prime \prime}{ }^{\prime \prime}$	Base	\$192.85		
CA-1243E	$\begin{aligned} & 446 \mathrm{MHZ} \\ & { }_{1.2 \mathrm{GHZ}} \end{aligned}$		$\begin{aligned} & 8.5 \mathrm{~dB} \\ & 10.1 \mathrm{~dB} \end{aligned}$	100w	$48^{\prime \prime}$	Base	\$ 85.95		
CA-901	146/446/1.26GHz		3/6/8.4dB	150 W	$35^{\prime \prime}$	Base	\$ 91.55		
CFC-771	$900 \cdot 930 \mathrm{MHz}$		7.14dB	50 w	$45^{\prime \prime}$	Base	\$ 97.40		
CA-1221s	1260/1300		15.5 dB	100 w	$7{ }^{\prime} 8^{\prime \prime}$	Base	\$151.90		
CA-2422S	2400/2450		15.38B	100 W	48"	Base	\$173.55		
	NEW! SWR Power Minimeters								
	$\begin{array}{ll} \text { CM } & 200- \\ \text { CM } & 300 \\ C M & 400 \end{array}$		144-150 MHZ 200-230 MHZ				S 62.50		
					(${ }_{\text {S }}^{\mathbf{S}} \mathbf{6 2 . 5 0}$				
NCG	$\begin{aligned} & C M \\ & C M \end{aligned}$	$\begin{array}{ll}\text { CM } & 400 \\ \mathrm{CM} & 900 \\ & 1200\end{array}$			$900-930$ $1200 \cdot 130$	$\mathrm{MHZ}^{\mathrm{MHZ}}$			(${ }^{\mathbf{S}} \mathbf{5 3 . 5 0}$
Nos		DUAL \& TRI BAND MOBILE ANTENNA'S DUPLEXERS - TRI PLEXERSDealer inquiries welcomes.							
(714) 630-4541 1275 N. Grove St., Anaheim, CA 92806					Specifications and prices subject to change without notice or obligation.				

RATES Noncommercial ads 10¢ per word; commercial ads 604 per word both payable in advance. No cash discounts or agency commissions allowed.

HAMFESTS Sponsored by non-profit organizations receive one free Flea Market ad (subject to our editing) on a space available basis only. Repeat insertions of hamfest ads pay the non-commercial rate.

COPY No special layout or arrangements available. Material should be typewritten or clearly printed (not all capitals) and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue.

DEADLINE 15 th of second preceding month.

SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N. H. 03048.

BEGINNER'S RADIO CLEARINGHOUSE. On a space available basis, we are going to offer you, OUR SUBSCRIBER, abee of charge, a chance to find a home for your used equipfree of charge, a chance to find a home for your used equip-
ment with a new Ham. Please send us a short description of ment with a new Ham. Please send us a short description of
what you want to sell along with price, name, address and what you want to sell along with price, name, address and phassified ads under the heading of BEGINNER'S FADIO CLEARINGHOUSE. Please limit your ad to 20 words or less.

NATIONAL Radio Manual and NCL-2000 factory parts lists SASE. Max Fuchs, 11 Plymouth Lane, Swampscott, MA 01907.

ELECTRONIC KITS \& ASSEMBLIES. For our latest catalog send a large SASE (45 cents) to: A \& A ENGINEERING, 2521 W. LaPalma, \#K, Anaheim, CA 92801

IBM-PC SOFTWARE FOR PK-232. New CompRity IIIPK is the complete communications program for the $\mathrm{PK}-232 / \mathrm{HK}$ 232. Uses host mode of PK-232 for complete control. Text entry via built-in screen editor! Adjustable split screen display, including optional Triple Split ${ }^{\mathrm{m} M}$ in Packet mode. Instant mode/speed change. Hardcopy, diskcopy, break-in buffer, select calling, text file transfer, customizable full screen log ging. 24 programmable 1000 character messages, mailbox facility. Ideal for MARS and traffic handling. Requires 256 K PC compatible. $\$ 65$. Non-PK-232 version still available. Send call letters (including MARS) with order. David A. Rice, KC2HO, 144 N. Putt Corners Rd, New Paltz, NY 12561.

COMMODORE/AMIGA CHIPS (eg 6510-\$12.55, 6526-\$13.50 6567-\$19.95, 6581-\$14.85, 82S 100-\$15.75, 901 ROM Series $\$ 12.50$), PARTS, DIAGNOSTICS, HARD TO FIND ITEMS. Authorized service center. Fast REPAIRS, low cost (eg. C64$\$ 49.95$ plus UPS). Heavy duty power supplies for the C64$\$ 27.95$ plus UPS. Kasara Microsystems (Division of OEP), Route 9W/Kay Fries Drive, Stony Point, NY 10980, 1-800-2482983 (outside NY) or 914-942-2252.

THE NATIONAL HAM SHOPPER. A monthly buy. sell, trade publication (starting in April). Ads are quickly answered and published for fast results. \$12/per year. \$24/per 2 -year subscription rate. Send: PO Box 10738, Elmwood, CT 06110.

R-290A Receiver Parts: Info SASE. CPRC- 26 military Manpack Radio. 6 meter FM, with antenna, crystal, handset $\$ 22$ 50, $\$ 42.50$ /pair. CPRC-26 Radio-only: $\$ 9.50$. Add $\$ 4.50 /$ piece shipping, $\$ 9$ maximum. Baytronics, Box 591, Sandusky. OH 44870

AZDEN SERVICE by former factory technician. Rush service available. PCS 300 Nicad $\$ 36.95$. Southern Technologies Amateur Radio, Inc, 10715 SW 190 St, \#9, Miami, FL 33157. (305) 238-3327).

SENIOR FIELD ENGINEER: Cellular One of Gaiveston seeking technical Manager with knowledge of cellular, microwave. and telephony. Minimum 3 years experience. FCC/NABER a plus. Relocation required. Resumes to 3128 Broadway, Galveston, TX 77550.

COMMUNICATIONS BATTERIES: Clone Packs! Ready-foruse. ICOM: BP5 $\$ 44.95, \mathrm{BP}-3 \mathrm{~S} 2 \mathrm{X}$ cap. BP3 "Wall Chargeable" $\$ 43.95, \mathrm{BP}-7 \mathrm{~S} 2 \mathrm{X}$ BP7 (5 W only) or BP8S (BP8 $+50 \%$) (Base Chg-only) \$67.95, YAESU: FNB2 \$22.95, FNB10S $(10+60 \%) \$ 49.95$, SANTEC $142 \$ 23.95$ * Repair Inserts ICOM: BP2 \$18.95. BP3 \$16.95. P5 \$24.95, BP7/BPB \$2995, KENWOOD: PE21 \$13.95, PB24 \$21.95. PB25/26 \$25.95, YAESU: FNB4/4A $\$ 33.95$, TEMPO: $\mathbf{S} 1,2,4,5,15 / 450 \$ 23.95$, AZDEN: $300 \$ 21$. 95 . ${ }^{-E}$ E. P. Porta-Pac \& Chgr 12V/5Ahr $\$ 44,95$ * Rebuilding * Send pack-free estimate. * Anteinas * Ducks/BNC $\$ 8.95$. $2 \mathrm{mtr} 5 / 8$-Tel/BNC $\$ 18.95$. SASE Cataiog PA $+6 \%$. $\$ 3$ Shipping/order. VISA-M/C $+\$ 2$. (814) 623-7000. CUNARD ASSOCIATES, Dept H, RD 6, Box 104, Bedford, PA 15522.

ENGINEER WANTED. With Ham experience to develop Ham products. Exciting proposition for the right person. Box 498, Greenville, NH 03048.

450 MHz SPECTRUM ANALYZER. Adapted from Nov 85 OST article by Al Helfrick, K2BLA. Use your low frequency scope for the display portion. Log output calibrated in 10 db steps. For complete kit, order \#450-KIT $\$ 459.95$ plus $\$ 4.50 \mathrm{~s} / \mathrm{h}$. Calif. residents add 6% sales tax. Foreign orders add 15% for shipping. For additional information send large SASE to: A \& A ENGINEERING. 2521 W. LaPaima, \#K, Anaheim, CA 92801 or call (714) 952-2114.

FOR SALE: Browning Golden Eagle Mark IV AM/SSB citizen's band receiver. Superb performance--tube-type double conversion, low noise, two tunable bands or crystal controlled. Use on CB, retune for 10 meters, or use as tunable IF for 2 meter, satellite or microwave receiver. Missing top cover, otherwise complete and working, with schematic. $\$ 100.00$. Peter Ferrand, WB2OLL, 65 Athertor Avenue, Nashua, NH 03060. (603) 889-1067.

WANTED: All types of Electron Tubes. Call toll free 1-800-421-9397 or 1-612-429-9397. C \& N Electronics, Harold Bramstedt, 6104 Egg Lake Road. Hugo. MN 55038.

100 OSL CARDS $\$ 8 . \$ 3$ thereatter. Grid square printed tree. Shipped postpaid within two weeks. Guaranteed correct! Free samples. Shell Printing, KD9KW, Box 50B, Rockton, IL 61072.
SCHEMATICS. Devices, modules and components. Catalog $\$ 1.00$ refundable. Free flyer LSASE. George Whitmore, 5746 Aberdeen Angus Way, Las Cruces, NM 88001.

N6SR/KX6: Anyone who has worked me as /KX6 has worked an illegal station. Anyone hearing that call please notify me and the FCC immediately

WANTED: G.E. Mastr-Pro UHF 250 watt base station or amplifier with power supply or amplifier aiong. K8RUR, (313) 697 8888.

FOR SALE: IC-2AT $5 / 8$ whip, rubber duck ant., mike. IC-BP4 battery pack, IC-DC1, wo IC-BP3's with charger. \$200. Martin Hanft, POB 199, Gilsum, NH 03448

UHF PARTS. GaAs Fets, mmics, chip caps, feedthrus, tefion pcb , high Q trimmers. Moonbounce quality preamps. Electronic sequencer boards. Send SASE for complete list or call (313) 753-4581 evenings. MICROWAVE COMPONENTS, PO Box 1697, Taylor, MI 48180

COMMODORE- 128 PROGRAM available to track the Amateur Satellites. Uses Keperlian data supplied by NASA free. Tracks up to 8 satellites simultaneously. Program also supports printing schedules and predictions for satellites. Use it to track MIR and taik to the Cosmonauts. SATRAK128, \$26.50 includes shipping. Other information on this or other programs for the C128, requires a business size SASE. Reid Bristor, WA4UPD. PO Box 0773. Melbourne, Florida 32936-0773.

WANT: 32 S 3 xmtr . 250 TL and 304TL tubes. KF6WM, 45300 Royal, King City, CA 93930.

DXERS-CUSTOMIZED PRINTOUT of antenna headings calculated for your location. List includes over 650 worldwide locations. Send Lat/Long coordinates, name, callsign, check for $\$ 12.95$ U.S. Brian Henderson, VE6ZS, 23 Deermoss PI SE, Calgary, Alberta, Canada T2.J 6P5. (403) 278-2084

HANOICAPPED NOVICE needs HF equipment donated anything please. KA3OUE, (412) 531-7443 anytime.
OFFICIAL MILITARY-TYPE ID TAGS. ('Dog Tags')!! Customized with your Call Letters, etc. 5 seventeen space lines. $20^{\prime \prime}$ nickel plated chain included. $\$ 4.29$ postpaid. JPW ENTERPRISES, PO Box 353, Logan, Utah 84321

MAGAZINES WANTED: "Microwave Systems News" (MSN), "RF Design", "PCIM (Power Conversion \& Intelligent Motion)" and "QEX" (1980-present). Call collect 519-742-4594 (Ontario) after 6 PM Eastern time.

IMRA International Mission Radic Association helps missionaries. Equipment loaned. Weekday net, $14.280 \mathrm{MHz}, 1-3 \mathrm{PM}$ Eastern. Nine hundred Amateurs in 40 countries. Rev. Thomas Sable, S.J., University of Scranton, Scranton, PA 18510.

BACK ISSUES OF HAM RADIO. Have most issues from 1969 to 1974. Mint condition. $\$ 3.00$ for single issues. WNOG, 319. 377-3563
ham trader yellow sheets. In our 27th year. Buy swap, sell ham radio gear. Published twice a month. Ads quickly circulate--no long wait for results. Send No. 10 SASE for sample copy. $\$ 13$ tor one year (24 issues). PO Box 2057, Glen Ellyn, IL 60138-2057 or PO Box 15142, Dept HR, Sattle, WA 98115.

VHF-UHF-SHF. Large SASE. West Coast VHFer, POB 685, Holbrook, AZ 86025.

CHASSIS \& CABINET KITS. SASE K3IWK, 5120 Harmony Grove Rd, Dover, PA 17315.

ANALOG AND RF CONSULTING for the San Francisco Bay area. Commercial and military circuits and systems. James Long, Ph.D., N6YB (408) 733-8329.

RTTY JOURNAL - Now in our 36th year. Read about RTTY, AMTOR, PACKET, MSO'S, RTTY CONTESTING, RTTY DX and much more. Year's subscription to RTTY JOURNAL $\$ 10.00$, foreign slightly higher. Order from: RTTY JOURNAL, 9085 La Casita Ave., Fountain Valley, CA 92708.

RUBBER STAMPS: 3 lines $\$ 5.00$ PPD. Send check or MO to G.L. Pierce, 5521 Birkdale Way, San Diego, CA 92117. SASE brings information

ELECTRON TUBES: Receiving, transmitting, microwave ... all types available. Large stock. Next day delivery, most cases DAILY ELECTRONICS. PO Box 5029 , Compton. CA 90224 (213) 774-1255.
"HAMLOG" COMPUTER PROGRAM. Full fealures, 17 mod ules. Auto-logs, 7 -band WAS/DXCC. Apple \$19.95. IBM, CP/M. KAYPRO, Tandy, C128 \$24.95. HR-KA1AWH, POB 2015, Peabody, MA 01960.

WANTED: ARC-5 and SCR-274 equipment, parts and accessories, any condition. Ken, WB9OZR, 362 Echo Valley, KinneIon, NJ 07405. (201) 492-9319.

WANTED: Ham equipment and other property. The Radio Club of Junior High School 22 NYC, Inc. is a nonprofit organization, granted 501(C) (3) status by the IRS, incorporated with the goal of using the theme of Ham Radio to further and enhance the education of young people. Your property donation or financial support would be greatly appreciated and acknowledged with a receipt for your tax deductible contribution. In Dayton, meet the crew from 22 and relax at our flea market tables, check in on 144.30 simplex. Please write us at: PO Box 1052, Now York, NY 10002. Or call our round the clock hotline: (516) 674-4072. Thank you!

WANTED: Drake Linear Amp Model MN4439-1000W (2000 PEP), $1.8-30 \mathrm{MHz}$. Call Bruno Molino, VE2FLB, 26 Rue Des Anciens, Gatineau, Quebec J8T 3T2. (819) 561-3689.

MIRAGE/KLM Announces The Next Generation

The
 amplifiers you have been waiting for!

10

Designed For Quality And Value!

Every effort has been made in the design of these amplifiers to offer the highest specifications possible, provide the ultimate in reliability, and still keep prices affordable. Compare these amps with all others on the market! You'll be glad you waited for the N EXT generation of solid-state amplifiers from MIRAGE/KLM!

144 MHz Amplifiers
$\begin{array}{ll}\text { B-1016-G } & 10 \mathrm{~W} \text { in }=160 \mathrm{~W} \text { out } \\ \text { B-3016-G } & 30 \mathrm{~W} \text { in }=160 \mathrm{~W} \text { out } \\ \text { B-215-G } & 2 \mathrm{~W} \text { in }=150 \mathrm{~W} \text { out }\end{array}$

13.8 vDC

220 MHz Amplifiers
C-1012-G $\quad 10 \mathrm{~W}$ in $=120 \mathrm{~W}$ out C-3012-G 120W out C-211-G

2 W in $=110 \mathrm{~W}$ out

New protection circuitry automatically reduces the output power to prevent damage to output transistors and even returns the amplifier to full power automatically when problem is cleared!
New GaAs-FET pre-amp designs provide gain of over 25 dB and a noise figure of less than .6 dB !
Picture this . . You know your station . . . You are at home with your gear . . . all the knobs, switches, meters ... QSY's are no big deal, you could do them in your sleep (and you probably have!).
Now picture this . . It's contest time, multi-op ... do you worry about your gear? . . NO! At least not your amps ... your station amps are bullet-proof. Point and shoot, no tune, no touch. From 160 meters to $70 \mathrm{~cm} .$. .

Your Amps Are Mirage!

Each of the four following amplifiers provide...
Bullet-proof, thermal shutdown...VSWR shutdown... over-current shutdown.. 120\% ICAS duty cycle . . . air-cooled ... fan hood available ...

Active cooling kit available for 100% key-down duty cycle

TWO 144-MHz Amplifiers

Finally, a ruggedized high-speed RF switching relay that takes the punishment SSB-op's demand ... 5 mS or less typical switch-time ... Dual-gate GaAs MES-FET pre-amp ... 22 dB typical gain ... Wide, dynamic range for overload protection... 1 dB compression $>+4 \mathrm{dBm}$

TWO H-F Amplifiers All Solid State (Waiting FCC Type-Acceptance)
The Band-Pass filter allows wideband performance while meeting FCC specifications ... 1.8-4.0 MHz, 4.0-9.0 MHz, 9-15 MHz, 15-30 MHz ... Typical harmonic - 50 dB

50W in - 800W out
13.8 vDC

1,215 watts (DC) 88 amps Available with power supply

50W in-1,500W out
48.0 vDC

110/220-50/60 cycles
Auto-Band switch Vacuum Relay Full QSK $\quad 100 \%$ key-down forever Power Supply included

MORGAN HILL, CA 95037 (408) $779 \cdot 7363$ • (800) $538-2140$ (outside CA) 206

RECONDITIONED TEST EQUIPMENT $\$ 1.25$ for catalog Walter, 2697 Nickel, San Pablo, CA 94806

COMING EVENTS

Activities - "Places to go . . ."

SPECIAL REQUEST TO ALL AMATEUR RADIO PUBLICITY COORDINATORS: PLEASE INDICATE IN YOUR ANNOUNCEMENTS WHETHER OR NOT YOUR HAMFEST LOCATION, CLASSES, EXAMS. MEETINGS. FLEA MAR KETS, ETC, ARE WHEELCHAIR ACCESSIBLE THIS INFOA MATION WOULD BE GREATLY APPRECIATED BY OUA BROTHERISISTER HAMS WITH LIMITED PHYSICAL ABILITY.
May 5-6: NEBRASKA: Hamboree \#11 sponsored by the 3900 Club and the Sooland ARA, Marina inn, South Sioux City. For reservations write Al Smith, WOPEX, 3529 Douglas Street Sioux City, IA 51104.

May 7: NEW JERSEY: Annual Indoor Hamfest/Flea Market sponsored by the Tri-County Radio Association, Passaic Township Community Center, Stirling. 8AM to 2PM. For informa fion/reservations Dick Franklin, PO Box 182, Westfield, N 07090. (201) 232-5955.

May 6: NEW YORK: 30th annual Southern Tier Hamfest sponsored by the Southern Tier ARCs (STARC), Tioga County Fairgrounds, At 17c, Owego. For information/tickets SASE to STARC, PO Box 7082, Endicott, NY 13760.

May 6: KANSAS: Tailgate Swapfest sponsored by the Flint Hills ARC, Augusta City Park, 20 min east of Wichita. 8AN to 3PM. For information SASE to Zack Wilkerson, KOOVY, R 1, Box 90, El Dorado, KS 67042

May 6: WISCONSIN: The Ozaukee Radio Club will sponsor its 11 th annual Swapfest. Circle B Recreation Center, High way 60, Cedarturg, 8 AM to 1 PM. For intormation send busi ness SASE to ORC Swapfest, N5415 Crystal Springs Court,
Fredonia, WI 53021 . May 6: NEW YORK: The Putnam Emergency Amaleur and
Padio League will have their PEARLiest at the John F. Kennedy Elementary School. Foggintown Road, Brewster. 9 AM to 4 FM rain or shine. For registration contact Terri Cullum, N2GWF, 40 Mile Hill Road, Highland, NY 12528 or Jim Morgan, KA2FIQ, 39 Overlook Road, Ossining, NY 10562

May 6-7: MARYLAND: Capital Fest sponsored by the Timex Sinclair Computer Club, Howard Johnson's, At 958450 . New Carroiton. For information
Road, Adelphi, MD 20783.

May 5-7: ARIZONA: The Cochise Amateur Radio Associa tion's annual Hamfest, Club training facility, Sierra Vista. tailgating. Handi facilities. For information N7INK (602) 378-3155 atter 6 PM or write CARA, PO Box 1855, Sierra Vista, AZ 85636.

May 7: NEW JERSEY: Spring Hanfest sponsored by the Bergen ARA, Bergen Community Colfege, 400 Paramus Rd, Para Blvd, No. Westwood, NJ 07675. (201) 664-6725.

May 6-7: SOUTH CAROLINA: 50th annual Greenville Hamfest sponsored by the Blue Ridge Amateur Radio Society, day 8-3. For advanced tickets or information SASE to Blue Ridge ARS, POB 6751, Greenville, SC 29606.

May 13: WISCONSIN: Lakeshore Hamfest sponsored by Man 151 and I-43 on County Hwy R. Starts 8 AM. Contact: Man carad Radio Club. PO Box 204, Manitowoc. WI 54220.

May 14: OHIO: Medina County Hamfest sponsored by the Medina 2 Meter Group, Medina County Community Center, 735 Lafayette Road, Medina. 8AM to 2PM. For intormation/tickets SASE to Medina Hamfest Committee, PO Box 452 ,
Medina. OH 44258 . 216) $769-3033$ or $725-4492$. 10AM to Medina, OH 44258. (216) $769-3033$ or $725-4492$. 10AM to
$5 P M$ 5PM
May 14: OHIO: 10th annual Hamiest sponsored by the Athens County ARA. City Recreation Center, Alhens. 8AM to 3PM For information Carl J. Denbow, KA8JXG, 63 Morris Avenue Athens. OH 45701.
May 19-21: OKLAHOMA: Green Country Hamtest, Expo Square Pavillion, 17th and Louisville Tulsa. Registration Green Country Hamiest, POB 4283, Tulsa, OK 74135. For information (918) 272-3081
May 19-21: NEW HAMPSHIRE: The 15th annual Eastern VHF/UHFISHF Conference, sponsored by the Northeast VHF Association, Rivier College, Nashua. Registration chairman David Knight, KA1DT, 15 Oakdale Ave, Nashua, NH 03062.

May 20: MICHIGAN: Swap and Shop sponsored by the Wexaukee ARA, Cadillac Middle School, 500 Chestnut Street, (616) 797-5491 or Wexaukee ARA, PO Box 163, Cadillac, MI (616)
49601.

May 20: ARKANSAS: Ozark Hamboree sponsored by the Northwost Arkansas ARC, Rodeo Community Center, Springdale. 8AM to 3PM. For information Randall Spear, WA5QGH (501) 846-3210.

May 20: ILLINOIS: 3rd annual Hamfest and Electronic Flea Market sponsored by the Lewis \& Clark Radio Club, Lewis \& Clark Community College, Godfrey. 8AM to 3PM. For information/tickets: Lewis \& Clark Radio Club, PO Box 553, Godfrey, IL. 62035. (618) 466-1909.
May 20-21: WASHINGTON: Hamfest 89 sponsored by the Yakima ARC, Central Wahington State Fairgrounds, Yakima. Contact Dick Umberger, N7HHU (509) 453-8632 days or 4533580 evenings. Early bird special Yakima ARC, W7AQ, PO Box 9211 Yakima. WA 98909.
May 20: TEXAS: 4th Annual Armed Forces Day Hamest. sponsored by the Key City ARC, Abilene Civic Center, Pine
St. Abilene. 8AM to SPM. Wheelchair Accessible For inforSt, Abilene. 8AM to 5PM. Wheelchair Accessible. For information Bill Jones, N5DOX (915) 698-4606 or KCARC, PO Box 2;722. Abilene, TX 79604.

May 20: MINNESOTA: Swapfest '89 sponsored by the Arrowhead Radio Amateur Club, First United Methodist Church, 230 tion/registration John Crow, KAOSYN, 1365 Roland Road, Cloquet, MN 55720. (218) 879-5356.
May 20: GEORGIA: 101h annual Lake Hartwell Hamfest sponsored by the Anderson. Hartwell and Toccoa ARCs, Lake Hartwell Group Camp, Hwy 29, 4 miles north of Hartwell. For intor mation Gearge C. Haddock, KB4HCB, Rt 1, Box 52 . Martin,
GA 30557 or Carl Davis, College Avenue, Hartwell, GA 30603.
May 20: PENNSYLVANIA: Lancaster County Hamfest, sponsored by the Ephrata Area Repeater Society, Ephrata Senior High School, 803 Oak Blvd, Ephrata. Starting 8AM. For information/reservations Tom Youngberg, K3RZF 215) 267-2514
or EARS, 906 Clearview Ave, Ephrata, PA 17522.
May 20: RHODE ISLAND: Spring Flea Markel and Auction sponsored by the RI Amateur FM Repeater Service, VFW Post 6342, Main Street, Forestdale (No. Smithfield). Noon to 5 PM. Harrisville RI 02830. (401) 568-0566 from 7-9 PM Harrisville, RI 02830. (401) 568-0566 from 7-9 PM

May 20: COLORADO: 1989 Swaptest sponsored by the Pikes Peak Radio Amateur Association, Rustic Hills Mall, Palmer Park and academy Blvd, Colorado Springs. For informaSwaplest, PO Box 16521, Colorado Springs, CO 80935.

May 21: PENNSYLVANIA: 15th annual Hamfest sponsored by the Warminster ARC, Middlotown Grance Fairgrounds, by the Warminster ARC, Middletown Grance Fairgrounds, Penns Park Road, Wrightstown. Gatos open 8 AM. For infor-
mation/registration Bill Cusick, W3GJC, Apt 804 , Garner mation/registration Bif Cusick, 190 , Hatbore, PA 19040. (215) 441-8048.

May 21: ILLINOIS: Knox County Hamfest, sponsored by the Knox County Radio Club, Knox County Fairgrounds, Knoxville. Starts 8AM. For tickets/information Keith L. Watson, W日9KHL, 119 South Cherry Street \#3, Galesburg, IL 614014527. (309) $342 \cdot 3885$ evenings.

May 21: WEST VIRGINIA: The 11th annual TSRAC Wheeling Hamfest/Computer Fair, Wheeling Park. 8 AM to 3 PM. .To reserve space contact Sandi Williams, WC8P, 9 East High Street, Flushing, OH 43977 (614) 968-3652. For tickets Street, Flushing, RH 43977 (614) $968-3652$. For tickets
TSRAC, Box 240, RD 1, Adena, OH 43901 (614) $5546-3930$.

May 21: ILLINOIS: Hamfest sponsored by the Kankakee Area May 21: Llin Society, Will County Fairgrounds, Peotone. 8-3. For information write KARS c/o Frank DalCanton, KA9PWW, RR 1, Box 361, Chebanse, IL 60922. (815) 932-6703 after 4 PM or (815) 937-2452 before 4 PM CST. May 21: ILLINOIS: Mini-Hamfest sponsored by the Chicago
ARC, Noth Park Village, 5801 N. Pulaski, Chicago. 9AM to 3PM. For information contact CARC, 5631 W. Irving Park Road, Chicago, IL. 60634. (312) 545-3622.

May 21: CALIFORNIA: HAMSWAP, sponsored by the North Hills Radio Club, Folsom Community Clubhouse, Folsom. 8 AM to 3 PM. Contact NHRC, PO Box 41635 , Sacramento, CA 95841 or call Bob, WA6ULL (916) 983-2776.

May 27: NORTH CAROLINA: 10th annual Durhamfest 1989, sponsored by the Durham FM Association, lower rear deck South Square Mall, Durham, rain or shine. 8AM to 4PM. For
information Mick Rankin, W4ZUS, 1001 Wedgewood Lane. information Mick Ran
Durham, NC 27712.

May 28: MARYLANO: Memorial Day Hamfest sponsored by the Maryland FM Association, Howard County Fairgrounds, Rt 144. West Friendship. BAM to 3PM. For information/reservations Mike Cresap, 1294 Dorothy Foad, Crowns-
ville, MD 21032 (301) $923-3829$.
June 3: NEW HAMPSHIRE: The Hosstraders Flea Market is back at the Deerfield Fairgrounds. Admission $\$ 5$ per person. Wheelchair accessi Questons or map SASE to WA1IVB, RFD Box 57, West Baldwin, ME 04091

June 4: MICHIGAN: Swap 'N Shop sponsored by the Chelsea ARC. For information Robert Schantz, 416 Wilkinson Street, Chelsea. MI 48118. (313) 475-1795.

June 4: NEW YORK: Lancaster Hamtest sponsored by the Lancasier ARC, Depew Grove, 271 Columbia at French Rd, Depew. 8AM to 5PM. For information WA2C.JJ (716) 681-6410 or KE2FM (716) 681-3512

June 4: PENNSYLVANIA: 35th annual Hamfest sponsored by the Breeze Shooters, White Swan Amusement Park, RI 60 Parkway West) near greater Pittsburgh International Airport. For information John Colbert, K3SDL, 1851 Highland Ave, Irwin, PA 15642. (412) 863-5167.

Une 4: NEW YORK: Hall of Science Hamfest, sponsored by the Hall of Science ARC, Hall of Science parking lot, Flushing Meadow Park, 47-01-111 Street. Queens. Starts 9 AM. For information Steve Greenbaum, WB2KDG (718) 898-5599 or
Arnie Schiffman, WB2YXB (718) 343-0172.

June 10: MICHIGAN: 15th annual Hamfest sponsored by the Central Michigan Amateur Repeater Association (CMARA), Midland Community Center, Midland. BAM-1PM. For informaion SASE to CMARA Hamfest, PO Box 67, Midland, MI 48640 June 10: MAINE: 3rd annual Outdoor Hamfest sponsored by he Pine State ARC. Hammond Street Campground, near 195. Bangor. Dawn to 5 PM. For information Ed Richardson, NQ1L, 825-4417; Howie Soule, K1CZ, 848-3397.

June 10: ONTARIO: Central Ontario Amataur Radio Flea Markit, Bingeman Park, Kitchener, Ont. Contact Ray Jennings, VE3CZE, 61 Ottawa Crescent, Guelph, Ont. N1E 2A8. (519) 822-8342.

OPERATING EVENTS
 "Things to do

April 30: The Clairemont Repeater Assoc. will operate W6FZZ, SAMS DAY, to honor Samuel F.B. Morse. Samuel F.B. Morse II will be operating from this station. For QSL CLARA, Box 7675, Huntington Beach, CA 92615

May 13-14: Nevada QSO Party sponsored by the Frontier ARA, Las Vegas. 0000Z May 13 to 06002 May 14. 6-160m, CW/SSB/FM/RTTY/Packet/SSTV. Mail logs to Jim Frye, NW7O, 4120 Oakhill Ave, Las Vegas. NV 89121

May 20: The Maryland Mobileers ARC will operate WA3PJQ aboard the Submarine U.S.S. Torsk (SSk-423), $1400 Z$ to 21002 . For certificate send legal SASE to MMARC, POB 784, Severna Park, MD 21146.
May 20: 40th annual ARMED FORCES DAY. In recognition the ARS W4ODA located Northside aboard Naval Air Station Memphis, Millington. TN, will operate from 13002 to 23002. For addition information W4ODR/Navy-Marine Corps MARS Station NNNONIF, Bidg N-100, NAS Memphis. (901) 873-5134.
May 20: Special event station KM31 will be on the air to commemorate the 145th anniversary of the telegraph message 'What Hath God Wrought?'", transmitted on an experimental line from Washington, DC to Baltimore, MD. For a commemorative certificate, Amateurs send QSL card, SWL's send QSO details with large SASE to The Bay Area ARS, PO Box 805. Pasadena, MD 21122-0805.

May 20-21: The St. Charles ARC will operate WBOHSI from 1300Z to 2100 Z to commemorate Lewis and Clark Rendezous Days. For certificate send large SASE to St. Charles ARC, PO Box 1429, St. Charles, MO 63302-1429.
May 21-27: Special event station WA4ZIO will be operating rom the Alabama Reunion Train. Sponsored by the Heart of Dixie Railroad Museum, Birmingham ARC and ARRL AL secion. 80-10m phone and CW. For certificate send QSL and 9×12 SASE to Birmingham ARC, POB 603, Birmingham, AL 35201.

June 3: The Conemaugh Valley ARC will operate WA3WGN to commemorate the centennial of the flood of 1889 in Johnstown, PA. Lower General phone bands, 20, 40m. Novice hone 104 . Farron Ave ARC, 194 Barron Ave, Johnstown, PA 15906.

June 4: The Wireless Institute of Northern Ohio (WINO) an organization sponsored by the Lake County ARA will operate special event station KOBO trom a winery in Madisos. Ohio, commemorate Ohio Wine Month. $1500 Z$ to 1900 Z WINO and 21310 kHz . For QSL send legal SASE to K
Weekend, 10418 Briar Hitt, Kirtand, OH 44094

NORTH COAST ARC 1989 LICENSE EXAMS. 12:30 PM, Salurdays February 11, April 15, June 10, August 12, October 14, December 9. N. Oimsted Community Cabin, S of Lorain on W. Park. Novice thru Extra. Walkins allowed. Talk in 145.29 repeater. For information Dan Sarama, KB8A, 15591 Rademaker Blvd, Brookpark, Ohio 44142. 267-5083 or Pau-
line Wells, KA8FOE, Rick Wells, K8SCI, 777-9460/779-8999.

AMATEUR RADIO CLASSES: For those people interested in obtaining a Novice (basic level) Ham license or upgrading o Tech/General, the Cheisea Civil Defense, in cooperation with ORA Radio Club, will sponsor Amateur Radio Commuications classes evenings at Chelsaa High School starting MARCH 7, 1989. For more information write Frank Masucci, K1BPN, 136 Grove Street, Chelsea, MA 02150. Please enclose your telephone number.

THE MIT UHF REPEATER ASSOCIATION and the MIT Radio Society offer monthly HAM EXAMS. All classes Novice to Extra. Wednesday, MAY 24, 7 PM, MIT Room 1-150, 77 Mass Avenue, Cambridge, MA. Reservations requested 2 days in advance. Contact Ron Hoffmann at (617) 484-2098. Exam fee $\$ 4.50$. Bring a copy of your current license (if any), two forms of picture ID, and a completed form 610 available from the FCC in Quincy, MA (617) 770-4023

This is an Amateur Radio License

This is an Amateur Television License

That's right, they are exactly the same. Your technician or higher class amateur radio license gives you the right to own and operate your own amateur television station.

It's Easy....

If you can operate a video camera, you can operate the new AEA Model FSTV-430. The FSTV-430 transceiver connects to the video output of your camera and transmits and receives live or taped video. You can even use two cameras for studio-like operation from your shack.

Inexpensive..

The video camera or camcorder you bought is the most expensive part of a fast scan television system. The AEA Model FSTV-430 is the only transceiver you need. Connect the camera, a 430 MHz antenna, (an amplifier if you want stronger signals) and you're on the air.

And Fun....

Think about it. You can share more than just conversation with your amateur friends. Show your friends the new transceiver you bought, that special antenna project you're working on, or just chew the fat.

For more information on the FSTV-430 and other exiting amateur television products, please contact Advanced Electronic Applications,Inc. P.O.Box C-2160 Lynnwood, WA 98036 206-775-7373

AEA Retail $\$ 499.95$
Amateur Net \$439.95 to that used by broadcasters.

With EMP Series

Transi-Trap ${ }^{\text {® }}$
Surge Protectors
Model R-T and LT EMP Series Arc-Plug ${ }^{x}$ cartridges are designed to protect against nuclear electromagnetic pulse (EMP), as well as lightning surge voltages.
The EMP Series design is based on the National Communications System Technical Information Bulletin 85-10 covering EMP protection for communications equipment.
All Transi-Trap Protectors feature "isolated ground" to keep damaging arc energy from the chassis.
Don't hook up your coax without one!
The 200 W models are most sensitive. best for RCVRS and XCVRS. 2 kW models designed for amplifiers. For maximum protection use both, with 200 W model between XCVR and AMP. All models include replaceable Arc-Plug cartridge and are designed for 50 ohms.
UHF "T-type" Connectors, for use through 30 MHz :
MODEL LT, 200 W
Super Ruggedized Super Low Loss Models (0.1 dB at 500 MHz), for use through VHF/UHF, with UHF connectors:
MODEL R-T. $200 \mathrm{~W} \$ 32.95$
MODEL HV. $2 \mathrm{~kW} \$ 35.95$
At your Alpha Delta dealer. Or order direct in U.S.: add $\$ 3$ for postage and handling. MasterCard and VISA accepted. Ohio residents add Sales Tax.

Easy to use, with menus. and optional mouse Entet parameters, and get a color coded sinusoidal projection of a MW or SW antenna Move over the projection with a mouse or cursor and read the gain at that point LONG WIRE PRO models long wres, vee s, dipoles. and thombics displaying a sinusoidal projection $\$ 40$ VERTICAL PRO models single verticals or artays displaying a sinusordal projection, a ground wave plot, and the impedance of each element $\$ 80$
IBM PC compatible, DOS 20 or highet 256 K . CGA or EGA color required International orders add $\$ 5$ shipping

EPSIION CO
Box 715, Trumbull CT, 06611 , (203) 2617694

PACKET PRICE BREAK!
 FOR COMMODORE 64/128 USERS

Full HF and VHF Packet Operation

- Multi-connects
- True store and forward digipeating
- Remote access of station
- Mini-BBS/Personal Mailbox
- Plus much more .

Featured in 73 Magazine, August 1988
Parts kit with PC board $\$ 49.95$
Assembled/lested unit............... $\$ 79.95$
Uses 7910 chip - no alignment required
(Both include FREE Digicom 64 software)
Ferms: To order send check or M.O. Add
$\$ 2.50$ shipping (USA). SASE for information.
BARRY KUTNER, W2UP
614-B Palmer Lane
Yardley, PA 19067

COMPUTER SOFTWARE

LOW BAND DX-ING COMPUTER PROGRAMS

by John Devoldere, ON4UN - 30 programs for Apple II, MS-DOS, Commodore C-128 and Kaypro CPM Computers
Just about every interest or need is covered-from antenna design and optimization to general operating programs. Antenna programs inciude: shunt and series input L network design, teedline
transtormer, shunt newwork design, SWR calcuitation, plus 11 more) General Ham programs include: sunrise/sunset, great circle distances, grayine, vertical antenna design program, sunrise calendar plus 9 more! © 1986
DUN-Apple II
$\$ 39.95$
DUN-MS (MS-DOS)
-UN-CPM/Kaypro
\square UN-C-128 (COMMODORE C128)
IUN-MAC (MACINTOSH)
IUN-C64 (COMMODORE C64)

N6RJ's ELECTRONIC SECOND OP

for MS-DOS computers, V1.01
by Jim Rafferty N6RJ
The world famous SECOND OP is now available in a state-0t-theart computerized data base. This program, written for MS-DOS computers, is a must for DX'ers, contesters and all Amateurs interested in reliable DX communication. Data can be displayed either in columnar format or in full screen displays. Unknown callsigns can be entered and compared to the ITU calligign allocation for easy identification. There's plenty more too such as: postal rates, beam headings and OSL. bureaus to name just a few. Great program to have in your shack. Order your's today. ©1988 MS-DOS computers. $51 / 4$ and $31 / 2$ versions available.
Please specify on your order.
$\square C B-R J \quad$ (MS-DOS Computers)
$\$ 59.95$

HRTM
 DRTA

By
Chip Lohman
NN4U FORC.64 AMATEUA RADID COMPUTEA SOFTWARE

MASTER LOG New Version

Master Log creates a file of 2100 individual records with up to 13 different entries per record. It can do a search and select based upon time, frequency, mode and keeps track of DXCC and WAS status, prints OSL labels and can search its whole file in less than 5 seconds! Complete documentation is included to helo you leam and use this truely state-of-the-art logging program. 1988.
\square HD-ML (For C-64)
$\$ 28.95$

SUPER LOG

Super Log gives you all the advantages of a computerized data base without significantly changing the traditional log format. Super Log aiso allows you to print out either selected contents or the whole \log. Will print OSLs.
$\square \mathrm{HD}-\mathrm{SL}$ (For C-64)

CONTEST LOG

This disk contains four difterent contest programs; ARRL Sweepstakes, Field Day, Universal WW Contest log, plus a dupe checking routine. Automatically enters date, time, band and serial number for each contact. When the contest is over, the program will print your results listing all duped and scored contacts in serial sequence with all the necessary information as well as completed score at the bottom of the page.
-HD-CL (For C-64)
$\$ 24.95$

DX EDGE MS-DOS AND C-64 software

Particulariy helpful in determining long path and grey line openings. Super tast speed and dazzing graphics make this program a treat to use. The MS-DOS version also includes a ciose up (zoom) feature for detailed examination, a MUF calculator and a great circle bearing routine. All call sign prefixes and coutty names are built into the data base for easy pinpointing of locations. MS-DOS version also color compatible. Requires 2 disk drives. 348 k of memory. Hercules, CGA or EGA graphics and DOS 2.1 or later.
$\square \mathrm{XN}-\mathrm{DOS}$ (IBM or compatible computers) $\$ 34.95$
\square XN-C64 (C-64 computer)
$\square \mathrm{XN}-\mathrm{DX}$ (slide rule version)
$\$ 34.95$

> HAM RADIO'S
> BOOKSTORE

Please enclose $\$ 3.75$ shipping and handling.
Greenville, NH 03048
(603) 878-1441

NEW PRODUCTS

Electronic temperaturecontrol soldering station

The Elenco electronic temperature-control soldering station has a circuit which lets you change tip temperature from $300^{\circ} \mathrm{F}\left(150^{\circ} \mathrm{C}\right)$ to $900^{\circ} \mathrm{F}\left(480^{\circ} \mathrm{C}\right)$ without changing the tip or heating element. A temperature sensor located near the tip offers rapid response and little temperature variation. The tip of the unit is isolated from the AC line by a transtormer. Low voltage (24 volts) powers the heating element. Completely electronic switching protects voltage and currentsensitive components. This unit has a linear LED array readout which accurately indicates tip temperature It is priced at \$169.
Contact Elenco Electronics, Inc., 150 W. Carpenter Avenue, Wheeling. Illinois 60090 for details.
Circle \#309 on Reader Service Card.

Transverter from R N Electronics

R N Electronics of Essex. England announces the new 2 to 6 -meter transverter. It can be used with your existing 2 -meter transceiver and has 25 watts PEP output. For more information write R N Electonics. 37 Long Ridings Avenue, Hutton. Brentwood. Essex CM131EE, UK

ICOM's new IC-765 HF transceiver

ICOM announces the new ICOM IC-765 HF transceiver which features.

- Direct Digital Synthesizer (DDS)
- Band stacking registers.
- 99 fully tunable memories
- CW pitch control
- Maximum operating flexibility.
- Built-in AC supply
- Automatic antenna tuner with built-in CPU and memory.
- $10 \cdot \mathrm{~Hz}$ readout.

The IC-765 is priced at $\$ 3.149$, and comes with narrow $500-\mathrm{Hz}$ CW filters. The $250 \cdot \mathrm{~Hz}$ FL-53A and FL-101 are optional filters.

For details contact ICOM America at 2380 116th Avenue N.E., PO Box C-90029, Bellevue, Washington 98009-9029.

Circle \#310 on Reader Service Card.

New manuals from Kantronics

Kantronics. Inc. announces its new manual set. The three manuals included are. Installation Manual, Operation Manual, and Command Manual. This set includes instructions for KAM. KPC-2, KPC-2400, and KPC-4

For more information contact Kantronics, Inc. 1202 E. 23rd Street, Lawrence, Kansas 66046. Circle \#311 on Reader Service Card.

Jensen Tool catalog

A new catalog is offered free by Jensen Tools. Illustrated in full color, the 160 -page catalog describes Jensen's full line of over 40 specialty tool kits for field service. plus a new line of products of fiber optics and wire/cable systems. Also included are hand and power tools in English and metric sizes, test equipment. soldering/desoldering stations, static control, lighting/optical aids, carrying cases, shipping containers, and more.
For a copy write Jensen Tools, Inc. 7815 S 46th Street. Phoenix AZ 85044, or call (602) 968 6231.

Circle \#312 on Reader Service Card.

VOICE-ID ${ }^{\text {TM }}$ digital voice annunicator

VOICE ID $^{\text {™ }}$ can store and reproduce voice messages and/or CW in any logical combination with various delays. It's an add-on device for repeaters and Amateur Radio stations, and of interest to the DX contester.
High-quality, non-robotic voice reproduction is achieved through voice compression algorithms encoded in a non-volatile EPROM Voice messages are stored in the EPROM. so no re-recording is necessary after a power failure

The VOICE.ID ${ }^{\text {TM }}$ is field installable, and is suitable for use in remote applications. It may also be battery operated in case of emergency

For more information contact Time Domain Systems, 5003 Cowell Boulevard, Davis, California 95616
Circle \#313 on Reader Service Card.

Isolator line expanded

Electronic Specialists expands their patented isolator line to include remote power switching, power fail interrupt, and 20-A options Suppressor performance of all units has been expanded to 39.000 surge amperes for added equipment protection. Isolators, with wideband high attenuation channel filters, are available in commercial, industrial and laboratory grades. Expanded isolator performance and options are available. Prices start at $\$ 100$.

For details contact Electronic Specialists, Inc. 171 South Main Street. Natick, Massachusetts 01760.

Circle \#314 on Reader Service Card.

M-5000 autoranging multimeter

The Elenco M-5000 is a handheld 3-1/2 digit autoranging multimeter VOM functions, Hi-Low ohms, diode check, 10-A AC/DC current ranges, and audible continuity check are standard Other features include: data hold, memory, and manual or autoranging
The M-5000 comes complete with operator's manual, test leads, and battery. It weighs under 7 ounces and is priced at $\$ 69.95$
For details contact Elenco Electronics, Inc 150 West Carpenter Avenue. Wheeling, Illinois 60090.

Circle \#315 on Reader Service Card.

The NEXT Generation MufMap II

"This is the most advanced propagation program that I have seen for radio amateur use. Its graphics are superb, and band openings are displayed on a world map in a manner previously only available in very advanced professional programs."

- George Jacobs, W3ASK,

CQ Magazine Propagation Editor
Now you can see world wide propagation conditions from your QTH at a glance! MufMap indicates all $10 \mathrm{~m}, 15 \mathrm{~m}$, and 20 m openings on a map of the world.

* organize your operating time for contesting, network traffic, scheduling, etc.
* study effects of time of day, season, and solar activity on propagation.

Automatically combine a series of MufMaps to form a MufMovie. These show how propagation changes throughout the day, season, or level of solar activity.

HARDWARE REQUIREMENTS

MufMap runs on the IBM PC/XT/PS2 and compatibles with at least 256K RAM and Hercules, CGA, EGA, or VGA graphics. Supports the 8087 too.

ORDERING INFORMATION

MufMap is priced at just $\$ 69$. VISA, MasterCard, and personal checks are accepted. Hercules support add $\$ 20$. Just call or write to place your order.

Base(2)Systems

2534 Nebraska \#1, Saginaw MI 48601 or call (517)777-5613 for VISA/MC

ADVERTISER'S INDEX AND READER SERVICE NUMBERS

Listed below are the page and reader service number for each advertiser in this issue. For more information on their products, select the appropriate reader service number make a check mark in the space provided. Mail this form to ham radio Reader Service, I.C.A., P.O. Box 2558, Woburn, MA 01801.

Name
Call

Address
\qquad
*Please contact this advertiser directly.
Please use before June 30, 1989.

READER SERVICE *
PAGE \#

130 - Ace Communications, Monitor Div 36
134 - Advanced Computer Controls 41
137 . Advanced Receiver Research . 42
 42

138 - AIE Corporation
42

208. Alpha Delta Communications Inc....................... 116

169 - Aluma Tower Co. ... 79
131 - AMC Sales, Inc.. 36
167 - Ameritron 75
189 - Amidon Associates .. 91
192 - AMSAT
145 - The Antenna Specialists Co. 52
161 - Antennas West42,68, 103
190 - Antennex... 101
132 - Antique Radio Classified 36
141. ARRL 46
121. Astron Corp ... 18
. Amateur Television Quarterly 56
116 - AVCOM of Virginia... 11

- Barker 8 Williamson 25
* - Barry Electronics ... 91
* - Barry Kutner, W2UP 116

210 - Base (2) Systems $\quad 118$
154 - Bilal Company .-... 63
*-Bran Beezley, K6STI 103
.-Buckmaster Publishing 79
172 - Buckmaster Publishing 81
188 - Buckmaster Publishing 91
196 - Buckmaster Publishing 103
122-C8S Sales 24
133. Communication Concepts, Inc 41

198 - Communications Specialists 105
197. Creative Control Products 103

202 - Crystek Crystals .. 108
114.CSI

168 - Cushcratt Corp .. 76
155 - Cygnus-Quasar Books ... 63
185 - Datacom, International 88

* Delta Loop $\quad 79$

136 - Doppler Systems ... 43
177 - Doug Hall Electronics 83
163 - Down East Microwave 73
-Engineering Consulting 56
209 - Epsilon Company 116
156 - Fair Radio Sales .. 63
150 - Gallatin Radio Supply -........ 56
135 . Giffer Shortwave ... 43
183-GTI Electronics 84
91
186-GTI Electronics
91
144 - HAL Communications Corp -.................... 53
. Ham-Com 1989 ... 84
118. Ham Radio Outlet14, 15

- Ham Radio's Bookstore $\quad . \quad 30,52,82,88,108$.

199 - Hamtronics, NY .. 107

* Hamtronics, PA 101
* Heath Company $\quad 69$
* Heath Company ... 111

113 ICOM America, IncCII
140 - ICOM America, Inc ... 45
International Crystal Mig Co, Inc 79
127 - Jan Crystals .. 37
170 - Jun's Electronics 81
147 Kantronics
59
139 - KComm. The Ham Store 42

- Kenwood USA Corporation .-.....2, 5, 7, 51, CIV

117 - Larsen Antennas
.13
203 - Madison Electronics Supply 108
204 - Madison Electronics Supply 111

* Maggiore Electronic Laboratory 31

READER SERVICE \#
PAGE "
201 - Glen Martin Engineering, Inc 106
193- Richard Measures, AG6K 100
126 - John J. Meshna Jr, Inc 35
115. MFJ Enterprises 8
159 - Micro Control Specialties 68
157 - Mirage Communications 67
206 - Mirage Communications 113
211 - Missouri Radio Center. 119
128 - Mobile Mark Inc 36
180 - Monitoring Times. 89
205 - NCG 111
Nemal Electronics 106
175 - Nuts \& Volts. 82
212 . OPTOelectronics 120
123 - P.C. Electronics 25
174 - P.C. Electronics. 82
160 - Pac-Comm Packet Radio Systems, Inc 68
173 - Palomar Engineers 81
146 - Periphex Inc 52
195 - Radiokit 100
119 - Radio Shack 23
-Ramsey Electronics, Inc
182 - The RF Connection 84
153 - RF Enterprises 62

- Rutland Arrays 48
- RF Parts 40, 41
194 - S-COM Industries 100
176 - SCO Electronics Inc 83
Sherwood Engineering 42
Silicon Solutions 37
166 - Software Systems 70

162. Software Systems 73
129 - Spectrum International84
181 - Stridsburg Engineering Co 88
163. STVIOnSat 56
164-Tel-Com 70
165-TIC General 70
179-TXRX 89
U S Information Agency 96
124 - Unadilla Antenna Mfg Co 30
Universal Radio48
143- Vanguard Labs 48
120 - Varian EIMAC. 16
178 - VHF Communications 83
200-W 8 W Associates 106

- 171 - W9INN Antennas. 81
151 - Wi-Comm Electronics Inc 56
125 - Wilmanco 30
152 - Yaesu USA 60.61

213. Yaesu USA CIII
191 E.H. Yost Co 101
PRODUCT REVIEW/NEW PRODUCT
301 - Azimuth 98
77? - Cushcraft 98
314 - Electronic Specialists Inc 117
309 - Elenco Electronics Inc 117
315 - Elenco Electronics Inc 104
302 - Henry Radio 98
310 - ICOM America Inc 117
304- ICOM America Inc 104
312 - Jensen Tools Inc. 117
311 - Kantronics 117
308 - Kantronics 104
307 - MFJ Enterprises 104
305 - OPTOelectronics 104
306 - Periphex Inc 104
313 - Time Domain Systems

Dependable Service At The Right Price . . . Everytime

MasterCard-VISA-Discover

Missowic Radio Conter

- All Band, All Mode Transceiver
- Direct Keyboard Entry
- Engineered for the DX-Minded and Contesting Ham
- Its Got It All!

KENWOOD NEw!
 TM-231A

2 METER FM MOBILE

- 50 Watts Output
- 20 Multi-Function Memories - Selectable CTCSS Tone Built-in
- Operate 4 Mobile Rigs with Optional IF-20 Interface and RC-20 Controller

TS. 140 S afFordabledxing - HF Transceiver With General Coverage Receiver - All HF Amateur Bands

- 100 W Output
- Compact, Lots of Features

- Mobile 10 Meter Transceiver
- SSB/AM/FM/CW
- 25 Watts PEP
- New FM Offsets \& PL

FT-736R vhf uhf base station

- SSB, CW, FM on 2 Meters and 70 cm
- Optional $50 \mathrm{MHz}, 220 \mathrm{MHz}$ or 1.2 GHz
- 25 Watts Output on 2 Meters, 220 and 70 cm
- 10 Watts Output on 6 Meters and $1.2 \mathrm{GHz} \cdot 100$ Memories

Complete Terminal Unit for Morse, Baudot, ASCII, AMTOR NOW $1 / 2$ PRICE CLOSEOUT SPECIAL ONLY \$169. DELIVERED

Software Available Call Now - Don't Delay

$\$ 449.00$ Delivered
25W, 21 Memories, Dual VFO's At an Unbeatable Price!

MFJ ${ }_{\text {sale }}$ MFJ

LARGEST STOCK OF ALL YOUR MFJ FAVORITE ACCESSORIES CALL TODAY FOR BEST PRICE

Extra Savings on the MFJ-1278 Multi-Mode Data Controller

OPTOELECTRONICS

COUNTER THEORY

Affordable, compact, and ultra-sensitive. More and more people are discovering new applications for our counters than ever before. Now used by technicians, engineers, law enforcement officers, private investigators, two-way radio operators, scanner hobbyists, and amateur radio operators, just to name a few. Over 15 years of service, quality, experience and dedication has proven you can count on us.

Hand Held Series Frequency Counters and Instruments

MODEL	$2210{ }^{\text {Nam }}$	1300H/A	2400 H	CCA	CCB ${ }^{\text {New }}$
	$\begin{aligned} & 10 \mathrm{~Hz} \\ & 2.2 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 1 \mathrm{MHz} \\ & 1.3 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 10 \mathrm{MHz} \\ & 2.4 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 10 \mathrm{MHz} \\ & 550 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 10 \mathrm{MHz} \\ & 1.8 \mathrm{GHz} \end{aligned}$
APPLICATIONS	GENERAL PURPOSE AUDIO-MICROWAVE	RF	MICROWAVE	SECURITY	SECURITY
PRICE	\$199	\$169	\$249	\$299	\$99
SENSITIVITY					
1 KHz	$<5 \mathrm{mv}$	NA	NA	NA	NA
100 MHz	$<3 \mathrm{mv}$	< 1 mv	$<3 \mathrm{mv}$	< 5 mv	$<5 \mathrm{mv}$
450 MHz	$<3 \mathrm{mv}$	$<5 \mathrm{mv}$	$<3 \mathrm{mv}$	$<1 \mathrm{mv}$	$<5 \mathrm{mv}$
850 MHz	$<3 \mathrm{mv}$	$<20 \mathrm{mv}$	$<5 \mathrm{mv}$	NA	$<5 \mathrm{mv}$
1.3 GHz	$<7 \mathrm{mv}$	< 100 mv	$<7 \mathrm{mv}$	NA	$<10 \mathrm{mv}$
2.2 GHz	$<30 \mathrm{mv}$	NA	$<30 \mathrm{mv}$	NA	$<30 \mathrm{mv}$

ACCURACY ALL HAVE $+1-1$ PPM TCXO TIME BASE.
All counters have 8 digit red .28" LED displays. Aluminum cabinet is $3.9^{\prime \prime} \mathrm{H} \times 3.5^{\prime \prime} \mathrm{W} \times 1$.' Internal Ni-Cad batteries provide 2-5 hour portable operation with continuous operation from AC line charger/power supply supplied. Model CCB uses a 9 volt alkaline battery. One year parts and labor guarantee. A full line of probes, antennas, and accessories is available.

Yaesu's mini HTs. The smallest,smartest, toughest radios. Anywhere.

Whether you're a Novice or Extra class operator, you're sure to appreci ate the high power, durability and size of Yaesu's FT-23R Series mini-HTs.

To begin with, you'll find a model that's right on your wavelength. The 2-meter FT-23R. The $220-\mathrm{MHz}$ FT-33R. Or the $440-\mathrm{MHz}$ FT73R.

Whichever you choose, you benefit from incredibly small packaging. (Take a look at the actual size photo.) Aluminum-alloy cases that prove themselves reliable in a one-meter drop test onto solid concrete. And moistureresistant seals that really help keep the rain out.

But perhaps best of all, each radio blends sophisticated, micro-processor-controlled performance with surprisingly simple operation. In fact, it takes only minutes to master all these features:

Ten memories that store frequency, offset and PL tone. Memory scan at 2 frequencies per second. Tx offset storage. Priority channel scan. Channel selection via tuning knob or up/down buttons. PL tone board (optional). PL display. Inde pendent PL memory per channel. PL encode and decode. LCD power output and "S"meter display. Battery-saver circuit. Push-button squelch override. Eight-key control pad. Keypad lock. High/low power switch.

The FT-23R comes with a 7.2 -volt, 2.5 -watt battery pack.The FT73R with a 7.2 -volt, 2 -watt pack. And the FT-33R with a powerful 12 -volt, 5 -watt pack.

You can choose the miniature 7.2 -volt, 2 -watt pack shown in the photo below. And all battery packs are inter changeable, too.

And consider these options: Dry cell battery case for 6 AAA-size cells. Dry cell battery case for 6 AA-size cells. DC car adapter/charger. Programmable CTCSS (PL tone) encoder/ decoder. DTMF keypad encoder. Mobile hanger bracket. External speaker/microphone. And more. Check out the FT-23R Series at your Yaesu dealer today. Because although we can tell you about their incredible performance, tough

KENWOOD

Two in the Hand!

TH-75A

$2 \mathrm{~m} / 70 \mathrm{~cm}$ Dual Band HT

The new TH-75A Dual Band HT from Kenwood is here now! Many of the award-winning features in our dual band mobile transceivers are designed into one hand-held package.

- Dual Watch function allows you to monitor both bands at the same time. - One watt on 2 meters and 70 cm : 5 watts when operated on 12 VDC (or PB-8 battery pack).
- Large dual multi-function LCD display.
- 10 memory channels for each band stores frequency, CTCSS, repeater offset, frequency step information, and reverse. A lithium battery backs up memories. Two memories for "odd split" operation.
- Selectable full duplex operation.
- Extended receiver range: 141-163.995 and 438-449.995 MHz; transmit on Amateur band only. (Modifiable for MARS and CAP. Permits required. Specifications guaranteed on Amateur bands only.)
- Uses the same accessories as the TH-25AT (except soft cases).
- Volume and balance controls, plus separate squelch controls on top panel.
- Super easy-to-use! For example, to recall memory channel, just push the channel number!
- CTCSS encode/decode built-in!
- Automatic Band Change (ABC).

Automatically switches between main and sub band when signal is present.

- Automatic offset selection on 2 meters.
- Tone alert system for quiet monitoring. When CTCSS decode is on, the tone alert will function only when a signal with the proper tone is received.
- Four ways to scan, including dual memory scan, with time operated or carrier operated scan stop modes, and priority alert.
- Automatic battery saver circuit extends battery life.

- BT-6 6-cell AA battery case - DC-1/PG-2V DC adapter * HMC-2 Headset with VOX and PTT - SC-22 and SC-23 Soft case - SMC-30/31 Speaker mics. - WR-1 Water resistant bag.

KENWOOD

KENWOOD U.S.A. CORPORATION COMMUNICATIONS \& TEST EQUIPMENT GROUP P.O. BOX 22745, 2201 E. Dominguez Street Long Beach, CA 90801-5745
KENWOOD ELECTRONICS CANADA INC. P.O. BOX 1075, 959 Gana Court

Mississauga, Ontario, Canada L4T 4C2

[^0]: HAM RADIO Magazine (ISSN 0148-5989) is published monthly by Communications Technology, Inc. Greenville. New Hampshire 03048-0498 Telephone: 603-878-1441. Subscription Rates: United States: one year, $\$ 22.95$. two years, $\$ 38.95$; three years, $\$ 4995$; Europe (via KLM air mail), $\$ 40.00$, Canada, Japan, South Africa and other countries (via surface mail) one year, $\$ 31.00$; two years. $\$ 5500$, three years, $\$ 7400$. All subscription orders payable in U.S. funds. via international postal money order or check drawn on US. bank. International Subscription Agents: page 100.
 Microfilm copies are available trom Buckmaster Publishing Mineral, Virginia 23117. Cassette tapes of selected articles from HAM RADIO are available to the blind and physically handicapped from Recorded Periodicals, 919 Walnut Street, Philadelphia. Penn. syivania 19107
 Copyright 1989 by Communications Technology. Inc. Titte registered at U.S Patent Otfice
 Second-class postage paid at Greenville. New Hampshire 03048-0498 and at additional mailing offices. Send change of address to HAM RADIO, Greenville, Now Hampshire 03048-0498

[^1]: - Of course, the actual impedance ratio for transforming 50 -ohm coax to ladder line is $1: 9$. I was unsuccessful in winding a 1.9 transtormer that would provide satistactory results. If you're interested in trying, you could use a pair of 1.3 transformers at either end to provide a closer 1.9 impedance transtormation. Because of the low loss nature of 450 ohm ladder line, the additional loss due to impedance mismatch has negligible effects on the total power transtormer
 *Detalled derivatons are available from the author for an SASE with one unit of postage. Computer analysis routines were written in Turbo Pacsal, version 4.0 tor 1BM compatibles; a complete library of source code is available on 5-1/4" diskette for $\$ 5.00$ You must have Turbo Pascal Version 40 (or later) and Turbo Graphix to support Version 40 to comple and execute these files Hard copies of the source code listings are avallable for an SASE with three units of postage

[^2]: -The ARAL Handbook discusses torord inductors in it Electrical Fundamentats chapter it doesn't deal specifically with ternite rods The lormulas lor catculating inductance and turns are the same as the fernite toroids mix 61, excent that At is 49

[^3]: *Both matching techniques are discussed in detail in Doug DeMaw's book WiFB's Antenna Notebook, ARRL, 1987.

[^4]: \qquad

[^5]:

[^6]: *. 'f tmes 100 percomt to be exact

[^7]: - Send \$1 for 36 page catalog by return mail. (Send $\$ 2.00$ or 41 RC's for overseas maling
 -Order by phone or mail • Min $\$ 3 \mathbf{S} \& \mathrm{H}$ per order
 -Use Visa, Mastercard, Check, or UPS COD.

