DOUBLE YOUR PLEASURE
DOUBLE YOUR BANDS

Dual Band Radios from ICOM!
Double your operating pleasure with Icom's new dual band IC-3210 mobile and IC-32AT handheld FM transceivers. Each unit incorporates a wealth of special features and options designed to move you into the forefront of today's expanded 2-meter and 440MHz activity. Icom dual banders: the FM enthusiasts dream rigs!

Wideband Coverage. Both the IC-3210 and IC-32AT receive 138 to 174MHz including all NOAA weather channels, transmit 140 to 150MHz including MARS/CAP, and operate 440 to 450MHz. Total coverage of today's hottest FM action!

Full Duplex Operation. Simultaneously transmit on one band while receiving on the other for incomparable dual band autopatching!

20 Memories. Store any combination of standard or odd repeater offsets and subaudible tones.

Powerful! The IC-3210 delivers 25 watts output on both bands. The IC-32AT is five watts output on both bands. Selectable low power for local use on both units.

Programmable Band and Memory Scanning. Includes easy lockout and recall of various memories. Exceptional flexibility!

Repeater Input Monitor Button. Opens the squelch and checks Tx offset simultaneously.

Priority Watch. Monitor any channel for calls while continuing operation on another frequency.

Optional Beeper. Monitors for calls with your subaudible tone, then gives alerting beeps.

Double Your Bands with Icom's dual band IC-32AT handheld and IC-3210 mobile, and double your operating pleasure on 2-meters and 440MHz.
For over fifty years Eimac has supported the amateur radio fraternity with the finest power tubes in the world. Started by radio amateurs, for radio amateurs, Eimac continues its tradition of dedication to amateur radio. The new 3CX800A7 and 3CX1200A7 are examples of this continual dedication to the development of tubes for amateur use.

The FCC now allows 1500 watts output power; these new tubes are tailored to the challenge. Enjoy the improving band conditions, the new WARC bands, and upgrade to 1500 watts output in your new linear.
Two in the Hand!

TH-75A
2m/70cm Dual Band HT

The new TH-75A Dual Band HT from Kenwood is here now! Many of the award-winning features in our dual band mobile transceivers are designed into one hand-held package.

- Dual Watch function allows you to monitor both bands at the same time.
- 1.5 watts on 2 meters and 70cm; 5 watts when operated on 12 VDC (or PB-8 battery pack).
- Large dual multi-function LCD display.
- 10 memory channels for each band stores frequency, CTCSS, repeater offset, frequency step information, and reverse. Lithium battery backs up memories. Two memories for "odd split" operation.
- Selectable full duplex operation.
- Extended receiver range: 141-163.995 and 438-449.995 MHz; transmit on Amateur band only. (Modifiable for MARS and CAP. Permits required. Specifications guaranteed on Amateur bands only.)
- Uses the same accessories as the TH-25AT (except soft cases).
- Volume and balance controls, plus separate squelch controls on top panel.
- Super easy-to-use! For example, to recall memory channel, just push the channel number!
- CTCSS encode/decode built-in!
- Automatic Band Change (ABC). Automatically switches between main and sub band when signal is present.
- Automatic offset selection on 2 meters.
- Tone alert system for quiet monitoring. When CTCSS decode is on, the tone alert will function only when a signal with the proper tone is received.
- Four ways to scan, including dual memory scan, with time operated or carrier operated scan stop modes, and priority alert.
- Automatic battery saver circuit extends battery life.

Supplied accessories: Dual band rubber-flex antenna, PB-6 battery pack, wall charger, belt hook, wrist strap, water resistant dust caps.

Optional Accessories
- PB-5 7.2 V, 200 mAh NiCd pack for 1.5 W output
- PB-6 7.2 V, 600 mAh NiCd pack
- PB-7 7.2 V, 1,100 mAh NiCd pack
- PB-8 12 V, 600 mAh NiCd for 5 W output
- PB-9 7.2 V, 600 mAh NiCd with built-in charger
- BC-10 Compact charger
- BC-11 Rapid charger

SOLD AT

KENWOOD
KENWOOD U.S.A. CORPORATION
COMMUNICATIONS & TEST EQUIPMENT GROUP
P.O. BOX 22745, 2250 E. Dominguez Street
Long Beach, CA 90801-5745

KENWOOD ELECTRONICS CANADA INC.
P.O. BOX 1075, 959 Gama Court
Mississauga, Ontario, Canada L4T 4C2

Specifications and prices subject to change without notice or obligation.
Complete service manuals are available for all Kenwood transceivers and most accessories.
FEATURES

A 435-MHz LOW-NOISE GaAsFET PREAMPLIFIER
Paul Gregory, WA2FTK with Vic Gauvin, K1JUL

The Weekender: VARIABLE VOLTAGE REGULATOR
Howard Weinstein, K3HW

COMMON-POINT GROUNDING:
LIGHTNING PROTECTION FOR REPEATERS
Peter J. Bertini, K1ZJH

Ham Radio Techniques: HAVE YOU MET SID?
Bill Orr, W6SAI

DESIGN DATA FOR PIPE MASTS
R.P. Haviland, W4MB

Elmer's Notebook: VISUAL AIDS — LIGHT EMITTING DIODES
Tom McMullen, W1SL

The Weekender: A SENSITIVE RF VOLTMETER
John Pvnichny, N2DCH

A HIGH-PERFORMANCE 2-METER TRANSVERTER
Bob Lombardi, WB4EHS

Practically Speaking: MORE DIGITALLY GENERATED
SAWTOOTH, PLUS TRIANGLE WAVES
Joe Carr, K4IPV

VHF/UHF ANTENNAS
Bill Schreiber, NH6N

DEPARTMENTS

BACKSCATTER 4 FLEA MARKET 94
COMMENTS 6 DX FORECASTER 96
NEW PRODUCTS 48,90 ADVERTISER'S INDEX 98
HAM NOTEBOOK 53 READER SERVICE 98
HAM MART 92
The more things change, the more they remain the same

Sometimes, I get the feeling that Amateur Radio is going to explode into open warfare. No, I'm not talking about IARU societies fighting each other. But in certain aspects of the service, lawsuits, accusations, and innuendo seem to be the order of the day. Whatever happened to talking, reason, and the subtle art of negotiation?

Two repeater wars are brewing — one between a repeater group in Los Angeles, California and a group in Mexico. The other is between repeater groups in Illinois and Indiana. While I don't know if the group in the Southwest tried to arbitrate a solution to their problem, I am sorry to see that they chose the route of litigation in an attempt to solve it. According to Westlink, both repeaters have been coordinated by their local authorities onto the same frequency pair. I wonder if there was any communications between the two coordinating groups before the frequency assignment. I'd like to think there was. If not, we have slipped one step closer to spectrum anarchy. In the Midwest, a similar situation exists. With luck a solution can be negotiated between the coordinators and repeater owners so that they don't have to resort to litigation.

A glimmer of hope

But despite all the repeater troubles, there is a movement afoot which could help us cast off the chains of the past and move forward to a revitalized interest in Amateur Radio. I'm referring to the on-going discussions about no-code. (I would much rather call the new license class code-free or beginner's class, as I'm afraid no-code presents a negative image to some within the hobby.) CQ's recent survey of their readership showed a 60-40% split in favor of a code-free beginner's license. As I reported last month, our informal sampling resulted in an even split. The ARRL's study committee has even suggested a code-less license to the ARRL Board of Directors with some very intriguing privileges. And even though some clubs and groups are vehemently against the idea, many others embrace it with open arms.

Marty, NB1H, and I gave a presentation to the Granite State Amateur Radio Club on the code-free license this past May. Most of the group looked on the idea favorably. Several, however, did not. Among other things, their biggest concern was control — would this new class of license open the floodgates to bad habits and other potential problems. On the drive home, I thought about their objections; I find that I do not agree with them. The code-free license is more than an attempt to reach out to those who simply do not want to learn the code. It is a effort to bring licensing into the 1980s with a ticket designed for a communicator. These hams will not be any less than those now currently licensed. It will be incumbent on us to get them to upgrade and gain more privileges. What will be the eventual outcome of the proposal? No one knows and it will be months before we have any idea.

So, the more things change, the more they remain the same! I sure hope we can find a way to mediate our differences and, at the same time, accentuate the positive things that are happening in our hobby. What we do not need is more litigation between Amateurs. In this era of government deregulation, the FCC simply is not going to be the "all powerful, omnipotent Oz" it used to be. Funds and personnel have been cut in the FCC offices to the bare bones. One communications lawyer commented to me that FCC regulation and operation were being done through "mirrors and tricks" — illusion in fact! We simply cannot depend upon the FCC to solve our problems. It is up to us to solve them for ourselves.

Can we do it? Can we police and maintain order in the Amateur service? I don't know, but I hope so. As long as the trend is toward asking the courts to solve our problems, we cannot. If we go back to arbitration amongst ourselves and depend on each other to deal in good faith, maybe it is possible. We'll see.

Craig Clark, N1ACH
Affordable DX-ing!

TS-140S
HF transceiver with general coverage receiver.
Compact, easy-to-use, full of operating enhancements, and feature packed. These words describe the new TS-140S HF transceiver. Setting the pace once again, Kenwood introduces new innovations in the world of "look-alike" transceivers!
- Covers all HF Amateur bands with 100 W output. General coverage receiver tunes from 50 kHz to 35 MHz. (Receiver specifications guaranteed from 500 kHz to 30 MHz) Modifiable for HF MARS operation. (Permit required).
- All modes built-in. LSB, USB, CW, FM and AM.
- Superior receiver dynamic range Kenwood DynaMix® high sensitivity direct mixing system ensures true 102 dB receiver dynamic range.

New Feature! Programmable band marker. Useful for staying within the limits of your ham license. For contesters, program in the suggested frequencies to prevent QRM to non-participants.
- Famous Kenwood interference reducing circuits. IF shift, dual noise blankers, RIT, RF attenuator, selectable AGC, and FM squelch.

TS-680S
All-mode multi-bander
- 6m (50-54 MHz) 10 W output plus all HF Amateur bands (100 W output).
- Extended 6m receiver frequency range 45 MHz to 80 MHz. Specs guaranteed from 50 to 54 MHz.
- Same functions of the TS-140S except optional VOX (VOX-4 required for VOX operation).
- Preamp for 6 and 10 meter band.

- M. CH/VFO CH sub-dial, 10 kHz step tuning for quick QSY at VFO mode, and UP/DOWN memory channel for easy operation.
- Selectable full (QSK) or semi break-in CW.
- 31 memory channels. Store frequency, mode and CW wide/narrow selection. Select frequencies may be stored in 10 channels for repeater operation.
- RF power output control.
- AMTOR/PACKET compatible!
- Built-in VOX circuit.
- MC-43S UP/DOWN mic. included.

Optional Accessories:
- AT-130 compact antenna tuner • AT-250 automatic antenna tuner • HS-5/HS-6/HS-7 headphones • IF-232C/IF-10C computer interface • MA-5/VP-1 HF mobile antenna (5 bands) • MB-430 mobile bracket • MC-43S extra UP/DOWN hand mic. • MC-55 (5-pin) gooseneck mobile mic. • MC-60A/MC-80/MC-85 desk mics.
- PG-2S extra DC cable • PS-430 power supply • SP-41/SP-508 mobile speakers • SP-430 external speaker • TL-922A 2 kW PEP linear amplifier (not for CW QSK) • TU-8 CIGS tone unit • YG-455C-1 500 Hz deluxe CW filter, YK-455C-1

New 500 Hz CW filter.
Need for new challenges

Dear HR

Many of the ham magazines have recently featured letters or editorials which bemoan the slow or even negative growth in our numbers. Some press for some sort of “no-code” license as a panacea, guaranteed to reverse all of the undesirable trends and to rejuvenate the hobby.

What sort of growth would satisfy a manufacturer of ham gear or a publisher of Amateur Radio magazines? At the beginning of World War II, the ham population totalled about 50,000. The latest total I have heard is around 250,000. This five-times increase, which occurred during a period of time when our total population approximately doubled, seems a remarkable growth to me.

I am surprised however, that we retain as many in the hobby as we do. I have many memories of young children leaving sophisticated toys in the closet while spending long hours with crude, self-made ones. Could this same psychological mechanism be at work among hams who have tired of their complex toys? Where is the challenge in a hobby if the required license can be obtained by memorizing a few pages of data — and when sophisticated gear, beyond the understanding of most operators, is cheaply available? I can easily see why the excitement and the near magic I felt when I first became a ham does not exist for a big segment of our present group.

No one tried to encourage me in the mid-30s when I developed an interest in Amateur Radio and decided to get my license. I studied hard to understand the theory and copied code for long hours to get my speed up to 15 wpm or so. Then, I had to build homebrew gear as I could not afford commercial equipment. Every step along the way to getting on the air presented a challenge to a young teenager. I suspect it was the challenge that initiated and sustained my resolve.

What are the current challenges, technical or otherwise, that would entice newcomers to our hobby? Just acquiring the legal right to communicate with ham gear is not enough. Most publishers and even the ARRL appear to promote more and more sophistication in our equipment, but then sponsor increasingly simple activities in which to use it. Just learning a new computer program so that you can use your PC on packet requires little or no technical skill and is not much of a challenge. Occasionally, I read or hear a derogatory remark about the simplicity of the homebrew gear so strong in the memories of those who were hams prior to WW2. I have but one response: The gear we built was near state-of-the-art for the times. How much homebrew gear is around today that you could consider state-of-the-art?

The early enchantment with the mysteries and complexities of the hobby does appear to be slipping away and cannot be restored by producing a mass of appliance operators. If up-to-date technical challenges cannot be initiated, I am afraid that our hobby will slowly be downgraded to a CB-type of activity, which would certainly lose more and more stations “backing-out” of QSOs, and blow RFI to the nearest major problems.

Paul Swearingen, W9PJF, Benton, Illinois 62812

Here we go again!

Dear HR

Well, the long suffering public (especially the Amateur Radio community) has been had again. The Feds have laid another bundle of fallacious logic on our heads and again expect us to bow down and take it.

The incising of the 220-222 MHz portion of the electromagnetic spectrum was again performed “in the public interest.” Somehow I am sharply reminded of a child receiving a beating “for his own good.” Oh, yeah? Really? Is THAT logical? “For his own good” indeed! Have you ever heard of anyone running up and asking for a beating “for his own good?”

Another one that goes right along with this is, “This is going to hurt me more than it will you.” Oh, yeah? Then let ME do it to YOU — then it won’t hurt you so much. I might admire a little more honesty in all of this. “I am going to beat you as a punishment for” or “I am going to beat you because I am bigger and stronger and have more power than you.” At least you would know just where you stood in the grand schematic of things.

If we are going to play the numbers game with the FCC chief engineer (and treat ALL frequencies alike) and the land mobile service needs 2 MHz, then why not give them 2 MHz up at 24,000 MHz? That would amount to the same 2 percent that he claims is all that we are losing.

What is the fierce pressure to force a breakthrough in land mobile communications? Will those brown UPS trucks get the goods to your door appreciably faster? It would be most interesting to find out whose brother-in-law has a warehouse FULL of this new, breakthrough 220 mobile equipment — already. Or to unearth which country is ready to load ships full of this new, breakthrough stuff.

Remember that business (and politics) function just like the King — who always announces that he CAN TOO put Humpty Dumpty back together again. ALL HE NEEDS IS MORE HORSES AND MORE MEN!

Joseph A. Weite, KH6GDR, Makakilo, Hawaii 96706
Dual Band Afford-ability!

TM-701A

Dual Bander

The TM-701A combines two radios into one compact package. You get 25 watts on 2 meters and 70cm, 20 memory channels, tone encoder built-in, multiple scanning, auto-repeater offset selection on 2 meters, and a host of additional features!

- 20 multi-function memory channels. 20 memory channels allow storage of frequency, repeater offset, CTCSS frequency, frequency step, and Tone On/Off status, CTCSS and REV, providing quick and easy access during mobile operation.
- 25W on 2m and 70cm. Selectable full duplex-cross band (Telephone style) operation.
- Easy-to-operate front panel layout. Multi-function DTMF mic. supplied.
- Controls are provided on the microphone for CALL (Call Channel), VFO, MR (Memory Call or to change the memory channel) and a programmable function key. The programmable key can be used to control one of the following functions on the radio: MHz, T, ALT, TONE, REV, BAND, or LOW power.
- Easy-to-operate illuminated keys. A functionally designed control panel with individually backlit keys increases the convenience and ease of operation during night-time use.

- Optional full-function remote controller (RC-20). A full-function remote controller using the Kenwood bus line can be easily connected to the TM-701A and mounted in any convenient location. The new controller is capable of operating all front panel functions.
- Built-in dual digital VFO's. a) Frequency step selection (5, 10, 15, 20, 12.5, 25kHz) b) Programmable VFO. The user friendly programmable VFOs allow the operator to select and program variable tuning ranges in 1 MHz band increments.
- Programmable call channel function. The call channel key allows instant recall of your most commonly used frequency data.
- Programmable tone encoder built-in. Tone alert system—for true quiet monitoring. When activated this function will cause a distinct beeper tone to be emitted from the transceiver for approximately 10 seconds to signal the presence of an incoming signal.
- Easy-to-operate multi-mode scanning. a) VFO scan Band scan, Programmable band scan. b) Memory scan plus programmable memory channel lock-out c) Dual scan Dual call channel scan Dual memory scan Dual VFO scan d) Scan stop modes Time operated scan (TO) Carrier operated scan (CO)
- Scan direction e) Scan direction f) Alert When the AL switch is depressed memory channel 1 is scanned for activity at approximately 5 second intervals.
- MHz switch.
- Lock function.
- Repeater reverse switch.

Optional Accessories
- RC-20 Full-function remote controller
- RC-10 Multi-function remote controller
- IF-20 Interface unit handset
- MC-44 Multi-function hand mic.
- MC-44DM Multi-function hand mic. with auto-patch
- MC-48B 16-key DTMF hand mic.
- MC-60A/80/85 Desk-top mics.
- MA-700 Dual band (2m/70cm) mobile antenna (mount not supplied)
- SP-41 Compact mobile speaker
- SP-50B Mobile speaker
- PS-430 Power supply
- PS-50 Heavy-duty power supply
- MB-201 Mobile mount
- PG-2N Power cable
- PG-3B DC line noise filter
- PG-4H Interface connecting cable
- TSU-6 CTCSS unit

Specifications and prices subject to change without notice or obligation. Complete service manuals are available for all Kenwood transceivers and most accessories.

KENWOOD U.S.A. CORPORATION
COMMUNICATIONS & TEST EQUIPMENT GROUP
P.O. BOX 22745, 2201 E. Dominguez Street
Long Beach, CA 90801-5745

KENWOOD ELECTRONICS CANADA INC.
P.O. BOX 1075, 959 Gana Court
Mississauga, Ontario, Canada L4T 4C2
While others offer you some digital modes using 3 year old technology, only MFJ gives you all 9 digital modes and keeps on bringing you state-of-the-art advances.

MFJ-1278

$279.95

No three year old technology at MFJ! Using the latest advances, MFJ brings you 9 exciting digital modes and keeps on bringing you state-of-the-art advances.

You get tons of features other multi-modes just don't have.

Only MFJ gives you all 9 modes

- Count 'em -- you get 9 fun modes
- Packet, AMTOR, RTTY, ASCII, CW, WeFAX, SSTV, Navtex and full featured Contest Memory Keyer.

You can't get all 9 modes in any other multi-mode at any price. And nobody gives you modes the MFJ-1278 doesn't have.

The best modem you can get

Extensive tests in Packet Radio Magazine prove the MFJ-1278 modems gives better copy with proper DCD operation than all other modems tested.

New Easy Mail™ Personal Mailbox

You get MFJ's new Easy Mail™ Personal Mailbox with soft-partitioned memory so you can leave messages for each other 24 hours a day.

20 LED Precision Tuning Indicator

MFJ's unequalled tuning indicator makes it really easy to work HF packet stations. And unlike others, you use it exactly the same way for all modes - not different for each mode.

Just tune your radio to center a single LED and you're precisely tuned in to within 10 Hz - and it shows you which way to tune!

New MFJ technology prevents collisions: gets packets through faster

MFJ's new Anti-Collision technology gets packets through faster, more reliably.

An MFJ exclusion: MFJ-1278 is the only multi-mode to have this new technology.

Multi-Gray Level FAX/SSTV Modem

You'll enjoy natural looking pictures that only multiple gray levels can give you. MFJ's exclusive new built-in modem lets you transmit and receive up to 16 gray levels.

Only MFJ can transmit FAX

Most packet stations can receive FAX. But only MFJ-1278 lets you transmit FAX without internal modifications that disable other modes.

So now you can send your own high resolution pictures, maps and diagrams by FAX to stations throughout the world. Too bad they can't send theirs to you... unless they have the MFJ-1278.

One FREE Upgrade!

When you buy your MFJ-1278 today, you don't have to worry about missing new modes and features that come out tomorrow.

Why? Because your MFJ-1278 comes with a coupon good for one free upgrade exchange that'll add new features.

Plus more...

Plus you get... 32K RAM, free AC power supply, KISS, true DCD, random code generator, independent printer port, lithium battery backup, RS-232 and TTL serial ports, standard 850 Hz RTTY shift, socketed ICs, tune up command, automatic serial numbering, programmable message memories, software selectable dual radio ports and soundcards -- all in a sleek 9½ x 9½ x 1½ inch cabinet.

Get on the air instantly Just plug it all in

All you need is an MFJ-1278, your rig, any computer and a terminal program.

With an MFJ Starter Pack, $24.95, you just plug it all in, wire up your mic connector and you're on the air.

Order MFJ-1282 (disk)MFJ-1283 (tape) for C64/C128/VIC-20 MFJ-1284 for IBM compatibles: MFJ-1287 for Macintosh.

Unconditional Guarantee

You get the best guarantee in ham radio - a full one year unconditional guarantee. That means we will repair or replace your MFJ multi-mode (at our option) no matter what for a full year.

Get 9 new ways of having fun

Don't settle for 3 year old technology. Choose the only multi-mode that gives you the latest advances and all 9 modes.

Get 9 new ways of having fun - get yours today!

Packet Pictures

Transmit and receive high resolution VGA,EGA and CGA color pictures via packet with MFJ picture passing software.

Beautiful color pictures are automatically received, saved to disk and "printed" to screen.

Pictures are compressed as they are transmitted - so you get true high speed picture passing.

You can save to disk any CGA picture you can see on your screen.

You can set up your own picture bulletin board and exchange pictures with others - even if you're not there.

Let's spread picture passing throughout the world and create a new world standard. Get this powerful new software for only ... $8.95.

MFJ-1288 works with virtually any packet radio controller and IBM compatible computer. It's included free in the MFJ-1284 IBM Starter Pack.

MFJ... making quality affordable
Upgrade your 435-MHz receiving system for OSCAR and terrestrial weak signal reception

Paul Gregory, WA2FTK, 136 Covered Wagon Trail, W. Henrietta, New York 14586 with Vic Gauvin, K1JUL, 27 Van Cortland Drive, Pittsford, New York 14534

Articles on VHF/UHF GaAsFET preamplifier construction aren't unusual. But many feel that these preamps are too difficult to build, that they are too unstable, or that parts are too hard to get. I hope my project will help to allay some of these fears.

Why a preamplifier?

Why add a preamplifier to your receiving system in the first place? Under extremely weak signal conditions (like those from a satellite), your receiving system needs all the help it can get. Things like feedline loss between the antenna and the receiver degrade the signal strength seen at the receiver's front end. In addition, the receiver may not be sensitive enough to hear the weak satellite signals. To overcome these problems you can add a low-noise preamplifier, like a GaAsFET, to the receiving system to improve overall receiving system performance.

Let's look at the satellite downlink receiving system at my station. I have 65 feet of 9086 coax (similar to 9913) between the antenna and a 435-MHz receiver. The cable loss is approximately 3.1 dB per 100 feet, which is 2 dB for 65 feet at 435 MHz. The receiver's RF amplifier has 10 dB of gain with a noise figure of 5 dB — not a very sensitive system. With a typical satellite signal level at the antenna terminals, the receiving system performance can be illustrated by the signal-to-noise (S/N) ratio at the receiver input to the mixer. This is shown in Figure 1 (see appendix A at the end of the article for assumptions and computations). As is the case with any system, the losses and noise contributed by the system components degrade the S/N ratio at each step in the signal path. Because of the low signal levels in this case, the contribution is significant and greatly degrades the signal by the time it reaches the receiver mixer. There's 4 dB of S/N reduction due to the coax and 7 dB at the receiver — a net S/N ratio of 6 dB. It's necessary to increase the working signal to levels much higher than the noise, so that the noise has less effect.

Where to add a preamp?

The addition of a preamplifier at the receiver input is a common solution to this problem. Figure 2 shows what happens when you add the 20-dB low-noise amplifier discussed later in this article. The 4-dB S/N degradation resulting from the coax is still present, and you have an additional degradation of 1 dB due to the preamp itself. However, the noise contribution caused by the receiver has been reduced to approximately 0.1 dB, as compared with the 7 dB of the previous system. This is a 6-dB net improvement in S/N for a final ratio of 12 dB. For a greater improvement, increase the working signal level at the coax to the point where the coax noise is insignificant with respect to the signal level — just as you did with the receiver noise.

To do this, you must amplify the input signal at the antenna before it reaches the coax. The results of this configuration are illustrated in Figure 3. As you can see, the preamp S/N degradation is now roughly 0.6 dB and the coax contribution changes from 4 dB to 0.1 dB! The receiver contribution is still insignificant at 0.3 dB and the net S/N is now 16 dB, nearly as good as it is at the antenna.

As these examples show, it's not how much gain your amplifiers have (the final signal level in Figures 2 and 3 is the same), but where in the circuit the gain occurs that determines your ability to increase the signal above the noise to a point where you can reduce its effect significantly.

The preamp

The GaAsFET preamplifier circuit I've described here is similar to one in The ARRL Handbook. I made minor changes to improve stability and allow operation at 28 volts DC because of my relay requirements. It offers excellent...
S/N calculations — no preamplifier.

S/N calculations — preamplifier at receiver input.

performance and gain, and can be used for both satellite
and terrestrial communications.

Circuit details
The basic circuit is shown in Figure 4. The GaAsFET tran-
sistor is a Mitsubishi MGF 1302, which provides approxi-
mately 18 to 20 dB of gain in this circuit. The input is tuned
by C1, C2, and L1; the output is tuned by C5 and L2. You
can use miniature ceramic trimmer capacitors for the vari-
able capacitors; however, I recommend piston-type capa-
S/N calculations — preamplifier at antenna.

Schematic diagram. Except as indicated, values of capacitors are in pF. Resistances are in ohms.

The source bypass capacitors, C3 and C4, are leadless trapezoidal capacitors. Note that there are two source leads on the GaAsFET transistor, and that each lead is connected to a trapezoidal bypass capacitor. The output coupling capacitor, C6, is a silver mica.

The relays I used require 28 volts DC, so the preamplifier circuit is designed to work at that voltage. If you use 12-volt relays instead, change R3 from 390 ohms to 150 ohms, 2 watts.

When DC voltage is not applied to the amplifier circuits, the preamp is in transmit mode, bypassing the amplifier (see Figure 5) and protecting the GaAsFET from static charges when not in use.

Construction details

I built the complete amplifier circuit on a piece of double-sided pc board 3-3/4" x 1-5/8". The remaining sides are double-sided pc board soldered together. The long sides
Before you install the center shield, drill a 1/8” hole in its center and solder one 470-pF trapezoidal capacitor (C3 and C4) to each side of the hole.

Figure 7 shows a suggested component layout diagram. Install J1, C2, C5, C7, and J2, as well as C3 and C4 on the center shield; first, they’re used as mounting points for other components. You may wind L1 and L2 on a 3/16” drill bit. The direction of the turns isn’t important, but you should wind the input and output inductors in opposite directions. This will help to minimize coupling. Make your lead lengths as short as possible. I did this for L2 and R2 by placing the resistor inside the coil and soldering to a common point.

To protect the GaAsFET, I suggest that you install it last (along with R1). Place the drain of the GaAsFET (the longest lead) through the hole in the center shield and solder each source lead to the trapezoids (see **Figure 7**). Use care when handling the GaAsFET; discharge yourself by touching a grounded metal object before handling the transistor. It is static sensitive and may be damaged if you don’t. Also, when soldering the leads, be sure not to use excessive heat. Be sure the drain lead is centered in the hole after you’ve soldered the two source leads.

Note that Z1, D1, D2, R3, and C8 are located outside the shielded box. D2 and C8, as well as K1 and K2, are connected at J3, the DC input connector at the enclosure that houses the entire assembly. D1 and R3 are in series to feed-through capacitor C7 at the shielded box. Z1 is connected to C7 and grounded right to the outside of the box.

The shielded box is designed to connect to the coaxial relays (see **Photo A**). Each relay contains two bulkhead-mount N connectors, with O rings on one side for weatherproof mounting and a BNC male connector on the other side. The preamplifier connects directly to these BNCs and is supported by the relays. Attaching the relays to the weathertight chassis provides a convenient method of installation; everything is held in place by the mounting hardware (**Photo B**). The transmit signal path connection between the relays is made up of two 90° elbow N connectors and the double-male N.

The final assembly (before weatherproofing) is illustrated in **Photo C**. I used an F connector for the DC input (J3) because I needed shielded cable (like RG-59) to protect the preamp from atmospheric static while not in use. The enclosure should also be grounded to the antenna tower.

Figure 6

Shielded box dimensions. Note 1: Center-to-center distance tailored to accept transmit signal path hardware between relays (enables relays to be parallel). Note 2: Place as close as possible to center shield.

NOTE: 1. CENTER-TO-CENTER DISTANCE TAILORED TO ACCEPT TRANSMIT SIGNAL PATH HARDWARE BETWEEN RELAYS (ENABLES RELAYS TO BE PARALLEL).

3. 1/8” HOLE IN CENTER OF CENTER SHIELD FOR G1 DRAIN LEAD

1 5/8” DIA

1/8” DIA

1/4” DIA

1 3/4” DIA

NOTE 1

NOTE 2

NOTE 3

1. CENTER-TO-CENTER DISTANCE TAILORED TO ACCEPT TRANSMIT SIGNAL PATH HARDWARE BETWEEN RELAYS (ENABLES RELAYS TO BE PARALLEL).

2. PLACE AS CLOSE AS POSSIBLE TO CENTER SHIELD.

3. 1/8” HOLE IN CENTER OF CENTER SHIELD FOR G1 DRAIN LEAD

1 5/8” DIA

1/8” DIA

1/4” DIA

1 3/4” DIA

NOTE 1

NOTE 2

NOTE 3

Suggested component layout. All leads must be as short as possible (use C6 to make up the distance required to J2 because of relay spacing).
If You Want the Most Advanced TNC Today...

In 26 countries around the world, tens of thousands of amateurs know that Kantronics is the leader in bringing tomorrow's technology to their stations today. They also know they will always be among the first to incorporate just-introduced features and modes with Kantronics software and firmware updates.

And, they know that Kantronics is unique in its ability to seek out, develop and incorporate the most advanced features into each of five different TNC models before anyone else. Why? Because every program Kantronics writes, and every unit Kantronics designs and produces are born right here at the factory in the U.S.A.

Meet Your Mailman

In this age of telco LANS, E-mail and FAX, you will know you have mail in your Personal Packet Mailbox when your KAM "STA" LED is blinking. New firmware level 2.85 has also added a handy automatic mailbox user-connect. So save your computer and monitor life by turning them off when you are away, and never miss a beat on the airwaves.

Version 2.85 KAMs have increased Packet Cluster compatibility, KA-NODE path preservation, KA-NODE recognition of the “NET” nodes and HF baud rates from 50 through 300! And there are three new mailbox commands: List Mine, Read Mine and Kill Mine.

and Tomorrow...

Will the Real Dual-Port Please Stand Up?

Read our lips. The KAM™ is the only true dual-port when it comes to packet. Your Personal Packet Mailbox™ is accessible from both HF and VHF! Version 2.85 has dual-port compatibility with RLI/MBL boards and KISS mode for both ports. You can monitor HF and VHF packet operations at the same time. Users can even gateway from HF to VHF (or in reverse) through your KAM.

Kantronics All-Mode™ (KAM) has Packet, WEFAX, ARQ, FEC, RTTY and CW reception. But we have five models to suit your particular taste. Ask your dealer for the best choice today...and tomorrow.
ICOM IC-765
100W. 100kHz to 30MHz
HF ALL BAND TRANSCEIVER
Dual VFO system
SALE! CALL FOR PRICE

ICOM IC-781
THE ULTIMATE
150 W. ALL BAND
HF TRANSCEIVER
GREAT PRICE!

ICOM IC-275A/275H, 100W.
138-174 MHz
ICOM IC-375A
430-450 MHz
NEW IC-725
100W. 100 KHz-30 MHz
Dual VFO Receiver
CALL FOR LOW, LOW PRICE

SALE! CALL FOR PRICE

CALL FOR LOW, LOW PRICE

100kHz to 30MHz
HF ALL BAND TRANSCEIVER
Dual VFO system
SALE! CALL FOR PRICE

138-174 MHz
HF ALL BAND TRANSCEIVER
Dual VFO system
SALE! CALL FOR PRICE

100kHz to 30MHz
HF ALL BAND TRANSCEIVER
Dual VFO system
SALE! CALL FOR PRICE

100kHz to 30MHz
HF ALL BAND TRANSCEIVER
Dual VFO system
SALE! CALL FOR PRICE

THE ULTIMATE
150 W. ALL BAND
HF TRANSCEIVER
GREAT PRICE!

SALE! CALL FOR PRICE

THE ULTIMATE
150 W. ALL BAND
HF TRANSCEIVER
GREAT PRICE!

SALE! CALL FOR PRICE

THE ULTIMATE
150 W. ALL BAND
HF TRANSCEIVER
GREAT PRICE!

SALE! CALL FOR PRICE

THE ULTIMATE
150 W. ALL BAND
HF TRANSCEIVER
GREAT PRICE!

SALE! CALL FOR PRICE

THE ULTIMATE
150 W. ALL BAND
HF TRANSCEIVER
GREAT PRICE!

SALE! CALL FOR PRICE

THE ULTIMATE
150 W. ALL BAND
HF TRANSCEIVER
GREAT PRICE!

SALE! CALL FOR PRICE

THE ULTIMATE
150 W. ALL BAND
HF TRANSCEIVER
GREAT PRICE!

SALE! CALL FOR PRICE

THE ULTIMATE
150 W. ALL BAND
HF TRANSCEIVER
GREAT PRICE!

SALE! CALL FOR PRICE

THE ULTIMATE
150 W. ALL BAND
HF TRANSCEIVER
GREAT PRICE!

SALE! CALL FOR PRICE

THE ULTIMATE
150 W. ALL BAND
HF TRANSCEIVER
GREAT PRICE!

SALE! CALL FOR PRICE

THE ULTIMATE
150 W. ALL BAND
HF TRANSCEIVER
GREAT PRICE!

SALE! CALL FOR PRICE

THE ULTIMATE
150 W. ALL BAND
HF TRANSCEIVER
GREAT PRICE!

SALE! CALL FOR PRICE

THE ULTIMATE
150 W. ALL BAND
HF TRANSCEIVER
GREAT PRICE!

SALE! CALL FOR PRICE

THE ULTIMATE
150 W. ALL BAND
HF TRANSCEIVER
GREAT PRICE!

SALE! CALL FOR PRICE

THE ULTIMATE
150 W. ALL BAND
HF TRANSCEIVER
GREAT PRICE!

SALE! CALL FOR PRICE

THE ULTIMATE
150 W. ALL BAND
HF TRANSCEIVER
GREAT PRICE!

SALE! CALL FOR PRICE

THE ULTIMATE
150 W. ALL BAND
HF TRANSCEIVER
GREAT PRICE!

SALE! CALL FOR PRICE

THE ULTIMATE
150 W. ALL BAND
HF TRANSCEIVER
GREAT PRICE!

SALE! CALL FOR PRICE

THE ULTIMATE
150 W. ALL BAND
HF TRANSCEIVER
GREAT PRICE!

SALE! CALL FOR PRICE

THE ULTIMATE
150 W. ALL BAND
HF TRANSCEIVER
GREAT PRICE!

SALE! CALL FOR PRICE

THE ULTIMATE
150 W. ALL BAND
HF TRANSCEIVER
GREAT PRICE!

SALE! CALL FOR PRICE

THE ULTIMATE
150 W. ALL BAND
HF TRANSCEIVER
GREAT PRICE!

SALE! CALL FOR PRICE

THE ULTIMATE
150 W. ALL BAND
HF TRANSCEIVER
GREAT PRICE!

SALE! CALL FOR PRICE

THE ULTIMATE
150 W. ALL BAND
HF TRANSCEIVER
GREAT PRICE!

SALE! CALL FOR PRICE

THE ULTIMATE
150 W. ALL BAND
HF TRANSCEIVER
GREAT PRICE!

SALE! CALL FOR PRICE

THE ULTIMATE
150 W. ALL BAND
HF TRANSCEIVER
GREAT PRICE!

SALE! CALL FOR PRICE

THE ULTIMATE
150 W. ALL BAND
HF TRANSCEIVER
GREAT PRICE!

SALE! CALL FOR PRICE

THE ULTIMATE
150 W. ALL BAND
HF TRANSCEIVER
GREAT PRICE!
Food for thought.

Our new Universal Tone Encoder lends its versatility to all tastes. The menu includes all CTCSS, as well as Burst Tones, Touch Tones, and Test Tones. No counter or test equipment required to set frequency—just dial it in. While traveling, use it on your Amateur transceiver to access tone operated systems, or in your service van to check out your customers’ repeaters; also, as a piece of test equipment to modulate your Service Monitor or signal generator. It can even operate off an internal nine volt battery, and is available for one day delivery, backed by our one year warranty.

- All tones in Group A and Group B are included.
- Output level flat to within 1.5db over entire range selected.
- Separate level adjust pots and output connections for each tone Group.
- Immune to RF
- Powered by 6-30vdc, unregulated at 8 ma.
- Low impedance, low distortion, adjustable sinewave output, 5v peak-to-peak
- Instant start-up.
- Off position for no tone output.
- Reverse polarity protection built-in.

<table>
<thead>
<tr>
<th>Group A</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>67.0 XZ</td>
<td>91.5 ZZ</td>
<td>118.8 2B</td>
<td>156.7 5A</td>
</tr>
<tr>
<td>71.9 XA</td>
<td>94.8 ZA</td>
<td>123.0 3Z</td>
<td>162.2 5B</td>
</tr>
<tr>
<td>74.4 WA</td>
<td>97.4 ZB</td>
<td>127.3 3A</td>
<td>167.9 6Z</td>
</tr>
<tr>
<td>77.0 XB</td>
<td>100.0 1Z</td>
<td>131.8 1B</td>
<td>173.8 6A</td>
</tr>
<tr>
<td>79.7 SP</td>
<td>103.5 1A</td>
<td>136.5 4Z</td>
<td>179.9 6B</td>
</tr>
<tr>
<td>82.5 YZ</td>
<td>107.2 1B</td>
<td>141.3 4A</td>
<td>186.2 7Z</td>
</tr>
<tr>
<td>85.4 YA</td>
<td>110.9 2Z</td>
<td>146.2 4B</td>
<td>192.8 7A</td>
</tr>
<tr>
<td>88.5 YB</td>
<td>114.8 2A</td>
<td>151.4 5Z</td>
<td>203.5 M1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group B</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TEST-TONES:</td>
<td>TOUCH-TONES:</td>
<td>BURST TONES:</td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>1600</td>
<td>1850</td>
<td>2150</td>
</tr>
<tr>
<td>1000</td>
<td>1650</td>
<td>1900</td>
<td>2200</td>
</tr>
<tr>
<td>1500</td>
<td>1700</td>
<td>1950</td>
<td>2250</td>
</tr>
<tr>
<td>2175</td>
<td>1750</td>
<td>2000</td>
<td>2300</td>
</tr>
<tr>
<td>2805</td>
<td>1800</td>
<td>2100</td>
<td>2350</td>
</tr>
</tbody>
</table>

- Frequency accuracy, ± .1 Hz maximum - 40°C to + 85°C
- Frequencies to 250 Hz available on special order
- Continuous tone

Model TE-64 $79.95

COMMUNICATIONS SPECIALISTS

426 West Taft Avenue, Orange, California 92667
(800) 854-0547/ California: (714) 998-3021
The shielded assembly connects directly to the transmit/receive relays. The photo illustrates the hardware used for the transmit signal path (used whenever preamplifier is not in operation).

Tuneup

You can do the initial amplifier tuneup before you connect it to the relays and install it in the receive line. Be sure that the transmitter cannot be keyed. Tune in a known signal strong enough to just move the S-meter and adjust C2 and C5 for maximum S-meter reading; then tune C1 for best signal-to-noise ratio. Retune C1 and C2 for best signal-to-noise and maximum gain as necessary. Disconnect the antenna; the background noise should be greatly reduced.

Tune around the band to determine if there are any "birds" caused by the amplifier. If there are, adjust C5 until they disappear. Do not touch C1 and C2. (Since I added R2, I've encountered no difficulties in this configuration. If you do have problems, refer to the December 1987 Ham Radio "VHF/UHF World" column by Joe Reisert, W1JR.)

Reconnect the antenna and you'll find that the background noise reappears. Readjusting C5 will slightly detune the output stage; however, sufficient gain in the circuit means that gain reduction will be insignificant.

Parts information

Components C1-C5, C7, and Q1 are available from:
Microwave Components of Michigan
11216 Cape Cod
Taylor, Michigan 48180

I purchased the relays at a hamfest. They are manufactured by Amphenol, and provide the minimum number of external adapters to connect to the preamplifier without requiring a custom relay. You can use any high quality coaxial relay provided it can handle the power requirements of the transmitter, provides enough isolation during transmit to protect the preamplifier, and is rated to at least 500 MHz. Relay substitution may require additional adapters to interface to the preamplifier and external coax to the antenna and the station.

Final assembly in its enclosure before weatherproofing. The antenna and feedline to the receiver connect at the N connectors. The F connector is the input for the shielded power cable.

Conclusion

Adding this amplifier to your station will give you a state-of-the-art receiving system for modes J and L operation, as well as significantly improved terrestrial operation. You'll really be able to hear those weak signals and enjoy satellite/UHF DXing.

REFERENCE

Appendix A

Computations and assumptions

The values used in the signal-to-noise ratio diagrams are based on typical signal levels in “average” station setups. Values are given in dBm since most people can relate to these by way of other experience. All values in the illustrations have been rounded, and some “adjusted” by no more than a few tenths to simplify the diagrams. The following is the basis for several of the values used.

Input signal level (-128 dBm)

This value of -128 dBm results when you have a satellite roughly 22,000 miles (35,406 km) away operating at 435 MHz on mode J or JL, with an EIRP output of 2.5 watts (due to uplink station limitations on the satellite). The receiving antenna has a gain of 14 dB and you’re using SSB filters (2.1 kHz) in your receiver. The power (P\text{ant}) at your antenna terminals is determined by the strength of the signal, its path loss to the antenna, and your antenna gain:

\[P_{\text{ant}} = \text{EIRP (dBm)} - \text{path loss (P \text{loss}) + ant gain} \]

An EIRP of 2.5 watts equals 34 dBm. The path loss is computed by:

\[\text{P\text{loss}} (dB) = 10 \log \left(\frac{4\pi \times \text{distance meters}}{\text{wavelength meters}} \right)^2 \]

\[= 10 \log \left(\frac{4\pi \times 35,406,000}{0.68} \right)^2 \]

\[= 176.2 \text{ dB} \]

Therefore:

\[P_{\text{ant}} = 34 - 176.2 + 14 \]

\[= -128.2 \text{ dBm} \text{ at the antenna terminals} \]

Antenna and sky noise (-145 dBm)

To compute the noise received from the atmosphere (sky) and generated in the antenna, you must consider the atmospheric and antenna “noise temperature” (the temperature at which the noise from a reference resistor noise standard is comparable to the noise in the atmosphere), and the receiver bandwidth (the noise that the bandwidth of the receiver will let through). Use the following formula:

\[\text{Noise}_{(A+S)} (W) = k \times \text{sky/antenna temp} \times \text{bandwidth} \]

where

\[k = \text{Boltzmann’s constant} = 1.38 \times 10^{-23} \text{ joules/Kelvin} \]

\[\text{noise temp} = 100 \text{ Kelvin} \text{ (typical)} \]

\[\text{bandwidth} = 2100 \text{ Hz} \]

Therefore:

\[N_{(A+S)} = (1.38 \times 10^{-23}) \times 100 \times 2100 \]

\[= 2.9 \times 10^{-18} \text{ watts} \]

\[= -145.4 \text{ dBm} \]

Component noise

The noise generated within each of the components is determined by the following general formula:

\[N_{\text{pwr}} (W) = GkTB \]

where

\[G = \text{gain of component} \]

\[k = \text{Boltzmann’s constant} (1.38 \times 10^{-23} \text{J/K}) \]

\[t = \text{noise temperature of component (Kelvin)} \]

\[B = \text{bandwidth of system (2100 Hz)} \]

The formula stated in dBm is:

\[\text{Noise}_{\text{pwr, dBm}} = G (dB) + 10 \log \frac{kTB}{0.001} \]

The only item you don’t know for each component is its noise temperature. However, you do know the noise figure (NF), so temperature may be derived as follows:

\[T_{\text{comp}} = 290 \left[\text{antilog} \frac{\text{NF}}{10} - 1 \right] \]

Use formulas (1) and (2) in each of the following derivations.

Coax noise

The coax provides a 2-dB loss in the system; therefore, its noise figure (as a passive component) is also equal to that amount.

\[T_{\text{coax}} = 290 \left[\text{antilog} \frac{2}{10} - 1 \right] \]

\[= 169.6 \text{ Kelvin} \]

\[\text{N}_{\text{pwr}} = -2 + 10 \log \frac{k \times 169.6 \times 2100}{0.001} \]

\[= -145.1 \text{ dBm} \]

Preamp noise

The preamp noise figure is 0.5 and its gain is 20 dB.

\[T_{\text{preamp}} = 290 \left[\text{antilog} \frac{0.5}{10} - 1 \right] \]

\[= 35.4 \text{ Kelvin} \]

\[\text{N}_{\text{pwr}} = 20 + 10 \log \frac{k \times 35.4 \times 2100}{0.001} \]

\[= -130 \text{ dBm} \]

Receiver noise

The receiver noise figure is 5.0. Its gain is 10 dB.

\[T_{\text{rx}} = 290 \left[\text{antilog} \frac{5}{10} - 1 \right] \]

\[= 627.1 \text{ Kelvin} \]

\[\text{N}_{\text{pwr}} = 10 + 10 \log \frac{k \times 627.1 \times 2100}{0.001} \]

\[= -127.4 \text{ dBm} \]

How to “add” power expressed in dBm

The adding of different dBm power levels to arrive at noise totals is not necessarily an intuitive task, so I’ll discuss it here. Power in dBm is a log function with respect to a standard reference value (1 mW), and values can’t be added directly. Instead, they must be converted back to power (in watts, or milliwatts in our example), added, and the total reconverted to dBm. As an example, add the coax noise (C) and the combined antenna plus sky noise (A+S) levels of Figures 1 and 2. These values are -145 and -147 dBm, respectively.

The formula for converting power to dBm is:

\[\text{dBm} = 10 \log \text{ (power in mW)} \]

The inverse of this is the formula for converting dBm to power:

\[\text{P\text{mw}} = \text{antilog (value in dBm/10)} \]

Taking the values:

\[\text{antilog (145/10)} = 3.16 \times 10^{-15} \text{ mW} \]

\[\text{antilog (147/10)} = 2.00 \times 10^{-15} \text{ mW} \]

\[\text{Total power} = 5.16 \times 10^{-15} \text{ mW} \]

Converting back to dBm:

\[\text{P\text{dbm}} = 10 \log (\text{P\text{mw}}) \]

\[= 10 \log (5.16 \times 10^{-15}) \]

\[= -143 \text{ dBm} \]

REFERENCE

1. The Satellite Experimentor’s Handbook, ARRL
10-Meter SSB/CW 12VDC Transceiver*

259.95

![Image of a transceiver]

The Realistic® HTX-100 gets you into the 10-meter fun! Memory stores 10 favorite frequencies and mike-mounted pushbuttons permit safe and easy frequency selection while you drive. RIT ± 1.5 kHz fine-tuning control. Front-panel switchable 25-watt/5-watt power output. Full 10-meter coverage, USB or CW. #19-1101

*Must have a Ham license to transmit.

Deluxe Magnet-Mount Antenna

Deluxe Magnet-Mount Antenna

37.95

- Stores in Trunk—Out of Sight Of Thieves and Vandals
- No Damaging Holes to Drill
- Easily Moves From One Vehicle To Another

Real performer! Excellent antenna for use with your 10-meter rig. Super-strong magnet for instant mounting on roof or rear deck of your auto. With base-loaded, low-loss coil, and 54" steel whip. Prewired 16-foot cable with PL-259 connector. Great for removable sets! #21-960

Cellular “Look-Alike” Antenna

29.95

- Mounts On Trunk Lid Edge So There Are No Holes to Drill
- Sleek, Black Attractive Design
- Short Length—Excellent for Low-Clearance Applications

The mobile antenna that looks like a cellular telephone antenna! With preassembled 16-foot cable and PL-259 for fast, easy installation. Come in today and see our complete line of communications equipment and accessories. #21-991

Novice/General Exam Study Guides

Novice/General Exam Study Guides

19.95 Each

- Complete! Prepared by Gordon West, WB6NOA
- Two Self-Paced Code Cassettes Included
- Sample Test Questions And Answers
- Durable Molded Binders
- FCC Form 610 Included

Novice Class Exam Study Package. #62-2402
General Class Exam Study Package. #62-2404

IMPROVE YOUR STATION WITH THESE ACCESSORIES

Antenna Values

(1)	Antenna Wire. 70-ft., 14-gauge stranded copper wire
(2)	Insulators. Strong, low loss
(3)	Magnet Wire. For “hidden” antennas!

Computer Hookups

For computers, modems and packet-radio controllers.

<table>
<thead>
<tr>
<th>Fig</th>
<th>Description</th>
<th>Pin</th>
<th>Cat. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sub-Male</td>
<td>9</td>
<td>278-1327</td>
</tr>
<tr>
<td>2</td>
<td>Sub-Female</td>
<td>7</td>
<td>278-1328</td>
</tr>
<tr>
<td>3</td>
<td>Shielded Male</td>
<td>25</td>
<td>278-1353</td>
</tr>
<tr>
<td>4</td>
<td>Shielded Female</td>
<td>25</td>
<td>278-1353</td>
</tr>
</tbody>
</table>

Audio Connectors

(1)	8-Pin Mike Plug. #274-025, 2.19
(2)	Phone Adapter. 1/4" stereo jack, 1/8" mono plug. #274-348, 1.99
(3)	H-T Adapter. 1/4" stereo jack, 3/8" mono plug. #274-381, 1.99
(4)	H-T Mono Adapter. 1/4" jack, 1/8" plug. #274-328, 1.79

Connectors, Sealer

(1)	9V DC Adapter. #273-1652, 10.95
(2)	12V Regulated Power Supply. #22-120, 1.69
(3)	AC Line Cord. #272-1257, 3.99

High-Grade Coax

<table>
<thead>
<tr>
<th>Type</th>
<th>Cat. No.</th>
<th>Per Foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGB</td>
<td>278-1323</td>
<td>.40</td>
</tr>
<tr>
<td>RG6M</td>
<td>278-1326</td>
<td>.25</td>
</tr>
<tr>
<td>RG58</td>
<td>278-1326</td>
<td>.20</td>
</tr>
<tr>
<td>RG59</td>
<td>278-1327</td>
<td>.18</td>
</tr>
</tbody>
</table>

Power Accessories

(1)	9V DC Adapter. #273-1652, 10.95
(2)	12V Regulated Power Supply. #22-120, 1.69
(3)	AC Line Cord. #272-1257, 3.99

Extension Speaker

13.95

Really improves audio from mobiles, HTs and compact rigs. Rated 5 watts, 8 ohms. 10-ft. cord. 1/4" plug, adjustable metal bracket. #21-549

Radio Shack

The Technology Store®

Over 1000 parts in stock! Binding Posts, Books, Breadboards, Buzzers, Capacitors, Chokes, Clips, Coax, Connectors, Fuses, Hardware, ICs, Jacks, Knobs, Lamps, Multimeters, PC Boards, Plugs, Rectifiers, Resistors, Switches, Tools, Transformers, Transistors, Wire, Zeners, More!

Prices apply at participating Radio Shack stores and dealers
The variable voltage regulator (VVR) is a versatile and indispensable device for use on the workbench or in the shack. It lets you adjust the output voltage of a fixed DC power supply between 1.2 and 37 volts DC, and will supply output current in excess of 1.5 A. The circuit incorporates an LM117K three-terminal adjustable output, positive voltage regulator in a TO-3 can. Thermal overload protection and short-circuit current-limiting constant with temperature are included in the package. This device is almost blow-out proof!

Circuit description

The LM117K is a three-terminal floating regulator. During operation, the LM117K develops and maintains a nominal 1.25-volt reference (Vref) between its output and adjustment terminals. This reference voltage is converted to a programming current (Iprog) by R1 (refer to Figure 1), and this constant current flows through R2 to ground. The regulated output voltage is determined by:

\[V_{out} = V_{ref} \left(1 + \frac{R2}{R1}\right) + I_{adj} R2 \]

Capacitor C1 reduces sensitivity to input line impedance. Capacitor C2 reduces excessive ringing. Diode CR1 prevents C2 from discharging through the IC during an output short.

Construction notes

Any available enclosure will suffice for building the VVR. For my project, I installed the parts on a piece of aluminum scrap and attached ceramic standoffs (refer to Photo A and Figure 2). The circuit can be used in your own power supply, or even in a piece of equipment that requires tight regulation. Be creative!

When installing programming resistor R1, locate it as close to the regulator as possible to minimize line drops in operation, the LM117K develops and maintains a nominal 1.25-volt reference (Vref) between its output and adjustment terminals. This reference voltage is converted to a programming current (Iprog) by R1 (refer to Figure 1), and this constant current flows through R2 to ground. The regulated output voltage is determined by:

\[V_{out} = V_{ref} \left(1 + \frac{R2}{R1}\right) + I_{adj} R2 \]

Capacitor C1 reduces sensitivity to input line impedance. Capacitor C2 reduces excessive ringing. Diode CR1 prevents C2 from discharging through the IC during an output short.

Construction notes

Any available enclosure will suffice for building the VVR. For my project, I installed the parts on a piece of aluminum scrap and attached ceramic standoffs (refer to Photo A and Figure 2). The circuit can be used in your own power supply, or even in a piece of equipment that requires tight regulation. Be creative!

When installing programming resistor R1, locate it as close to the regulator as possible to minimize line drops.
Bottom view—VVR.

FIGURE 3

Typical test setup.

DO NOT MEASURE RESISTANCE OF R2 WITH VOLTAGE APPLIED TO V.V.R.

- LM117K (INSULATE FROM CHASSIS)
- C1 0.1μF
- C2 1μF
- R1 237Ω

VOLTAGE IN
VOLTAGE OUT

RES

TEST POINT JACKS

CERAMIC STANDOFF

VOLT METER

LOAD

POWER SUPPLY

RES

VOLT ADJ

DO NOT MEASURE RESISTANCE OF R2 WITH VOLTAGE APPLIED TO V.V.R.

- OHMMETER
HITACHI SCOPES AT DISCOUNT PRICES

<table>
<thead>
<tr>
<th>Model/Price</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V-212 $419</td>
<td>20MHz Dual Trace Oscilloscope</td>
</tr>
<tr>
<td>List $560</td>
<td>Save $141</td>
</tr>
</tbody>
</table>

20MHz Dual Trace Oscilloscope

All Hitachi scopes include probes, schematics and Hitachi's 3 year guarantee on parts and labor. Many accessories available for all scopes.

ELENCO PRODUCTS AT DISCOUNT PRICES

<table>
<thead>
<tr>
<th>Model/Price</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MO-1251 $359</td>
<td>20MHz Dual Trace Oscilloscope</td>
</tr>
<tr>
<td>Scope Probes</td>
<td>P-1 65MHz, 1x, 10x $19.95</td>
</tr>
<tr>
<td>P-2 100MHz, 1x, 10x $23.95</td>
<td>Fits all scopes with BNC connector</td>
</tr>
</tbody>
</table>

Digital Capacitance Meter

CM-1550 $58.95

9 Ranges

1.0pF-20000pF

2.5% Basic, Accy

Zero control with case

Digital LCR Meter

LC-1801 $125

Measures

Capacitance 1uH-200H

Inductance 1pH-200uH

Res 0.1-200M

AC Clamp-On Current Adapter

ST-265 $22

0-1000A AC

Works with most DMM

Bench DMMS

M-3500 $125

M-4500 $175

3/4 Digit Probe Type DMM

M-1900 $39

Convenient one hand operation

Measures DCV, ACV, Ohms

Audible continuity check. Data hold

with batteries and case

Decade Blox

9610 or $18.95

9620 $18.95

9610 Resistor Blox

47 ohm to 1M & 100k pot

9620 Capacitor Blox

47pF to 100nF

10MHz XT 100% IBM® Compatible

FREE spreadsheet and word processor

3.XXMS DOS and GW Basic add $75

15 Day Money Back Guarantee

2 Year Warranty

WRITE FOR FREE CATALOG

C & S SALES INC.

1245 Rosewood, Deerfield, IL 60015

(800) 292-7711 (312) 541-0710
CR1 1N4002 or equivalent
R1 237 ohm, 0.25 watt
R2 5000-ohm potentiometer, linear taper
C1 0.1-μF disc
C2 1.0-μF tantalum electrolytic, 100 volts
IC1 LM117K

MISCELLANEOUS
Enclosure, mounting plate, standoffs
Five-way binding posts (4)
Female test jacks (2)
TO-3 insulator kit

which may appear in series with the reference. The ground end of R2 can be returned near the load ground to provide remote ground sensing and improve load regulation. The test point jacks labeled "RES" are provided so you can measure the resistance of R2 when determining the value for a fixed resistor. This is necessary when designing regulator circuits for single fixed-voltage regulators.

Caution: Do not measure resistance at the "RES" test point jacks with voltage applied to the VVR! You will damage your ohmmeter!

Remember that Vout on the LM117K is the transistor case. Therefore, it must be carefully mounted and properly insulated from chassis ground.

Applications
As I mentioned earlier, the uses and applications for this simple, easy-to-build project are limitless. I have used it at my place of employment for designing fixed-voltage regulators. I use it on my workbench at home with an old military surplus 24-volts DC power supply to provide 12 and 5 volts DC for various projects. I have included the circuit in all of my portable QRP gear, and have built an outboard regulator which I use in the mobile to protect an IC-37A from surge damage. Refer to Figure 3 for a typical test-bench setup.

Parts availability
All of the components used in the VVR are readily available through Radio Shack retail outlets and most mail-order houses. I have assembled a VVR parts kit consisting of IC1, TO-3 insulator and mounting kit, C1, C2, CR1, R1, and R2 with instructions, diagrams, and schematic for $13.00 plus $2.00 shipping. Send a check or money order for immediate delivery.

Invitation to Authors
Ham radio welcomes manuscripts from readers. If you have an idea for an article you'd like to have considered for publication, send for a free copy of the ham radio Author's Guide. Address your request to ham radio, Greenville, New Hampshire 03048 (SASE appreciated).
COMMON-POINT GROUNDING:
LIGHTNING PROTECTION FOR REPEATERS

Practical tips
to minimize damage
at your repeater site

Peter J. Bertini, K1ZJH, 20 Patsun Road, Somers, Connecticut 06071

Any of us don’t worry about lightning until after it’s done some damage. It’s almost impossible to protect your equipment fully against a direct hit, but you can still take steps to avoid most lightning damage.

What is lightning?

Lightning can be compared to RF energy. This analogy may not be entirely accurate, but both share similar characteristics. Series impedance will hinder lightning’s path, just as it does RF. A recent article on lightning and commercial radio sites mentioned that a typical lightning strike could produce a 1000-volt differential between the top and bottom of a 6-foot communications rack! Resistance has little to do with it; it’s the result of the 1-μH inductance of an average rack frame. Every μH of inductance offers enough impedance (to lightning) to cause a 1000-volt drop. A lightning bolt can carry currents in excess of 60,000 A and hundreds of millions of volts.

Transverse and common mode

Transverse and common-mode voltages are two forms of foreign voltages that affect single-pair lines. The pair of wires in question could be the AC power line, the autotap phone line, or antenna feedline.

Transverse-mode voltage appears across the line. Spikes, transients, or other glitches imposed on AC line voltage fall into this category. Many hams use coaxial arresters on HF dipole antennas for transverse protection.

A common-mode voltage is one that is in phase (zero potential) across the wire pair; it’s measured from one or both wires to a third point. For example, imagine that lightning strikes the power lines outside your house on both sides of the line, simultaneously. Theoretically it’s possible that the line voltage would remain unaffected, while everything that’s plugged into it is suddenly millions of volts above earth ground!

Of course this doesn’t happen in real life. Both transverse and common-mode voltages will appear on antenna feedlines, power, or phone lines when hit by lightning. Our friendly HF'er, with his dipole and coaxial arrester, probably has a good earth ground tied into his station. He’s using forms of both common and transverse-mode protection, though he may not know it. (Sometimes common mode is referred to as longitudinal mode; transverse mode may also be called differential mode.)

Protective devices

Photo A shows AC surge suppressors often used by commercial and Amateur installations for AC power line protection. These are professional units, not to be confused with the low-cost variety sold in many stores. They contain gas discharge devices, MOVs, and fuses for transverse and common-mode protection. Telephone installers use something like the Cook Electric suppressor shown in Photo B.

Typical AC line protection device.
These units use high-voltage fuses and gas discharge devices to protect the customer's equipment.

A typical repeater station will have a good-quality surge suppressor installed at the AC outlet. There's also a phone company arrester at the service drop for the autopatch line. The repeater cabinet is well grounded, as well as the antenna tower. Everything's been done "by-the-book," but when lightning strikes two weeks later, the repeater suffers major damage! What went wrong?

Lightning looks for the shortest path

Here's what might happen when lightning strikes. Suppose telephone installers run 60 feet of ground wire between protection blocks and the nearest ground. Where's a lightning strike going to go after hitting the phone line? When it reaches the protection block, the lightning seeks the shortest path to ground. The phone company's ground gives some protection, but the rest heads for the well-grounded repeater! Maybe 5 percent of the charge makes it to the repeater, perhaps only a few thousand volts. It travels through the autopatch (poof!) and finally to ground.

Let's say there's a commercial base in the same building. His radio takes the hit, not yours. He has grounds and AC protection just like yours. He's also at the end of the AC leg feeding your repeater. Most of the strike is shunted to his base station grounds. What wasn't dissipated heads back towards the service entrance ground. The current races by your outlet, the suppressor fires, and the lightning finds the shortest path through your repeater power supply into that good earth ground you thoughtfully provided. When the gas arresters fired, all three AC leads — white, black, and ground — became one common ground path.

What about a lightning strike on the repeater antenna? There's a good ground at the tower base, and much of the current is dissipated there. The antenna hard line is bonded to the tower about two-thirds of the way down before leaving for the building. Several feet of ground wire connect the tower base to the ground rods. The tower has inductance, it acts like a voltage divider when the lightning strikes — and the coax is at the tap-off point! The coax offers some resistance to the lightning. Inside the building the equipment ground will dissipate most, but not all, of what's left. The rest finds a path back through the phone and power lines — after passing through your repeater.

Never provide the ground path

As these hypothetical cases illustrate, it's often easy to unwittingly give lightning a path through equipment you had intended to protect. Even the best ground offers limited protection; zero-inductance wire just hasn't been invented yet! Transverse protection is easy, but common-mode protectors need a low-impedance ground to work best. With a high-impedance ground, a transverse voltage can impinge upon the AC power lines' hot, neutral, and ground wires, becoming a common-mode hazard. That's why wall socket-mounted AC suppressors are often ineffective. The ground lead is too far removed from a real earth ground to deal with fast rise time transients.

We've done a lot of lightning protection work at our Soapstone Mountain repeater site in northern Connecticut. Two of our club repeaters share this site, where we have at least one lightning-induced outage every summer.

First, we ran the antenna hard-line cables down to the tower base and bonded them to the tower's grounding system. We sealed everything with 3M's Scotch-Kote™ to protect the aluminum coax from galvanic action. All our antennas' elements are at DC ground potential. Running the coax down the inside of the tower, instead of on an outside leg, might offer some additional protection. Because lightning acts like RF, the skin effect would minimize currents on cables inside the tower.

It's okay to have one ground rod at the tower base. But it's even better to drive additional ground rods several feet out from each tower leg, increasing the size of the ground field. Use heavy copper straps to bond the ground rods and tower legs together. Ground wires must be short; avoid sharp bends. Some Amateurs believe that grounds aren't needed if a tower is set in concrete. Don't fall for this old wives' tale!

Chemical ground rods work best. They are expensive — about $150 apiece. These rods are hollow pipes filled with a special chemical. Small holes along the pipe allow a small amount of chemical to leach into the soil, improving the ground conductivity.

Use the longest ground rods possible. Stay away from the kind sold at TV shops; they are too short to be of much use. Electrical supply dealers carry the larger sizes. Some mountaintop locations are rocky enough to prevent you from driving a ground rod. If you must, bury the rods horizontally in trenches laid out in "wheel spoke" fashion around the tower. Never add rock salt around the ground rods. The short-term benefits will soon be outweighed by the salt's corrosive action.

Multiple ground paths eliminated

Establishing the common-point ground: Our first step in establishing a common-point ground system was to remove all the earth grounding from the repeater racks. We mounted a 2 x 3-foot piece of plywood covered with copper roofing flashing on the wall near the ground wire entrance, and attached the ground wire to this surface (see Photo C). The better the earth ground, the better the common-point ground will work. Lightning arresters for the coax, phone line,
1.2M-1.5M PARABOLIC DISH FEED/DOWN CONVERTER to 2 Meters

- RCP, LCP, or Linear Polarization
- LNA – NF = 1.5dB, G = 20dB
- Preselector Filter – Machined 4-Pole Combiner
- Microstrip Mixer on high dielectric alumina
- Local Oscillator – Heater Stabilized = 2ppm for CW/SSB
- Down Converter mounted in feed assembly for optimum performance

Frequency available: 1.269-1.691 GOES WX – 2.304-2.400 OSCAR Mode-S – 3.456GHz

- Feed Down Converter Assemblies are interchangeable in common feed mount.
- 1.2 Meter or 1.5 Meter Spun Aluminum Dish has mount hardware for 1.5” mast.
- Feed Antenna has +5dB Gain

PRODUCT PRICE LIST

<table>
<thead>
<tr>
<th>Product Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
</tr>
<tr>
<td>RCP/LCP Feed Assembly, Type N connectors. Model WCFA-(freq)</td>
</tr>
<tr>
<td>Linear Polarized Feed Assembly, Type N Conn. Model WLFA-(freq)</td>
</tr>
<tr>
<td>1.2 Meter Spun Aluminum Dish with mount hardware WUDA-1.2M</td>
</tr>
<tr>
<td>1.5 Meter Spun Aluminum Dish with mount hardware WUDA-1.5M</td>
</tr>
<tr>
<td>LNA – 2 stage GaAsFET, NF = 1.5dB, G = 20dB, SMA Conn. WLNIA-(freq)</td>
</tr>
<tr>
<td>Preselctor Bandpass Filter, Machined 4-Pole Combiner, SMA conn.</td>
</tr>
<tr>
<td>Tripod Feed Mount – accepts all feeds. Model WFTFM</td>
</tr>
<tr>
<td>Microstrip Mixer – Thick Film, Machined Housing WMIFM</td>
</tr>
<tr>
<td>Local Oscillator – Heater Stabilized, Thick Film, WHL0-(freq)</td>
</tr>
<tr>
<td>(Specify frequency: 1.55GHz, 2.125GHz, 2.312GHz)</td>
</tr>
<tr>
<td>Complete Feed Down Converter to 2 Meters, Mode,WDFC-(freq)</td>
</tr>
<tr>
<td>(Specify frequency, feed type. Other IF’s available. GOES : 137.5MHz)</td>
</tr>
<tr>
<td>Complete Dish Feed Down Converter Assembly</td>
</tr>
<tr>
<td>1.2 Meter Dish, Model WDDC-1.2-(freq)</td>
</tr>
<tr>
<td>1.5 Meter Dish, Model WDDC-1.5-(freq)</td>
</tr>
</tbody>
</table>

All Products Shipped UPS except Parabolic Dish shipped by Truck – Freight Collect

Wilmanco
191098 BUSINESS CENTER RD. • NORTHROCK, CA 91324 U.S.A.
TELEX 3120799712 - (818) 951-1562 - (818) 983-5430

Look at our MOBILE MARK™
“ON WINDOW” Line

VHF
(140-175)
- No Hole
- Easy to Mount
- Rugged
- Superior Performance
- Radiator Snaps On and Off
- Competitively Priced

UHF
(420-520)
- 3 db gain
- No Hole
- Easy to Mount
- Rugged
- Superior Performance
- Radiator Snaps On and Off
- Competitively Priced

MODEL OW 3-150
140-174 MHz
MODEL OW 3-220
210-250 MHz
- 3 db gain
- No Hole
- Easy to Mount
- Rugged
- Superior Performance
- Swivel Vertical Adjustment
- Radiator Removal Without Loss of Vertical Adjustment
- Competitively Priced

MOBILE MARK, INC.
COMMUNICATIONS ANTENNAS
3900-B River Road
Schiller Park, IL 60176
312-471-4669

brings imagination and innovation to antennas ... and has been since 1948!!

PHOTO C

Common-point grounding system installed at the Soapstone, Connecticut repeater site.

and AC power feed are all mounted on the copper flashing; their ground connections are fastened directly to this surface. This common grounding surface eliminates ground loops through the repeater equipment, and lets the suppressors deal with common-mode transients properly.

AC power line decoupling: The common-point ground is only the first step in isolating the repeater from lightning discharge ground loops. A heavy-duty 100-foot extension cord connects the repeater equipment to the AC line arrester at the common-point ground. The extension cord is wound into a large coil, forming a trifilar choke. The choke’s bulk impedance yields a poor return path for lightning through the repeater. A short extension cord is used between the AC arrester and the wall socket. A surge suppressor is used at the wall socket with another at the repeater rack for cascaded protection.

Phone line decoupling: Treat the phone line the same way as you would the AC power. We scramble wound a large choke on a 2-inch PVC pipe form using 100 feet of in-house telephone wire, and connected it between the arrester...
NYE Takes the fear out of full power antenna tuners, and the guesswork out of PEP measurement with these two MUST SEE PRODUCTS!!

MB-V-A

Discover this durably built, feature packed MB-V-A Antenna tuner. You'll find operating conveniences that make antenna tuning a snap and value engineered to do the job over wide operating ranges. Compare quality, features and the NYE VIKING TWO YEAR WARRANTY.

RFM-003

Get correct easy to read measurements of PEP for SSB, AM, and Pulse along with full time completely automatic SWR display with this unique Power Monitor System. Two models to choose from: The RFM-003 for 3KW indication and The RFM-005 for 5KW.

CHECK THE FEATURES:

- **PI Network.** Low Pass PI Network tuning 1.8-30 MHz. Heavy duty silver plated continuously variable inductor with 25.1 vernier dial. 7000 volt variable capacitor and 10,000y switch selected fixed capacitors on output side. Tunes 40-2000 ohms leads. Good Harmonic suppression.
- **Automatic SWR.** Hands free metering of SWR. No reset or calibration needed. Separate power meter - 300 or 3000 watts. Automatically switched. Easy to read 2 1/2" recessed and back-lit stacked dual band meters.
- **Antenna Switch.** Push BUTTON antenna switching to 4) antennas (2 coax single wire and twin lead). Coax bypassed on first coax output. We designed this switch to take the power. Rated at 10KV and 20 amps.
- **3 KW Balun.** Trilfer wound triple core toroidal gives balanced output to twin feeder from 200 to 1000 ohms and unbalanced output down to 20 ohms.
- **Maximum Power Transfer.** Match your transmitter output impedance to almost any antenna system for maximum power transfer. Amplifiers only run at their designed Q when properly matched.
- **Model Options.** MB-IV-A1 includes all MB-V-A features less antenna switch and balun. MB-IV-A2 is identical to MB-IV-A1 with the addition of a triple core balun.
- **1.8 MHz will not tune on some antennas.

- **(3) Modes.** Peak Average and Peak and Hold with a unique non-drift Sample & Hold Analog memory circuit.
- **(2) Ranges.** Automatically switched power scales to 5 KW.
- **Fully Automatic SWR.** Full time meter displays ratios directly without drift.
- **Built-in ALO.** Protect your amplifier tube investment with this fast acting lockout.
- **Remote Couplers.** Six feet remotes the interchangeable calibrated couplers.
- **True RMS Conversion.** H.F. couplers use forward biased full wave detection.
- **Rugged Construction.** Heavy gauge aluminum construction. Top quality glass epoxy PCB. This meter is built to last.
- **Accuracy.** Guaranteed to ± 5% F.S.
- **Warranty.** TWO FULL YEARS.
- **Added Features.** Switchable reverse power all mode metering — Full status LED Display — Adjustable ALO is switchable SWR/REFL power. Heavy duty Nicad batteries charged by the applied RF for the field and a charger is supplied for fast charging and backlighting of the taut band meters for the ham shack.

OTHER NYE VIKING PRODUCTS

Phone Patches — Electronic and Memory Keyers — Squeeze Keys — Straight Keys — Code Practice Sets — SWR Wattmeter for the blind — Low Pass Filters — All Band Antennas and more...

ASK FOR A FREE FULL LINE CATALOG.

TO ORDER, CALL YOUR FAVORITE DEALER

Amateur Electronic Supply
Ham Radio Outlet
Henry Radio
Madison Electronics
EGE
R & L Electronics
rf enterprises
Barry Electronics

C-Comm
Ross Distributing
Quement Electronics
LaCue Communications
Ham Station

In Europe: Kneisner & Doering,
Braunschweig, W-Germany

Wm. M. Nye Co. Inc.
1614 130th Ave. N.E.
Bellevue, WA 98005
TEL: (206) 454-4524
FAX: (206) 453-5704
MICROWAVE MODULES EQUIPMENTS
Use your existing HF or 2M rig on other VHF or UHF bands.

RECEIVE CONVERTERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMc 144-28</td>
<td>$290</td>
<td></td>
</tr>
<tr>
<td>MMc 220-28</td>
<td>$310</td>
<td></td>
</tr>
<tr>
<td>MMc 435-28</td>
<td>$399</td>
<td></td>
</tr>
<tr>
<td>MMk 1296-144G</td>
<td>$499</td>
<td></td>
</tr>
</tbody>
</table>

LINEAR TRANSVERTERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMc 144-28</td>
<td>$290</td>
<td></td>
</tr>
<tr>
<td>MMc 220-28</td>
<td>$310</td>
<td></td>
</tr>
<tr>
<td>MMc 435-28</td>
<td>$399</td>
<td></td>
</tr>
<tr>
<td>MMk 1296-144G</td>
<td>$499</td>
<td></td>
</tr>
</tbody>
</table>

ANTENNAS

137 Wx: 5XY-137 $90
100% Harness

2M: 10XY-2M $85
20% Harness

70 cm: 70MBM28 $65
70MBM48 $95
70MBM88 $135
900 MHz: DY20-900 $89

LOOP YAGIS

1296-LOY $65
1296-LOY $75

Satellite TV is still full of the wonderment that made it so popular in the early '80s. The tinkerers are there, the programming is there, and never has the cost of becoming a dish owner been so low.

So, how do you find out about this exciting entertainment?

Through publications devoted specifically to satellite TV, that's how!

America's Weekly Guide To Satellite TV
OnSat is unsurpassed for the most up-to-date listings of satellite programming. Dr. Dish, Mailbag, and the Transponder Service Watch are all geared to help you make the best use of your satellite TV system. A sample issue can be obtained for only $1.

The Complete Monthly Guide To Satellite TV
STV Guide contains over 300 pages of programming information, product reviews, home troubleshooting, and information about satellite TV. A sample issue can be obtained for only $2.

Both OnSat and STV Guide contain listings for over 120 channels and Prime Time Grids for over 50 channels. Subscribe to either the weekly OnSat or the monthly STV Guide for only $48 per year.

To start receiving the best in satellite TV guides and information, call toll-free (800) 234-0021. VISA and MasterCard accepted.

STV Guide/OnSat
PO Box 2384 • Shelby, NC 28151-2384

DATACOM, INT.
8081 W. 21ST LANE
HIALEAH, FL 33016
AREA CODE (305) 622-6028
(mounted on the common ground point) and the repeater. We used the Cook electric model 600 arrester here.

Coax cable decoupling: Fifty feet of low-loss Belden 9913 coax wound into a coil serve as the antenna choke. Use this between the repeater and the coaxial arrester on the common-point ground.

We placed the arresters mounted on the repeater rack close together to limit induced currents through the rack frame. This is a duplication of the common-point ground, except that no earth ground is attached at the repeater cabinet. If the rack is sitting on a concrete floor, file or not, it should be raised on wooden two-by-fours to lower capacitive ground coupling.

Loose ends

Try to keep everything in one rack; two racks invite multiple ground paths. All racks must be firmly bonded together. Rack interconnections can be protected with chokes or transducers. The relays can be driven by open-collector outputs before the signal lines leave the rack. Audio transformers in series with audio signal leads going between cabinets will give common-mode isolation and stop ground loops between racks.

Our lightning problems were caused by ground loops between the racks housing our two repeaters. The two controllers were tied together to allow cross control between the two systems. A good lightning hit usually knocked out a few driver chips and both processors. While it might take only about an hour to effect repairs, the processor chips with their piggybacked programmed EPROMs would cost us $150 each!

Finding good protective equipment may be a problem. PolyPhaser Corporation* carries a wide line of lightning protection devices similar to the ones shown and mentioned here. They also offer a 10 percent Amateur discount, and give Amateurs dealer rates on orders over $240.

*PolyPhaser Corporation, 1425 Industrial Way, P.O. Box 1237, Gardnerville, Nevada 89410-1237
ASTRON POWER SUPPLIES

- **HEAVY DUTY • HIGH QUALITY • RUGGED • RELIABLE**

SPECIAL FEATURES
- SOLID STATE ELECTRONICALLY REGULATED
- FOLD-BACK CURRENT LIMITING Protects Power Supply from excessive current & continuous shorted output
- CROWBAR OVER VOLTAGE PROTECTION on all Models except RS-3A, RS-4A, RS-5A.
- MAINTAIN REGULATION & LOW RIPPLE at low line input Voltage
- HEAVY DUTY HEAT SINK • CHASSIS MOUNT FUSE
- THREE CONDUCTOR POWER CORD
- ONE YEAR WARRANTY • MADE IN U.S.A.

PERFORMANCE SPECIFICATIONS
- INPUT VOLTAGE: 105-125 VAC
- OUTPUT VOLTAGE: 13.8 VDC ± 0.05 volts (Internally Adjustable: 11-15 VDC)
- RIPPLE Less than 5mv peak to peak (full load & low line)
- Also available with 220 VAC input voltage

RM SERIES

19" x 5¼ RACK MOUNT POWER SUPPLIES

<table>
<thead>
<tr>
<th>Model</th>
<th>Continuous Duty (Amps)</th>
<th>ICS (Amps)</th>
<th>Size (IN) H x W x D</th>
<th>Shipping Wt (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-12A</td>
<td>9</td>
<td>12</td>
<td>5 1/4 x 9 x 8 1/4</td>
<td>16</td>
</tr>
<tr>
<td>RS-35A</td>
<td>25</td>
<td>35</td>
<td>5 1/4 x 12 1/2</td>
<td>38</td>
</tr>
<tr>
<td>RS-50A</td>
<td>37</td>
<td>50</td>
<td>5 1/4 x 12 1/2</td>
<td>50</td>
</tr>
</tbody>
</table>

- Separate Volt and Amp Meters

<table>
<thead>
<tr>
<th>Model</th>
<th>Continuous Duty (Amps)</th>
<th>ICS (Amps)</th>
<th>Size (IN) H x W x D</th>
<th>Shipping Wt (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM-12M</td>
<td>9</td>
<td>12</td>
<td>5 1/4 x 9 x 8 1/4</td>
<td>16</td>
</tr>
<tr>
<td>RM-35M</td>
<td>25</td>
<td>35</td>
<td>5 1/4 x 12 1/2</td>
<td>38</td>
</tr>
<tr>
<td>RM-50M</td>
<td>37</td>
<td>50</td>
<td>5 1/4 x 12 1/2</td>
<td>50</td>
</tr>
</tbody>
</table>

RS-A SERIES

<table>
<thead>
<tr>
<th>Model</th>
<th>Continuous Duty (Amps)</th>
<th>ICS (Amps)</th>
<th>Size (IN) H x W x D</th>
<th>Shipping Wt (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-3A</td>
<td>2.5</td>
<td>3</td>
<td>3 3/8 x 6 1/2 x 9</td>
<td>5</td>
</tr>
<tr>
<td>RS-4A</td>
<td>3</td>
<td>4</td>
<td>3 3/8 x 6 1/2 x 9</td>
<td>5</td>
</tr>
<tr>
<td>RS-5A</td>
<td>4</td>
<td>5</td>
<td>3 3/8 x 6 1/2 x 9</td>
<td>7</td>
</tr>
<tr>
<td>RS-7A</td>
<td>5</td>
<td>7</td>
<td>4 7/16 x 10 1/16</td>
<td>9</td>
</tr>
<tr>
<td>RS-10A</td>
<td>7.5</td>
<td>10</td>
<td>4 7/16 x 10 1/16</td>
<td>11</td>
</tr>
<tr>
<td>RS-12A</td>
<td>9</td>
<td>12</td>
<td>4 7/16 x 10 1/16</td>
<td>13</td>
</tr>
<tr>
<td>RS-12B</td>
<td>9</td>
<td>12</td>
<td>4 7/16 x 10 1/16</td>
<td>13</td>
</tr>
<tr>
<td>RS-20A</td>
<td>16</td>
<td>20</td>
<td>5 9 x 10 1/2</td>
<td>18</td>
</tr>
<tr>
<td>RS-35A</td>
<td>25</td>
<td>35</td>
<td>5 11 x 11 1/16</td>
<td>27</td>
</tr>
<tr>
<td>RS-50A</td>
<td>37</td>
<td>50</td>
<td>6 13 x 11 1/16</td>
<td>46</td>
</tr>
</tbody>
</table>

RS-M SERIES

<table>
<thead>
<tr>
<th>Model</th>
<th>Continuous Duty (Amps)</th>
<th>ICS (Amps)</th>
<th>Size (IN) H x W x D</th>
<th>Shipping Wt (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-12M</td>
<td>9</td>
<td>12</td>
<td>4 1/2 x 8 x 9</td>
<td>13</td>
</tr>
<tr>
<td>RS-20M</td>
<td>16</td>
<td>20</td>
<td>5 9 x 10 1/2</td>
<td>18</td>
</tr>
<tr>
<td>RS-35M</td>
<td>25</td>
<td>35</td>
<td>5 11 x 11 1/16</td>
<td>27</td>
</tr>
<tr>
<td>RS-50M</td>
<td>37</td>
<td>50</td>
<td>6 13 x 11 1/16</td>
<td>46</td>
</tr>
</tbody>
</table>

VS-M AND VRM-M SERIES

<table>
<thead>
<tr>
<th>Model</th>
<th>Continuous Duty (Amps)</th>
<th>ICS (Amps)</th>
<th>Size (IN) H x W x D</th>
<th>Shipping Wt (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VS-12M</td>
<td>9</td>
<td>12</td>
<td>4 3/8 x 8 x 9</td>
<td>13</td>
</tr>
<tr>
<td>VS-20M</td>
<td>16</td>
<td>20</td>
<td>5 9 x 10 1/2</td>
<td>20</td>
</tr>
<tr>
<td>VS-35M</td>
<td>25</td>
<td>35</td>
<td>5 11 x 11 1/16</td>
<td>29</td>
</tr>
<tr>
<td>VS-50M</td>
<td>37</td>
<td>50</td>
<td>6 13 x 11 1/16</td>
<td>46</td>
</tr>
</tbody>
</table>

RS-S SERIES

<table>
<thead>
<tr>
<th>Model</th>
<th>Continuous Duty (Amps)</th>
<th>ICS (Amps)</th>
<th>Size (IN) H x W x D</th>
<th>Shipping Wt (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-7S</td>
<td>5</td>
<td>7</td>
<td>4 7/16 x 10 1/16</td>
<td>10</td>
</tr>
<tr>
<td>RS-10S</td>
<td>7.5</td>
<td>10</td>
<td>4 7/16 x 10 1/16</td>
<td>12</td>
</tr>
<tr>
<td>RS-12S</td>
<td>9</td>
<td>12</td>
<td>4 7/16 x 10 1/16</td>
<td>13</td>
</tr>
<tr>
<td>RS-20S</td>
<td>16</td>
<td>20</td>
<td>5 9 x 10 1/2</td>
<td>18</td>
</tr>
</tbody>
</table>
Ham Radio
Techniques

Bill Orr, W6SAI

Have you met SID?

Nice to have 10 meters active again! The "Bad Old Days" of 1984 to '87, when DX deserted 28 MHz, have faded into the recesses of my mind. Now the band is jumping, except for a few hours now and then when it seems as if somebody has cut the coax to my antenna. I wonder where the signals have gone. Are they gone for good? No! In a few hours the band comes slowly back to life. I have met SID before! I remember him from 20 meters, and here he is once again!

SID (sudden ionospheric disturbance) is a period of time when HF communications are blacked out during daylight hours by abnormally high signal absorption in the D-layer region of the ionosphere. This condition of high absorption may last anywhere from a few minutes to several hours.

The absorption is caused by a solar flare. The flares seem to follow the same 11-year cycle as the sunspots. This means there are more flares and SIDs during a period of high sunspot activity than during a period of low activity. There were only five SIDs during 1944, a year of minimum solar activity. During 1947, a year of maximum solar activity, there were 121 SIDs. It looks as if this figure will be exceeded in 1989.

Figure 1 shows examples of a SID. This recording was taken by Steve Barnes, KH6SB, of the National Oceanographic and Atmospheric Administration (NOAA) at their Ionospheric Station in Maui, Hawaii. It's a record of the strength of the 5-MHz signal of WWV in Colorado on November 13, 1988, as read on the Y-axis. The X-axis represents time and reads from right to left, starting at 2030 UTC. The energy from a solar flare which took about 8.3 minutes to reach the earth occurred at about 2100 UTC. The ultraviolet energy in the flare bombarded the D-layer of the ionosphere, heating it and increasing radio wave absorption. The immediate result was a short-wave fadeout.

The 2300 UTC SID

The 2100 UTC fadeout lasted for about an hour and was followed by a second SID, which caused another fadeout starting at 2300 UTC. This fadeout was slightly shorter in duration than the first one. In each case, the onset of the fadeout was quite rapid and the recovery was somewhat slower. Each time, the received signal dropped into the noise level.

Simultaneous recordings of WWV on 5, 10, 15, and 20 MHz reveal that the fadeout is less severe and shorter in duration as the frequency rises. Thus, the fadeout is more pronounced on the 80 and 40-meter bands, somewhat less severe on 20 meters, and minimal on 15 meters. In many cases, 15 and 10 meters are only slightly affected. A more severe SID can cause 15 and 10 meters to drop out, in addition to the lower bands.

A SID early-warning receiver

Steve has a quick and easy SID-alert scheme. He suggests you monitor WWV on several frequencies. Radio Shack weather receiver model 12-148 covers 5, 10, and 15 MHz at the touch of a key. Steve added a short antenna to the receiver and set it on 5 MHz. He runs it at low volume in his ham shack. If 5 MHz drops out, he hits the

Figure 1

Recording of signal strength of WWV (5 MHz) taken at Maui, Hawaii, November 13, 1988. About 2100 UTC signal strength drops abruptly, signifying start of SID. Ionospheric effect remains for about an hour, then the signal builds back to normal level. Shortly before 2300 UTC a second SID occurs which lasts approximately 50 minutes.
be closed, but the path from California to North Africa may be open as the Great Circle route of the latter path skirts the edge of the auroral zone.

Beating the odds

As the sunspot cycle rises, SID and PCA events increase. However, it's possible for the serious DXer to "beat the odds" during these happenings. The SID blackout is relatively short in duration and may be avoided if you increase the operating frequency. The PCA creates ionization in the D-layer and absorption is less on the lower frequencies. Going from 21 to 7 MHz may do the job. If all else fails, and the bands are dead, sit down and read a good book!

Goin' up, lookin' good

How goes sunspot cycle 22 (the present one) as compared with cycle 21? One way to judge cycle progress is to observe ionospheric reflection. Ionospheric stations do this by transmitting a pulsed signal vertically to the ionosphere. The frequency of the signal is swept between 3 and 20 MHz and the reflected return pulse is monitored. The maximum reflected frequency for a vertical incident wave is about one-third the maximum usable frequency (MUF), at Maui. Thus, if the highest reflected frequency of the

<table>
<thead>
<tr>
<th>Month</th>
<th>F0F2 (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAN</td>
<td>6.90</td>
</tr>
<tr>
<td>JUL</td>
<td>7.84</td>
</tr>
<tr>
<td>MAR</td>
<td>8.49</td>
</tr>
<tr>
<td>SEP</td>
<td>8.40</td>
</tr>
<tr>
<td>APR</td>
<td>9.28</td>
</tr>
<tr>
<td>OCT</td>
<td>8.62</td>
</tr>
<tr>
<td>MAY</td>
<td>8.76</td>
</tr>
<tr>
<td>NOV</td>
<td>8.06</td>
</tr>
<tr>
<td>DEC</td>
<td>8.59</td>
</tr>
</tbody>
</table>

Comparison of F0F2 for sunspot cycles 21 and 22. The two cycles are superimposed on one graph. The X-axis shows years in cycle 22. The Y-axis represents deviation from average monthly value of F0F2. Zero value on graph is determined from Table.

The SID at VHF

In the 50-MHz region, radio signals can be propagated over long distances by ionospheric scatter occurring mainly in the D-layer. During a SID, D-layer ionization increases and 6-meter scatter signals are enhanced — sometimes by as much as 9 dB. Six-meter DX may be jumping while the lower bands are useless. So each SID seems to have a silver lining (at least for the 50-MHz operators).

Polar cap absorption

Polar cap absorption (PCA) takes place in the higher latitudes and may last up to five or six hours. It's usually preceded by a major solar flare which seems to ionize solar protons in the D-layer. The PCA appears one or two hours after the flare and lasts anywhere from a day to nearly two weeks. Since the PCA is associated with a solar flare, it's tied in closely with the sunspot cycle — the higher the sunspot number, the greater the number of PCA events.

The PCA can lower the MUF and boost the lowest usable frequency (LUF) simultaneously, narrowing the usable frequency spectrum. A breakup in the ionospheric layers often accompanies the PCA event, creating "auroral flutter." This flutter is very noticeable on SSB contacts.

DX contacts over the pole (United States to Europe) are difficult to make during a PCA. For example, the path between California and Europe may
Hi PRO
VHF-UHF Repeaters

Superior receiver and transmitter specifically designed for repeater service.

Adjustable transmitter power, from 1 to 25 watts minimum output with extremely cool operation.

Automatic battery back up system capability with battery charging and reverse polarity protection.

now with a full compliment of indicators and status lights.

100% duty cycle—Advanced repeater squelch
no chopping, popping, or annoying repeater key ups during lightning storms.

Die cast aluminum R.F. enclosures—Small size 5½ x 19 x 13"—High quality long life design.

Amateur discounts available

Hi Pro Receivers

Features:
- High sensitivity
- Superior rejection
- Double sided mil spec G-10 fiberglass boards
- Extremely stable operation
- Excellent adjacent channel rejection
- Squelch circuit designed for critical repeater use
- Small size
- Choice of passbands
- Wide selection of frequency ranges
- Separate open collector C/Q output
- Separate tone control squelch input
- Separate tone control output
- Discriminator meter output
- Signal level meter output
- Multi channel capability: Up to 6 channels
- Multiple Voltage Regulation
- Available with precision grade high stability crystal
- Selectable CDS: High or low output
- 1 year warranty

Specifications:
- Sensitivity: 12 dB Snr (EIA Method) 0.25 uV
- Selectivity: EIA two signal method
- Standard: 15 kHz -80 dB
- Optional Narrow: 15 kHz -100 dB
- Frequency Response: 85 dB
- Intermodulation: 70 dB
- Modulation Acceptance: Standard -60 kHz
- Narrow -50 kHz
- Squelch Sensitivity: 0.16 to 0.20 uV
- Frequency Response: 2 to 3 dB at 6 dB/octave
- Audio Output: (to 8 ohm speaker) 20 watts max
- 5% distortion at 15 watts max
- R.I. input impedance: 50 ohms
- Frequency Range: VHF 130-150 MHz, 144-175 MHz, 220-250 MHz
- UHF 406-450 MHz, 450-490 MHz
- Operating Voltage: -11 to +14.5 V.D.C.
- Current: 90 mA nominal squelched
- Size: 3 x W x 6 1/2 x H
- Duty Cycle: 100% at 60 C
- Operating Temp. Range: 30 C to 60 C

Maggiore Electronic Laboratory
600 Westtown Rd., West Chester, PA 19382

Ask about our computer control system, and microcontrol auto patch, and repeater kits.

Write or call for our complete catalog

Ham Radio July 1989 33
pulse is 10 MHz, the MUF is about 30 MHz. You can observe the reflected signal on an oscilloscope and record it on a tape.

The average monthly value of the signal reflected from the F-layer has been observed for many years. The easiest way to get a quick fix on F2 reflection is to plot the deviation in MHz from the average monthly value for each month. This has been done for you in Figure 3. The zero point on the X-axis changes each month, according to the chart on the graph. For example, the chart shows that in January 1983 the average monthly value of the F2 maximum frequency of reflection ($F_{0}F_2$) was 6.97. The measured value of $F_{0}F_2$ during January 1983 deviated from that figure by +2.4 MHz, as read on the Y-axis of the graph. The actual value of $F_{0}F_2$ for cycle 22 was 6.97 + 2.4, or 9.37 MHz. The MUF was about three times this figure, or 28.11 MHz.

For cycle 21, the deviation from the average monthly value during January was -0.4 MHz. The value of $F_{0}F_2$ was 6.97 - 0.4, or 6.57 MHz. The MUF was three times this value, or 19.71 MHz.

Where we stand now

The most recent ionospheric observation plotted was for February 1989. The zero point on the graph for February (from the table in Figure 3) is 7.67 MHz. The deviation is +3.12 MHz, giving an incident reading of 10.87 MHz. The MUF accordingly is 32.61 MHz for that month.

Remember that Hawaii is closer to the equator than the mainland and the MUFs are much higher in that part of the world.

Cycle 22 plots a tantalizing course. As of February 1989 it seems to be running ahead of old cycle 21. You can see that cycle 21 "topped out" at deviations of +3 to +3.7. It never reached a deviation of +4. If by chance a deviation of +4 is noted for April 1990 (where the average monthly value of $F_{0}F_2$ is 9.28), the incident measurement would be 13.28 MHz, giving a MUF value of 39.8 MHz.

A quick look at the graph shows that chances of the MUF reaching 50 MHz are slim. But F2 skip has been recorded on 50 MHz in the past! The next six months will give a good indication as to where the MUF is heading. Do you want to place your bets now? I'd place my money on the spring or fall of 1989, 1990, and 1991!

The record cycle of 1958

Cycle 19 is the highest sunspot cycle on record; the deviation reached +4.4 during early 1958 with a smoothed sunspot number of 200. During March of that year a new 50-MHz DX record was established when JA6FR in Japan worked LU9MA, LU3EX, and LU2EW in Argentina. About the same time, K6OBO worked LU8AE and LU9EV. Shortly thereafter, 50-MHz DXers in California filled their log books with JA and LU stations, in addition to other South and Central American stations.

By the fall DX season, East Coast stations were working Rhodesia in Africa, South America, and European stations in Sweden, Norway, and Ireland. I'm sure these DX records will be broken during this coming cycle!

More on tilt-over towers

My remarks about tilt-over towers in the May column brought some interesting letters. Cal Hoerneman, W4OTS, provided interesting pictures of his freestanding, 50-foot, tilt-over tower (Photos A, B, and C). At the top of the tower he has a rotor, a TA-33 tri-band beam, and an 11-element 2-meter array. The tower has been up for eight years with no problems.

The tower is mounted to a finned ground post set in cement. A local welder constructed the tower out of iron pipe. The bottom section is filled with steel bars to act as a counterweight. The hoist is the type used to lift a boat onto a trailer.

Looking up the 50-foot high tilt-over tower at W4OTS. Tribander, 2-meter beam and rotor are mounted atop a circular metal plate welded to the top of the tower. Tower also supports center-fed inverted-V for 75 meters.

Closeup of ground post and base of mast. Winch is mounted to side of post. Tower was designed following data provided by Bob Haviland, W4MB. *If it's rebar it's for mechanical strength in concrete, not counterweight.*
HOW TO TURN YOUR AMATEUR OPERATION AROUND.

Simply choose an antenna rotator/controller combination from Yaesu.
Each is built tough with rugged, melamine-coated, die-cast casings and heavy-duty components. Permanently lubricated for long life and low maintenance.

Plus, Yaesu antenna rotator/controllers offer something the rest seem to neglect: a high-tech approach to design and tower mounting compatibility.

Az-E. ROTATORS FOR SPACE APPLICATIONS.

Our G-5400B and heavy-duty G-5600B are the industry standard for satellite and moonbounce work. For maximum turning torque, each mounts separately with the azimuth rotator inside the tower. And if you're using computer control, you'll find our external computer control facility is supported by readily-available software.

Plus for adding elevation control to an existing system, our G-500A elevation rotator is the perfect choice. It's a great way to add satellite capability to your HF system.

ANTENNA ROTATORS FOR YOUR APPLICATION.

Our G-1000SDX, G-800SDX/S, and G-400RC models are popular for heavy to light-duty applications. Each features a 360° “radio compass” control head with illuminated display. Our 1000SDX and 800SDX also offer 450° range, presets, and variable speed control. Disc brakes, smooth and quiet, eliminate the neighbor-disturbing “thunk!” of traditional wedge brakes. And accessories include thrust bearings and lower mast brackets, each in two sizes.

Want more information? Call (800) 999-2070 toll-free.

Or ask your dealer about Yaesu Az-E. rotators and antenna rotators today. They'll turn your operation around.

YAESU USA 17210 Edwards Road, Cerritos, California 90701. (213) 404-2700. **REPAIR SERVICE:** (213) 404-4884. **PARTS:** (213) 404-4847.

Prices and specifications subject to change without notice.
No other repeaters or controllers match Mark 4 in capability and features. That's why Mark 4 is the performance leader at amateur and commercial repeater sites around the world. Only Mark 4 gives you Message Master™ real speech! voice readout of received signal strength, deviation, and frequency error • 4-channel receiver voting • clock time announcements and function control • 7-helicoidal filter receiver • extensive phone patch functions. Unlike others, Mark 4 even includes power supply and a handsome cabinet.

Call or write for specifications on the repeater, controller, and receiver winners.

MICRO CONTROL SPECIALTIES
Division of Kendecom Inc.
32 Elm Park, Groveland, MA 01834 (508) 372-3442

MICRO CONTROL SPECIALTIES
Division of Kendecom Inc.
23 Elm Park, Groveland, MA 01834 (508) 372-3442

THE MULTIPLE RECEIVER SOLUTION

4 Channel Signal-to-Noise Voter
• Expandable to 32 Channel by Just Adding Cards
• Continuous Voting
• LED Indicators of OR and Voted Signals
• Built-in Calibrator
• Remote Voted Indicators Printed Out
• 4½ x 6 Double Sided Gold Plated 44 Pin Card
• Remote Disable Inputs
• MORE
Built, tested and calibrated with manual
$350.00

Telephone interface now available
For more information call or write:
DOUG HALL ELECTRONICS
Voter Department
815 E. Hudson Street
Columbus, Ohio 43211
(614) 261-8871

THE RF CONNECTION
"SPECIALIST IN RF CONNECTORS AND COAX"

THE RF CONNECTION
213 North Frederick Ave. #11
Gaithersburg, MD 20877
(301) 840-5477

IF YOU BUY, SELL OR COLLECT OLD RADIOS, YOU NEED...
ANTIQUE RADIO CLASSIFIED
Antique Radio's
Largest-Circulation
Monthly Magazine
FREE SAMPLE COPY!
Classifieds - Ads for Parts & Services
Articles - Auction Prices-Flea Market Info.
Also: Early TV, Ham Equip., Books, Telegraph,
Art Deco, 40's & 50's Radios & more...
Free 20-word ad each month. Don't miss out!
6-Month Trial - $11.
1-Year: $19 ($28 by 1st Class)
Foreign by air: Canada: $30; Mexico: $28; Other: $55.
A.R.C., P.O. Box 2-A4, Carlisle, MA 01741

THE RF CONNECTION
213 North Frederick Ave. #11
Gaithersburg, MD 20877
(301) 840-5477

THE RF CONNECTION
213 North Frederick Ave. #11
Gaithersburg, MD 20877
(301) 840-5477

THE REST OF THE WORLD
301-840-5477

"THIS LIST REPRESENTS ONLY A FRACTION OF OUR HUGE INVENTORY"

THE RF CONNECTION
213 North Frederick Ave. #11
Gaithersburg, MD 20877
(301) 840-5477

THE RF CONNECTION
213 North Frederick Ave. #11
Gaithersburg, MD 20877
(301) 840-5477

THE RF CONNECTION
213 North Frederick Ave. #11
Gaithersburg, MD 20877
(301) 840-5477

THE RF CONNECTION
213 North Frederick Ave. #11
Gaithersburg, MD 20877
(301) 840-5477
Cal notes that the basic information for building a tilt-over tower was discussed by Bob Haviland (ex-W3MR, now W4MB) in the September 1974 issue of Ham Radio magazine. Sure enough! When I found the article, I immediately recognized its value and asked if it could be rerun in this issue.*

The article was 15 years ahead of its time and any Amateur interested in building a tilt-over tower should read it. Thanks to Ralph Fowler, N9C; Phil Dejarlais, W0JH; and Lloyd Hanson, W9YCB, who also provided information on their towers.

MINIPROP 3.0 propagation program

Sheldon Shallon, W6EL, sent me a "floppy" of his MINIPROP program. It's not based on the older MINIMUF, but on a method developed by the British Broadcasting Corporation (BBC) for predicting MUF. The program extends the predictions to forecast signal levels, take-off angle for the mode, and the percentage probability that the transmission mode exists. It also provides MUF, beam headings for the path, path length, sunrise and sunset times for the path, gray line directions, and more. All of this data is projected for both long and short-path openings.

MINIPROP was used successfully by NOAA to schedule communications with its ozone hole measurement team in the Antarctic.

This program supercedes MINIPROP 2.0. It's designed for use with an IBM PC, XT, AT, PS/2, or true compatible with 320K memory, one floppy (5-1/4 inch) or microfloppy (3-1/2 inch) drive, and PC-DOS or MS-DOS 2.11 (or later version). An 80-column monitor is required. An 8087, 80287, or 80387 math co-processor is strongly recommended, but not required.

Contact W6EL Software, 11058 California, Los Angeles, California 90034-3029 for complete information.

*Don El Ed
DESIGN DATA
FOR PIPE MASTS

Design your own
antenna mast
using steel pipe

By R. P. Haviland, W4MB, 1035 Green Acres Cir-
cle N., Daytona Beach, Florida 32019

One of the best materials available for building self-
supporting antenna masts is steel pipe. It is widely
available, uniform in quality, and reasonable in
price. A well-designed mast is adequately strong, neat and
attractive, and relatively light weight. And, using steel pipe,
it's not too difficult to design a fold-over mast which allows
all antenna work to be done at ground level. Even main-
tenance on the mast itself does not require work at any great
height.

However, attaining all of these advantages does require
some design work. This is particularly important for safety.
The purpose of this article is to present a set of design
curves which will give a safe and satisfactory design, while
using the minimum of material.

Construction

The general construction of a typical fold-over pipe mast
is shown in Figure 1. At the top are the antenna and rota-
tor, carried by the smallest size pipe. This is inserted into
the upper end of the next size pipe for a short distance,
and fastened by through-bolts or welding. The second sec-
section is inserted into the next larger, and so on. The bottom
section is hinged to a fixed upright pipe, which gives the
fold-over feature. It, in turn, nests into a larger section of
pipe set into the ground. A yoke is provided to fasten the
mast to the upright after erection. Figure 1 shows a block
and tackle for pulling the mast to the vertical position, but
a winch fastened to the upright may be used instead.

Most mast designs use the widely available standard
weight pipe, each size of which nests neatly into the next
larger size, over the range from 1-1/2 to 4 inches. Larger
sizes still nest, but there is a gap between the walls. Very
high masts, or those with unusually heavy top loads, can
be built with extra-strong or double extra-strong pipe, but
such designs are not considered here as the data are cal-
culated for standard weight pipe.*

Design criteria

Because of the change in diameter, beam formulas can-
not be applied to a stepped diameter mast as a whole.
Instead, each individual pipe section must be analyzed by
itself, as a free body, starting at the top. The section load
must then be transferred to the next lower section. This is
done by converting the lateral load to a couple, acting
across the diameter of the section, then multiplying the cou-
ple magnitude by the ratio of pipe diameters to get the top
load of the next section. Intermediate antennas can be
assumed to be concentrated at the junction of sections. The
next section is then considered.

The critical or design load on a section may be caused
by wind load when the mast is vertical, or by erection load
as the mast is being raised. Both loads should be calcu-
lated and the design chosen for the worst of the two.

For wind load, two design winds are commonly used.
For most of the country, it is assumed that the worst wind
to be encountered is 85 mph, a value to be expected once
in 50 years or so. For Florida, the Gulf Coast, and locations

*Standard and extra strong (ASTM nomenclature) are the two pipe weights com-
monly encountered. The American Petroleum Institute has a separate designation
for well casing, but this is called tubing rather than pipe — although some sizes
are identical to pipe sizes. The critical dimensions for standard weight pipe are:

<table>
<thead>
<tr>
<th>Size</th>
<th>Outer diameter</th>
<th>Wall thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 inch</td>
<td>4.5 inch</td>
<td>0.237 inch</td>
</tr>
<tr>
<td>3-1/2 inch</td>
<td>4.0 inch</td>
<td>0.226 inch</td>
</tr>
<tr>
<td>3 inch</td>
<td>3.5 inch</td>
<td>0.216 inch</td>
</tr>
<tr>
<td>2-1/2 inch</td>
<td>2.875 inch</td>
<td>0.203 inch</td>
</tr>
<tr>
<td>2 inch</td>
<td>2.375 inch</td>
<td>0.154 inch</td>
</tr>
</tbody>
</table>

The ASTM recommended fiber stress values for standard weight pipe is 20,000
psi (bending). The design procedure presented here uses a 10 percent reduction
from this stress figure, based on good used pipe.

Note that the extra-strength and double extra-strength sections do not nest
because of thicker walls. Such heavier pipe can be used for the topmost section
and for the standing or ginpole section. However, the curves apply only to stan-
dard weight pipe or tubing of the sizes given in the table.
General layout of the fold-over pipe mast (not to scale).

like Cape Hatteras, a maximum wind of 125 mph is also used. Your county engineer can provide the recommended value for your location (see reference 1).

During erection there is some deflection, or bending, of the mast. The greatest load occurs when each section is horizontal; this is the loading which must be designed for.

The wind and erection impose two different types of load on the section. One is the concentrated load at the topmost end of a section due to the forces on the section above. The second is the distributed load acting along the length of the section. As the concentrated load becomes larger there is less strength left for the distributed load, so the section length must become smaller. Accordingly, the problem of design is to determine the allowable section length.

The concentrated load during erection is the weight of the antenna, rotator, and sections above the one being considered. The concentrated wind loading is due to 2 square feet of antenna and 1/2 square foot of mostly flat plate area, and weighing 8 pounds. This area is not subjected to unusual winds. Mast height is 40 feet.

The concentrated load on the top section is 15 + 8, or 23 pounds. Entering Figure 2 at the bottom with this weight and moving upwards, it is seen that the top section could consist of 12 feet of 1-1/2 inch pipe, 16 feet of 2-inch pipe, or 20 feet of 2-1/2 inch pipe. In keeping with the scale of the antenna, suppose the 1-1/2 inch diameter pipe is used.

The concentrated wind loading is due to 2 square feet of antenna and 1/2 square foot of rotator. From the table above, the loading is (2 × 18.1) + (0.5 × 30.3), or 51 pounds per square foot. Reading upward from this load on Figure 4, it is seen that the maximum allowable length for 1-1/2 inch pipe is 8 feet. Since this is the critical value, it becomes the length of the topmost section.

Assume that the sections are to be fastened by welding, with 6-inch insertion into the next section. From Figure 3, the weight of the 8-1/2 foot total of the top section is 23 pounds. The wind loading on the exposed 8 feet from Figure 5 is 25 pounds per square foot. Thus, the weight load at the top of the second section is 23 + 23, or 46 pounds and the wind loading is 51 + 25, or 76 pounds per square foot.

Figures 2 and 3 for load during erection, and Figures 4 A and B and 5 A and B for wind loads. Use of these curves will be explained through an example.

Example

Assume that the design is for an all-tubing 6-meter antenna, having 2 square feet projected area and weighing 15 pounds. A small TV rotator is available, having 1/2 square foot of mostly flat plate area, and weighing 8 pounds. This area is not subjected to unusual winds. Mast height is 40 feet.

The concentrated load on the top section is 15 + 8, or 23 pounds. Entering Figure 2 at the bottom with this weight and moving upwards, it is seen that the top section could consist of 12 feet of 1-1/2 inch pipe, 16 feet of 2-inch pipe, or 20 feet of 2-1/2 inch pipe. In keeping with the scale of the antenna, suppose the 1-1/2 inch diameter pipe is used.

The concentrated wind loading is due to 2 square feet of antenna and 1/2 square foot of rotator. From the table above, the loading is (2 × 18.1) + (0.5 × 30.3), or 51 pounds per square foot. Reading upward from this load on Figure 4, it is seen that the maximum allowable length for 1-1/2 inch pipe is 8 feet. Since this is the critical value, it becomes the length of the topmost section.

Assume that the sections are to be fastened by welding, with 6-inch insertion into the next section. From Figure 3, the weight of the 8-1/2 foot total of the top section is 23 pounds. The wind loading on the exposed 8 feet from Figure 5 is 25 pounds per square foot. Thus, the weight load at the top of the second section is 23 + 23, or 46 pounds and the wind loading is 51 + 25, or 76 pounds per square foot.

Allowable section length at erection for standard weight pipe, fiber stress = 18 kips. (The units of force are pounds, tons, kilograms, etc. In engineering practice the word kip is frequently used; it merely means 1000 pounds. Thus 18 kips can also be written 18,000 pounds. Ed.)
Using Figure 2 again, the maximum allowable length of the next section with the nesting 2-inch pipe is 11-1/2 feet for erection loads. From Figure 4, the allowable length for wind loads is 9 feet, which becomes the section length. Proceeding as before, the loads on the next section are 46 + 35, or 81 pounds during erection, and 76 + 35, or 111 pounds per square foot for wind.

Again, using Figures 2 and 4, the allowable length of 2-1/2 inch pipe is 13 feet for erection load, and 12-1/2 feet for wind load. The 12-1/2 feet is the length \(l_a \) in Figure 1. The load on the section \(l_a \) in Figure 1 is the same in magnitude, so this part could also be 12-1/2 feet long. However, a stock length for pipe is 21 feet. Assume that this is all that's available. Then the third section will need to end 1 foot above ground to reach the desired 40-foot total height. This is not unreasonable.

If a counterweight is added to the lower part of the third section to just balance the top weight, the erection loads on the fixed upright pipe are essentially zero. Even if no counterweight is used, the balancing effect of the part \(l_b \) of Figure 1 reduces the load on the upright to less than the load on section \(l_a \) of Figure 1. Thus, if the upright is no smaller than the lowest mast section, it will have adequate strength for erection.

The wind load on the upright is that of the upper sections plus that on the top 10-1/2 feet of the lower section, plus some amount on the upright. Assume that the upright is fully exposed (a safe assumption). The wind load to the top of the upright is 111 + 55, or 166 pounds per square foot maximum, the exact value depending on the final choice of upright length. From Figure 4, the upright can be only 6 feet long if it is 2-1/2 inches in diameter, or 13 feet long if it is 3 inches in diameter. Since 12-1/2 feet is needed as a minimum, this is just about right (half of the 21-foot length of the 2-1/2 inch section, plus 1-foot ground clearance).

Even with the curves, the process is somewhat tedious and it's easy to make mistakes. Most of the tedious and mistakes can be avoided by transferring the relations to a computer program.*

While this design is intended to be used without guys, they can be added for greater safety or increasing the allowable wind load. Usually the wall thickness is sufficient to withstand the compressive forces caused by guy tension, but this should be checked if a guyed design is attempted.

Factors affecting the length of pipe buried in the ground are discussed below. For this example, assume that this is 10 percent of mast height, or 4 feet. Total upright length is thus 13-1/2 + 4, or 17-1/2 feet. The jacket section buried in the ground needs to have 1-foot clearance, so it must be a 4-foot length of 5-inch diameter pipe.

The results of this design example are:

Top section: 1-1/2 inch diameter top section, total length 8-1/2 feet, exposed 8 feet.

Second section: 2-inch diameter second section, total length 9-1/2 feet, exposed 9 feet.

*Such a program is included in the author's "Practical Antenna Design and Analysis" available from MiniLab Books, Daytona Beach, Florida, 32021-1086, or from the HAM RADIO Bookstore. Editor

Maximum allowable section length for standard weight pipe with winds of 85 mph (fiber stress = 18 kips).

Lower section: 2-1/2 inch diameter lower section, total length 21 feet, hinge at 12-1/2 feet, 1-foot ground clearance at bottom.

Upright: 3-inch diameter upright, total length 17-1/2 feet, exposed 13-1/2 feet, buried 4 feet.

Jacket: 5-inch diameter, total length 4 feet, all buried. If necessary, this design could be carried higher, using larger pipe sizes.

It is often necessary to try several initial assumptions as to length and diameter of the top section. With a little practice, this can be done in a few minutes.

Construction details

The 6-inch overlap assumed in the example is sufficient for either welding or bolt fastening. Bolts are suggested as they are simpler and allow disassembly.
X-ing, contests, pile-ups, traffic handling. When you need to command attention, you will with the SB-1000 Linear Amplifier from Heath. And you'll do it for a cost that no one else can match.

From our recent DX-pedition to Taiwan, operators easily controlled pileups with the SB-1000 and nothing more than a dipole antenna. This means that when conditions are tough, you know you can depend on your SB-1000 to lift your signal above the rest. Whether you're using a dipole or stacked monoband beams.

Proven output power

We don't play games by using old rating methods to make you pay for input power you don't get at the antenna. What you do get is 1000 watt output of peak envelope power on SSB and 850 watts on CW. Even 500 watt output on RTTY.

On the chance that someone might doubt our claims, at hamfests we demonstrate that with only 80 to 100 watts of drive, our SB-1000 develops more output than even the world-famous Heath SB-220!

Designed for today, the SB-1000 offers quiet, compact tabletop operation at rated output. That's only 1.7dB (or about 1/3 of an S-unit) below the maximum legal power limit.

I built it myself!

Because you build the Heathkit SB-1000 Linear Amplifier yourself, you not only enjoy cost savings, you have the unique opportunity of knowing your equipment inside and out.

A top quality amplifier, cost savings, bragging rights, plus industry-recognized Heathkit manuals and technical assistance from our licensed ham consultants, should you ever need it. An offer that's hard to pass up.

See the SB-1000 and our complete line of amateur radio products in the Spring Heathkit Catalog. Call today for your free copy.

1-800-44-HEATH (1-800-444-3284)

Best to start with.
Best to stay with.

Heath Company
Benton Harbor, Michigan 49022

© 1989, Heath Company.
Heathkit is a registered trademark of Heath Company. A subsidiary of Zenith Electronics Corporation.
SAVE TIME and MONEY with THE HAZER

Bring things down for safety and convenience.

Never climb your tower again with this elevator system. Antennas and rotator mount on HAZER, complete system trims tower in vertical up-right position. Safety lock system operates while raising or lowering. Never entail. Complete kit includes winch, 100 ft. of cable, hardware and instructions. For ROHN 20 and 25 G Towers. Hazer 2 heavy duty alum. 12 sq. ft. load $223.95 pdd. Hazer 4 heavy galv. steel 16 sq. ft. load $291.95 pdd. NEW for ROHN 45 and 55 Towers Hazer 2 heavy galv. steel 18 sq. ft. load $311.95 pdd. CALL Ball Thrust Bearing TB-25 for any size above $69.50 pdd. Send for free details of aluminum towers specifically engineered for use with the Hazer. Two sizes: M-15 (15" wide) and M-18 (18" wide). All bolted construction, no welds. Easy to install hinge base, weld up erection. Complete tower UPS or air freighted prepaid. Pre-assembled or kit form. Satisfaction guaranteed. Call today and charge to Visa, MasterCard or mail check or money order.

NEMAL ELECTRONICS, INC. 12240 NE 14th Ave. N. Miami, FL 33161 (305) 893-3924 Telex 6975377 24hr FAX (305)895-8178

- Complete Cable Assembly facilities MIL-STD-45208
- Commercial Accounts Welcome- Quantity pricing. Same day shipping most orders
- Factory authorized distributor for Alpha, Amphenol, Belden, Kings, Times Fiber

Call NEMAL for: computer cable, CATV cable, Flat cable, semi-rigid cable, telephone cable, crimping tools, D-sub connectors, heat shrink, cable ties, high voltage connectors.

HARDLINE 50 OHM

FNC12 1/2" Aluminum Black Jacket 800 ft. $19.95 pdd. FNC70 1/8" Cablewave corr. steel blk jkt 150 ft. $15.95 pdd. FNC80 1/8" Cablewave corr. copper blk jkt 150 ft. $19.95 pdd. NM120C N corv 1/2" corr copper mt $2.50 pdd. NM70CC N corv 1/8" corr copper mt $4.50 pdd.

COAXIAL CABLES (per ft.)

1100 LXE50 9101 very low loss 55 ft. $11.95 pdd. 1102 RGU/50 95% shield low loss fond 11ga 36 ft. $13.95 pdd. 1110 RG59/50 95% shield (mini) 8 17 ft. $17.95 pdd. 1130 RG213/U 95% shield mil spec NOV 39 ft. $22.95 pdd. 1140 RG214/U dbi silver shield mil spec 1.85 ft. $22.95 pdd. 1170 RG1425/A dbi silver shield, teflon line 1.50 ft. $14.95 pdd. 1310 RG217/U 50 ohm 5000 watt dbi shield 98 ft. $49.95 pdd. 1450 RG174/U 50 ohm .100" ed mil spec 14 ft. $49.95 pdd.

ROTOR CABLE-8 CONDUCTOR

BC1502 2-15ga and 6-22ga $25.95 pdd. BC1502 2-15ga and 6-20ga $39.95 pdd.

Prices do not include shipping, $3 minimum. Visa/MasterCard $30 min. COD add $10. Call or write for complete price list. NEMAL's new 40 page CABLE AND CONNECTOR SELECTION GUIDE is available at no charge with orders of $50 or more, or at a cost of $4 with credit against next qualifying order.
Reach those far corners with excellent gain and front to back ratio plus a clean radiation pattern. You can also corner 40 meters with a simple add-on kit.

Specifications: Forward gain and front to back ratio excellent, power rating 2KW PEP, boom length 18’, longest element 32’, turn radius 18.4’, wind load 5.5 ft, weights 37 lbs.

Your fellow hams agree about our products: Love the A4, it’s my second Cushcraft, N6MBE; Good quality and performance for a competitive price equal a winner, KA9ZUA.

Available through dealers worldwide
48 Perimeter Road, Manchester, NH 03108 USA
603-627-7877 Telex 4949472
FAX 603-627-1764
"Give your repeater something to celebrate!"

The new RC-96 controller for your repeater will make its day. And yours.

For you, remote programming will let you easily make changes to your repeater from anywhere without a trip to the hill. Change codes, autodial numbers, ID messages and more, with reliable storage in EPROM memory.

Your users will love the outstanding patch and autodialer, with room for 200 phone numbers. The talking S-meter will let them check their signal strength into the repeater. Plus support for pocket pagers, linking to other repeaters, and a bulletin board.

Your technical crew will appreciate the built-in keypad and indicators. And the ease of hookup through shielded DIN cables. With pots and DIP switches easily accessible at the rear of the unit. They'll be impressed by the gas discharge tube across the phone line and transient suppressors on each I/O signal to keep lightning from taking your system down.

And most important, your repeater will have a new sense of pride in being able to serve you better. You'll even hear it in its voice!

Something for everyone. A real party animal! The RC-96 Repeater Controller - the newest choice from ACC.

2356 Walsh Avenue, Santa Clara, California 95051 (408) 727-3330
Two bolts at right angles passing completely through both pipe sections are recommended. The thread root diameter should be no less than the thickness of the larger section. As a refinement, drill and tap the outer pipe for alignment screws to be placed just above the top bolts and just below the bottom ones. These are a necessity if the pipe sections differ much in size (for example, if a 4-inch pipe is to be nested into a 5-inch one). The space between pipes can be filled with silicon rubber in the final assembly.

The "U" strap hinge shown in Figure 1 should have a thickness at least as great as the wall thickness of the pipe it supports. For strength in bending, its width can be about 12 times the thickness. The pin hinge diameter should be at least twice the wall thickness for bending strength. (These bending forces are likely to occur in handling and erection, and are difficult to estimate).

A second "U" and pin can be placed at the very bottom of the movable mast part to anchor it to the ginpole section. The pin can be drilled for insertion of a padlock, to prevent sabotage or tampering. A bicycle chain does nearly as well. Another refinement is to wrap both the ginpole and lower pipe section with several turns of barbed wire, about 8 feet above ground level. This helps prevent anyone from climbing the mast.

The suggested assembly routine is to mark each section with the bolt locations and the nesting length. Then lay the pipe on the ground, with blocks or pegs to hold it in place. Use a cord to get the correct alignment. Drill one of the bolt holes, insert the bolt, and then drill for the other one. Without shop facilities, it's nearly impossible to pre-drill these holes and have them line up.

Weight and area aloft can be reduced by turning the entire mast. This complicates the attachment to the ginpole section. However, the bearings needed can be simple sleeve bearings — essentially "U" straps with filler blocks, plus bearing rings attached to the pipe. The vertical load on these bearings can be removed by mounting a heavy-duty rotator under the very bottom of the mast and using a scissors jack to raise the rotator and mast just enough to take the load off the straps. Look at one of the commercial designs for ideas.

Since guys are not needed, the rotating mast type is excellent for stacked beams.

Foundations

Because of the great variability of soils, it isn't possible to provide a set of all-purpose design curves for foundations. The best way of proceeding is to work with your county engineer, and use the practices developed for your particular area. The local power or telephone company should also be able to supply the necessary data.

For reasonably good soils, like firm loams or clays, a good starting point is to assume that the foundation depth is equal to 10 percent of the height, with the jacket set in concrete of sufficient size to keep the soil load to a safe value. A maximum load of 4000 pounds per square foot is often used, with the design adjusted to give a 100-percent safety factor above the design load. If you haven't done this work
before, the county engineer can show you the steps.
The ginpole pipe section going into the ground must be protected from rust and corrosion on the inside and outside. This is especially important to prevent rusting at the waterline, if free water is present.

Usually, adequate protection can be assured by painting the pipe with a grout of cement and water. Even better protection can be obtained by wrapping the outside with several layers of builder’s felt, painted with cold application roofing tar as the felt is wound on.

Pipe sections can be sealed with wooden plugs and a layer of silicon putty. The entire mast and all hardware should be painted as a last step before installation of the antennas. Aluminum Rustoleum™ is suggested, as it is compounded to remain flexible, and is nearly as good for rust prevention as a zinc coating.

Safety

More and more communities are requiring permits for structures of this type. There may be height restrictions. Know your local laws!

In many areas, one requirement for obtaining a permit is certification by a professional engineer. You can usually save time and cost by doing the preliminary design and analysis yourself; use standard formulas or the curves here. Do the work neatly, in an easy-to-follow form. The engineer will want to at least check the method and critical loads. If he wants to do a complete analysis, you’ll be able to use it to argue about the cost of insurance coverage (a generous policy is recommended).

Any antenna mast can become a hazard if good safety practices are not followed. Remember that a quarter-or half-ton of steel 30 to 70 feet in the air is no toy. If you lack experience or don’t have the proper facilities, get qualified help. Always remember, safety is no accident.

REFERENCE

This article first appeared in the September 1974 issue of Ham Radio. Editor.
NEW PRODUCTS

ICOM's new AH-3 HF antenna tuner

ICOM introduces the fully automatic AH-3HF antenna tuner. The new AH-3 matches any frequency in the Amateur band. It features:

- Full automatic tuning.
- Memory channels.
- Durable, weather resistant housing.
- Low-power tune-up.
- Simple installation.

The AH-3 can also be used for HF mobile operation. It installs in your trunk and tunes automatically. The optional AH-2b antenna element is available and includes a bumper mount system for holding an 8.2-foot stainless steel antenna element. The AH-3 and AH-2b system allows you 3.5 to 28-MHz mobile operation.

The AH-3 is priced at $489. For additional information contact ICOM America, Inc., 2380 116th Avenue N.E., P.O. Box C-90029, Bellevue, Washington 98009-9029.

Circle #302 on Reader Service Card.

New features available for the multi-mode data controller

MFJ Enterprises, Inc. originally released the MFJ-1278 (priced at $249.95) with transmit and receive in seven modes: Packet, RTTY, WeFax, SSTV, CW, ASCII, and Contest Memory Keyer. MFJ announces two new modes: Navtex receiving and AMTOR transmit and receive.

There are also two new features for the MFJ-1278 Packet mode: the new Easy Mail™ Personal Mailbox and a new KISS Interface for TCP/IP compatibility.

New terminal software for the Macintosh computer, the MFJ-1287 Starter Pack with interface cable and WeFax printing to screen, is available for $19.95.

Existing programs for the IBM (MFJ-1284) and Commodore (MFJ-1282 disk/MFJ-1283 tape) are available with cable and instructions for $19.95 each.

For more information contact any MFJ dealer or MFJ Enterprises, Inc., PO Box 494, Mississippi State, Mississippi 39762, or call toll free 800-647-1800.

Circle #303 on Reader Service Card.

RADIO WORKS' Discovery Catalog

The RADIO WORKS' 1989 discount catalog is a source book of wire antenna systems, components, and accessories. It includes 56 pages of mobile and base antennas, mounts, antenna wire, insulators, coaxial connectors and cable, surge protectors, coax switches, Dacron® and MilSpec support line.

Pre-built antennas include RADIO WORKS' two new versions of the Carolina Windom®, and a high performance, 3/2 wavelength loop called the BigSig Loop®. Also featured are the new InFreeVert® and the 16-foot MicroDipole®. All RADIO WORKS' antennas are available for the new WARC bands.

The SWL section features new antennas. There are also SWL products and active antennas to preselectors from other manufacturers.

You can select from ten different balun models including the B4-2KX Current-type® and RemoteBalun®.

The RADIO WORKS' 1989 catalog costs $2, but is FREE to all Ham Radio magazine readers. Include $1 for first-class postage if you want speedy delivery. Contact the RADIO WORKS, Box 6159, Portsmouth, Virginia 23703. Phone (804) 484-0140.

Circle #304 on Reader Service Card.

New CCB handheld RF detector

Optoelectronics, Inc. introduces the new CCB handheld RF detector. Applications include checking the output from small or large transmitters used in radio telemetry, two-way radio, ham radio, garage door openers, RF transmitters, cordless phones, cellular phones, marine radio, aircraft radio, CB, police, fire, or other radio services.

The CCB has a ten-segment LED bar graph readout, two-stage wideband amplifier, and a forward biased hot carrier diode for a detector. The detector output is filtered and fed to the log output bar graph driver circuit. Each segment responds to a 3-dB step increase in signal strength. Screwdriver adjustable pots are provided for zero and full-scale adjustment.

The CCB is available for $99.95 from Optoelectronics, Inc., 5821 N.E. 14th Avenue, Fort Lauderdale, Florida 33334 (800) 327-5912. (In Florida call (305) 771-2051.) Accessories include the model TA-100S telescoping BNC antenna for $12 and the CC-12 vinyl zipper carry case for $10.

Circle #305 on Reader Service Card.

New “soft-side” tool kits

Hand Tool Industries has announced the its new soft-side zipper tool kits.

These tool kits are designed for service engineers and technicians who work on data processing equipment and comparable types of electro-mechanical devices.

The kits are available in brown heavy-duty padded vinyl, many are Cordura® material. Each kit has individual tool pockets and heavy-duty zipper.

Soft-side zipper kits may be ordered by calling (800) 652-1234 or contacting Hand Tool Industries, Inc., 1933 Lake Street, Kent, Ohio 44240.

Circle #306 on Reader Service Card.
MIRAGE/KLM

Announces The Next Generation

The 10 amplifiers you have been waiting for!

Designed For Quality And Value!

Every effort has been made in the design of these amplifiers to offer the highest specifications possible, provide the ultimate in reliability, and still keep prices affordable. Compare these amps with all others on the market! You'll be glad you waited for the NEXT generation of solid-state amplifiers from MIRAGE/KLM!

<table>
<thead>
<tr>
<th>144 MHz Amplifiers</th>
<th>220 MHz Amplifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-1016-G 10W in = 160W out</td>
<td>C-1012-G 10W in = 120W out</td>
</tr>
<tr>
<td>B-3016-G 30W in = 160W out</td>
<td>C-3012-G 120W out</td>
</tr>
<tr>
<td>B-215-G 2W in = 150W out</td>
<td>C-211-G 2W in = 110W out</td>
</tr>
</tbody>
</table>

13.8 vDC

New protection circuitry automatically reduces the output power to prevent damage to output transistors and even returns the amplifier to full power automatically when problem is cleared!

New GaAs-FET pre-amp designs provide gain of over 25 dB and a noise figure of less than .6 dB!

Picture this... You know your station... You are at home with your gear... all the knobs, switches, meters... QSY's are no big deal, you could do them in your sleep (and you probably have!).

Now picture this... It's contest time, multi-op... do you worry about your gear?... NO! At least not your amps... your station amps are bullet-proof. Point and shoot, no tune, no touch. From 160 meters to 70 cm...

Your Amps Are Mirage!

Each of the four following amplifiers provide...

- Bullet-proof, thermal shutdown... VSWR shutdown... over-current shutdown...
- 120% ICAS duty cycle... air-cooled... fan hood available...
- Active cooling kit available for 100% key-down duty cycle

TWO 144-MHz Amplifiers

Finally, a ruggedized high-speed RF switching relay that takes the punishment SSB-op's demand... 5mS or less typical switch-time... Dual-gate GaAs MES-FET pre-amp... 22 dB typical gain... Wide, dynamic range for overload protection... 1 dB compression > +4 dBm

<table>
<thead>
<tr>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>30W in - 300W out</td>
<td>30W in - 600W out</td>
</tr>
<tr>
<td>(Linear curve: 1W - 30W, 45W max.)</td>
<td></td>
</tr>
<tr>
<td>13.8 vDC</td>
<td>24v DC</td>
</tr>
<tr>
<td>440 watts (DC)</td>
<td></td>
</tr>
<tr>
<td>32 amps max.</td>
<td></td>
</tr>
<tr>
<td>68% efficiency</td>
<td></td>
</tr>
</tbody>
</table>

TWO H-F Amplifiers All Solid State (Waiting FCC Type-Acceptance)

The Band-Pass filter allows wideband performance while meeting FCC specifications... 1.8 - 4.0 MHz, 4.0 - 9.0 MHz, 9 - 15 MHz, 15 - 30 MHz... Typical harmonic - 50 dB

<table>
<thead>
<tr>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>50W in - 800W out</td>
<td>50W in - 1,500W out</td>
</tr>
<tr>
<td>13.8 vDC</td>
<td>48.0 vDC</td>
</tr>
<tr>
<td>1,215 watts (DC)</td>
<td>110/220 - 50/60 cycles</td>
</tr>
<tr>
<td>88 amps</td>
<td>Auto-Band switch Vacuum Relay</td>
</tr>
<tr>
<td>Available with power supply</td>
<td>Full QSK 100% key-down forever</td>
</tr>
<tr>
<td></td>
<td>Power Supply included</td>
</tr>
</tbody>
</table>

MIRAGE/KLM

P.O. BOX 1000 MORGAN HILL, CA 95037
(408) 779-7363 • (800) 538-2140 (outside CA)
MEGA WATTS.
Alinco's new DJ-500T handheld dual bander really puts out. Like 6.5 watts with the optional 12 volt battery. Or our standard 3.5 watts VHF and 3 watts UHF with a local power setting of .5 watts. No other HT delivers such power.

The DJ-500T also comes with mega features.

It's the only HT with a 37 tone encoder/decoder as standard equipment. You get cross band/full duplex operation. Twenty memory channels (10 apiece on VHF and UHF). Programmable offsets. A single memory 16 digit auto dialer and modifiable CAP/MARS capabilities.*

In short, the DJ-500T comes without any high priced add ons because everything is standard. That includes our exclusive two year limited warranty.

Call (213) 618-8616 for your nearest local dealer. [perm required]

ALINCO
20703 South Western Ave., Ste. 104, Inglewood, CA 90301
For a limited time Alinco Electronics will give a $100.00 "Reward" for your working, 2 meter or 70 centimeter Mobile Transceiver, or $50.00 for your working 2 meter or 70 centimeter Hand-Held Transceiver.

The way it works is really quite simple. Just take or send your old, but working, transceiver to your favorite dealer for TRADE-IN. Whatever the dealer offers for Trade-In allowance, Alinco will increase the amount by either $50.00 or $100.00, depending on whether it's a Hand-Held or Mobile, ON THE SPOT!

There are only two requirements:

1) The Trade-In "Reward" can only be used towards an Alinco DR-510T Dual Band Mobile or an Alinco DJ-500T Dual Band Hand-Held, on a Mobile for Mobile and Hand-Held for Hand-Held basis.

2) The Trade-In unit must be in good working order and salable.

Remember, the company that already gives you the best value for your dollar, and a two year factory warranty, now gives you something else that no other company does — A substantial Trade-In "Reward" for using our products!
Announcing the next generation of packet controllers for the serious operator! The new Inboard PC-320 (shown) is designed to work with all PC/XT, PC/AT, and Tandy 1000 series computers. The TNC-320 outboard controller offers many of the same high quality features.

PC-320 features . . .
- Dual modems for optimal VHF and HF operation.
- Appears as regular PC serial port (COM 1-4) - operates with any terminal program just like an external TNC.
- Dual Powered - operates from PC or external power. Continues complete operation even when the PC is turned off!
- Personal Message System - the most advanced personal mailbox available... included at no extra charge.
- Displays on-screen HF tuning indicator and simulated LEDs.

PC-320
$209.95

TNC-320 . . . $194.95
(Wired & Tested / 1 Year Warranty)
For complete info & specifications Call (813) 874-2980 To Order Call Toll Free: 1-800-223-3511
Major Credit Cards Accepted

PacComm - 3652 West Cypress Street - Tampa, Florida 33607
Please send □ PC-320 □ TNC-320 □ More Information □ FREE Catalog
Name ____________________________
Address ____________________________
State ______ Zip ______ Card# ______ Exp. Date ______

MONEY BACK GUARANTEE! Add $4.00 shipping handling per order. FL residents add 6% sales tax. Major Credit Card give number, expiration and signature.

PC Slow Scan $149.95
A complete slow scan television station for your IBM PC or compatible. Send and receive images in up to 10 shades of gray depending upon your graphics card and printer.

Includes:
- Demodulator Modulator 75 Page Manual
- Software Tutorial Cassette

Requires:
- Ham transceiver PC with 640K. Parallel Port
- Graphics Card Tape Recorder Serial port

Slow Scan Formats: 8, 12, 17, 23, 34, 36, 48, 72 sec.

Software Systems Consulting
1303 S. Ola Vista
San Clemente, CA 92672
(714) 498-5784

KENWOOD
1-800-231-3057
713-520-7300
520-0550

ICOM

TOWERS by ALUMA

HIGHEST QUALITY ALUMINUM
- TELESCOPING (CRANK-UP)
- GUAYED (STACK-UP)
- TILT-OVER MODELS

Easy to install. Low Prices. Crank-ups to 100 feet. EXCELLENT FOR AMATEUR COMMUNICATIONS

Over 36 types aluminum towers made — specialties designed and manufactured. write for details.

ALUMA TOWER CO.
BOX 2606HR
VERO BEACH, FL 32961-2806
(407) 567-3423 TELEX 80-3405
FAX (407) 567-3432

INVEST "H"!

E.H. YOST & CO.
EVERETT H. YOST KB8XK
7341 TETWA RD
SAUK CITY, WI 53583
ASK FOR OUR CATALOG
(608) 643-3194

FREE CATALOG

Ask for our catalog... 1-800-223-3511
For more information call:
P.O. Box 5174, MASSENA, N.Y. 13662
(315) 769-8334

WIL-COM ELECTRONICS INC.

OCELANDALITY

WIRE REPLACEMENT BATTERIES FOR COMMUNICATIONS
Nickel-Cadmium, Alkaline, Lithium, etc.

Repair Packs For
ICOM, KENWOOD, YAESU, SANTEC, AZDEN, TEMPO,
CORDLESS PHONES... AND MORE!

NEW! I.C.E. PACK $49.95
A waveguide flange drilling guide

It’s not easy to lay out and drill the flange-hole pattern accurately for waveguide flanges. If you have my luck, the holes will tend to drift or migrate during drilling. You can hand file the holes with a round jeweler’s file to bring them back to the proper positions, but the resulting fit is loose and/or sloppy. If you drill the holes right the first time, the next piece of waveguide will be properly positioned when you tighten the four mounting screws.

My drilling method is simple: use guide holes that have already been drilled accurately to guide your hand drill. You can use this technique for other flange sizes and connectors.

If you look at Figure 1, you’ll see that the draw screw performs two jobs. It holds the assembly together and the drill guide motionless while you use the four flange holes as a pattern for drilling the holes in the work piece. I suggest using a 10-32 or 12-24 screw. The bridge bar must be narrow enough to allow easy inspection of the guide opening during attachment and alignment. Note that the bar is perpendicular to the long axis of the guide opening. The center hole is a clearance hole for the draw screw. The two outer holes pass two 6-32 mounting screws. You can use a single mounting screw or sweat solder the bar in place. The screws or solder serve only to hold the bar in a stable position while you position the drill guide. If you use screws, you must make matching threaded holes in the guide flange.

Nibble or machine the guide opening in the work piece before positioning the drill guide. Make sure the dimensions of the opening correspond to the inside dimensions of the waveguide. Center the drill guide over the guide opening and secure it by tightening the draw screw in the draw bar. The tapped hole in the draw bar should match the draw screw. Make sure the draw bar is positioned free of the flange holes and is tightened securely before drilling the flange holes.

John M. Franke, WA4WDL

50-MHz RF bridge

After the 1986 release of the 6-meter band to UK Amateurs, many UK hams found an RF bridge helpful for adjusting the gamma matches on their homebrew antennas.

The basic RF bridge shown in Figure 1 is difficult to use at the masthead, so I designed a self-contained unit to overcome this problem. Using the American Amateur’s experience of the band, I built a low-power transmitter drive source on the same pc board as the bridge. It operates with a 9-volt battery.

Circuit

Figure 2 is the overall schematic. Q1 is an overtone oscillator that uses a 50-MHz third overtone crystal. The collector is tuned to 50 MHz by L1 and C1. The output signal from Q1 is link coupled via L2 and C3 to the base of Q2 — a class A amplifier stage with its collector tuned to 50 MHz by L3 and C2. The gain of this stage is quite high due to the grounded emitter, and the output should be approximately 40 mW. The output signal from Q2 is link coupled to the bridge circuit via L4.
Schematic diagram of the basic RF bridge.

Construction

The unit is built on a single-sided 4-3/4" x 2" x 1/16" fiber-glass pc board (see Figure 3). Install the components on the board, leaving the potentiometer until last. Secure the pc board into the case using the threaded section of the potentiometer, as shown in Figure 4. You'll need to obtain a second nut for this potentiometer.

PARTS LIST

RESISTORS
R1 10 k
R2 4.7 k
R3 100 ohms
R4 1 k
R5 680 ohms
R6 47 ohms
R7 100 ohms
R8 51 ohms
R9 1 k
VR1 1 k linear miniature potentiometer

SEMICONDUCTORS
Q1 BSX 20 (Europe) 2N2369 (USA)
Q2 BSX 20 (Europe) 2N2369 (USA)
CR1 1N4148
CR2 0A90 (Europe) 1N34A (USA)

COILS
L1 9 turns 22 swg (21 AWG) enameled wire, 1/4-inch diameter, 5/8-inch long
L2 2 turns thin insulated wire, 1/4-inch diameter, wound in the center of L1
L3 As L1
L4 As L2, wound in the center of L3

CAPACITORS
C1 0.01µF ceramic disc
C2 0.01µF ceramic disc
C3 0.07µF ceramic disc
C4 15-pF ceramic disc
C5 0.01µF ceramic disc
C6 0.001µF ceramic disc
C7 0.01µF ceramic disc
VC1 5 to 60-pF trimmer
VC2 5 to 60-pF trimmer

MISCELLANEOUS
X1 50-MHz third overtone series resonant crystal HC 18/U
Meter 200 µA FSD
SPST toggle switch
SO 239 socket
PCB terminal pins

Printed circuit and parts placement layouts for the RF bridge.

Testing

After you've completed the pc board, connect a 51 or 100-ohm resistor from the unknown terminal pin to the negative meter terminal pin. Connect a 9-volt supply to the battery terminal pins, making certain the polarity is correct. Adjust C1 and C2 for a 50-MHz output, using a digital frequency meter or an absorption wavemeter positioned near L1 and L3 in turn. When you have a 50-MHz output, connect the meter to the meter terminal pins and rotate R1 for a dip on the meter. If you get a dip, and all tests are...
Calibration

To calibrate the bridge, you'll need a number of resistors and a plug to fit the socket. I used resistor values of 5, 10, 20, 30, 40, 50, 70, 75, 100, 150, 200, and 1000 ohms to calibrate the prototype.

Fit a white card scale to the front of the case and solder each resistor, in turn, into the plug. Connect the plug to the unknown socket and rotate R1 for a dip on the meter. When a dip is indicated, mark the scale with the value of the resistor used. The scale values should increase in counterclockwise sequence.

Conclusion

This RF bridge has simplified the adjustment of gamma matching sections and can be used to find the antenna tapping point on RF input coils of converters. You might also use it to find the input and output tapping points on bandpass filter coils.

For Amateurs in Region 1 (in countries where 4 meters can be used legally), the bridge can be modified by using a 70-MHz crystal, changing C4 to 10 pF, and retuning the resonant circuits.

The same design can be used for lower frequencies by changing the crystal, the resonant circuits, and C4. Capacitor C4, in the emitter of Q1, must have a reactance of 200 ohms at the crystal frequency.

REFERENCES

A. R. Croft, G8CJM
When transistors and integrated circuits began to dominate electronic equipment design in the seventies, the amount of power consumed by the equipment decreased rapidly. It got to the point where the power required to light the pilot lamps was greater than that needed to operate the equipment.

Technology continued to move forward, and a little lump of plastic with a couple of wires protruding from it went through a rapid development process. This device, called a light emitting diode (LED) gives us capabilities far beyond the simple incandescent lamp that it replaced. Let's look first at how it works, then at some of the ways it's being used.

Where does the light come from?

The LED is shown schematically in Figure 1 as a diode with adjacent arrows pointing outward to indicate that it is emitting light. (Other devices exist that show the arrows pointing inward, indicating that they are responsive to light.) Some neat tricks of physics are used to obtain light from a small fragment of semiconductor material.

The key ingredients in an LED are usually gallium and arsenide. A diode made from these elements is sometimes referred to as a gallium-arsenide LED. (These same elements are used in Field-Effect Transistors, called GaAs-FETS for Gallium Arsenide-Semiconductor Field-Effect Transistors.) The abbreviation LED is used almost universally today without regard for the elements that go into the semiconductor material.

Figure 2 shows a cross-section of a typical LED structure. There are many variations, depending on the requirement. Some are made flat to mount on pc boards, while others have wire leads that connect to associated circuitry.

To understand how LEDs work, look again at basic semiconductor theory — electrons, holes, barriers, junctions, and all that. The same theory is at work in getting light out of a diode, getting a rectifier to turn AC into DC, or causing a transistor to amplify a signal. It's not really complicated. There's a junction between material with an excess of electrons (N type) and material with a scarcity of electrons (P type). Both types of material are created by impurities that were purposely introduced into the basic elements during manufacture. There is a region between these two materials where nothing much happens under normal circumstances. The extra electrons don't have enough energy to migrate to the other side, and the electron-scarce elements (often called "holes" or places where electrons could be) don't have enough energy to go the other way. There's a sort of trap zone in between, and any electron or hole that ventures into it gets stuck. To get things moving, a voltage must be applied across the junction. The voltage increases the "energy...
"You're miles ahead with Larsen."

Rick Woodsome, Communications Consultant
Woodsome and Associates, Boulder, Colorado

When the directors of the Coors International Bicycle Classic needed a sophisticated mobile communications system, they turned to communications consultant Rick Woodsome. As a communications specialist, Woodsome knows what it takes to make a communication system work. That's why he turned to Larsen Antennas.

"You don't pull off the largest sports event in the Western Hemisphere without good equipment. And you don't have good equipment without good communication."

"Larsen antennas were instrumental in making last summer's Coors Classic an overwhelming success. They were key to our entire communication network. Without Larsen, it would have been uphill all the way."

Rick Woodsome
level" of the electrons enough that they can move across the barrier to the "other side" where they combine with the "holes." As you might expect, when the free electron combines with a hole, each ceases to exist as a distinct entity. When they combine in this way, the excess energy they had must go somewhere, and it is emitted as "photons." The word photon can be roughly translated to mean "particles of light."

Of course, not all semiconductor diodes emit light. Many of them get rid of the excess energy as heat. Semiconductor manufacturers make sure that most of the energy is released as light by selecting the correct impurities to put into the material. That's where the materials gallium and arsenide come in, instead of the silicon and germanium used for rectifier or signal diodes. Some LEDs use a combination of gallium, arsenide, and phosphorus (called GaAsP semiconductor material), and others have some indium or antimony or other elements thrown in. Variations of these impurities can change the basic color (wavelength) of the light emitted and affect the efficiency of the LED. Currently available colors range from infrared to red, amber, and green. There are materials that emit light in the blue range, but not with great efficiency or brightness; research continues in that area.

Putting the light to work

One of the earliest uses of the LED was as a replacement for the simple pilot light. It showed that a piece of equipment was on or off, or indicated some other function of the equipment by being illuminated or not.

Physically, an LED is very small; its size can work for or against its use. Because it is so small, you can place several LEDs close together for an array that takes up very little space. Most inexpensive incandescent lamps are between 1/4 and 3/8 inch across, so you are limited in the number of devices per inch. On the other hand, the LED's size limits the indicator's brightness and the width of the angle from which it can be viewed. This obstacle has been overcome in a couple of ways. One or more diodes can be made to illuminate a plastic lens that diffuses the light over a wider area, thus increasing visibility. Also, recent developments in diode technology have created LEDs with much greater light output.

The plastic lens or light diffuser can be shaped to create the exact effect desired — rectangular (see Figure 3), triangular, round, square, or diamond shaped. These devices are very useful when used in conjunction with different colors to "foolproof" a readout device, or help the user determine what action to take or see what is happening. An example is the arrow-shaped indicator on some Amateur equipment front panels that shows which VFO is being used. On some receivers, a green LED shows that a signal is being received; several green LEDs can show the signal strength. Some indicator panels that use green for receive indications also use red LEDs to show that the transmitter is on, and to give an indication of how much power is being transmitted. Infrared LEDs are commonly used in remote controls for television sets and video cassette players.

More than just light

You find LEDs in frequency readouts, digital panel meters, and many calculator displays. By placing one or more LEDs behind carefully shaped pieces of plastic, you can create letters or numbers. They are used in what is often called a seven-segment readout, shown in Figure 4. Some of these can be tiny, with three or four complete readouts on the top of an integrated circuit that plugs into a socket or mounts on a circuit board. Others can be quite large, like those in some clocks which have numbers 2 or 3 inches high.

An individual seven-segment readout device usually has eight connecting leads for power application — one common lead and one for each segment to be illuminated. You select the desired segment manually (with a switch) or (as is more often the case) with a special driver IC that interprets data from a computer, calculator chip, etc., and then illuminates the proper segment(s). For example, the number 3 can be created by applying a voltage between the common lead and the leads to segments 1, 2, 3, 4, and 5 shown in Figure 4. On many readout devices, there are also provisions for showing a period (decimal point), a colon (on clocks), and plus or minus signs.

Most readouts that produce numbers will also work for letters if a few compromises can be accepted. For example, in Figure 4 a capital Q won't work, nor will an X of either case, but a lower case q will. With only slightly more complexity, a readout with diagonal segments can be made which will allow something close to a capital Q and will differentiate between a zero (0) and a capital O by placing a slash through the zero. It also allows creation of the letter X.

The common 7-segment LED readout can have a common anode connection and a connection to each individual cathode or it can be just the opposite, with all cathodes common. Other elements, such as a period, colon, or plus and minus symbols require additional LEDs and more connections.

Measuring a voltage (or current) with a conventional analog meter is a relatively simple process — you apply the voltage through appropriate resistors to the meter terminals, and the pointer moves in response. Its resting position is read against a scale to indicate the
Low Pass Design
The low-pass design of the AT-300 is what you would expect from a company where Engineering Makes the Difference. The low-pass design of this AEA tuner means harmonic attenuation for lower TVI potential. This design also allows matching a much wider range of antenna impedances than the common high-pass designs.

Larger Size
One look at the AT-300 lets you know this tuner is different, it's bigger. While some manufacturers promote the small size of their tuners, AEA knows that performance is most important. The simple reason for the larger size is that smaller sizes degrade the inductors' Q (Quality factor), which results in less efficiency. Less efficiency means that for a given power output from your transmitter, less power will actually get to your antenna.

Easy Operation
The AT-300 tuner features a precision frequency compensated dual-movement SWR meter for ease of tuning. The high and low power front panel switch selects the proper range for the SWR meter. The AT-300 is rated for 300 watt operation. The internal balun and front panel selector switch allows for balanced and unbalanced outputs.

Get maximum performance from your transceiver and antenna by using the AT-300 antenna tuner from AEA. See your local AEA dealer today or contact:

Advanced Electronic Applications, Inc.
P.O. Box C-2160
Lynnwood, WA 98036
206-775-7373

AEA Retail $249.95
Amateur Net $219.95
A simplified block diagram of a digital voltmeter using 7-segment LED readouts. Multiple-readout panels can be found in many instruments including: frequency counters, clocks, calculators, watches, and many Amateur receivers.

The amplitude of the voltage being read. Doing the same thing with an oscilloscope (see last month's column) requires slightly more circuitry — power supplies, a sweep circuit, and an amplifier to deflect the electron beam proportionately to the voltage being measured.

A volt/ohm/milliammeter which uses LED indicators is also more complex, but not mysterious enough to scare you away. The circuit to drive the segments requires only low-voltage DC, like 5 or 12 volts, and current of a few milliamperes. However, these driver circuits require a digital input, and the quantities they are measuring are almost always DC (or analog). But this isn't a formidable task because there are specific integrated circuits that convert a given DC voltage into a digital output signal. These ICs are called analog-to-digital converters, or ADCs. (There are also digital-to-analog converters, or DACs, that do just the opposite.) The quantity to be measured is applied to the input of the ADC IC, which provides a series of pulses at its output to represent a number for that particular input. The LED driver IC then interprets this string of pulses and determines which segments to illuminate. Figure 5 is a simple block diagram of a digital voltmeter using these elements.

Using LEDs, you can reduce power consumption when you have several devices — like five or six readouts on a panel. By feeding the voltage to the LEDs in short pulses instead of DC, you can reduce the average current consumed by 50 percent or more. The trick is to make the pulses fast enough so that your eye doesn't know when the LEDs are off. This trait, called visual persistence, keeps you from seeing the 60-Hz flicker from devices like light bulbs and TV screens.
Now receive or leave messages with other local hams using the 16K Bulletin Board featured on the smallest TNC available - the Heath® HK-21 Pocket Packet.

The BBS operates under your call with simple commands like SEND or WRITE a message. Kill a message and read the File messages currently on the system. And the HK-21 Pocket Packet is fully TNC-2 compatible.

Hookup is easy. Plug in supplied cables instantly to most computers via RS-232 and you're ready to call a fast-growing number of packet hams.

The HK-21 Pocket Packet requires only a single 12 VDC®/40mA power source or as little as 29mA from an optional HKA-21-T internally mounted 4.8 volt, 120 mA, NICAD battery.

The Heath® HK-21 Pocket Packet - $219.95 (Atmosfer net price)

To order, call 1-800-253-0570

For information on Heath's complete line of amateur radio products call 1-800-444-HEATH for your FREE Heathkit® catalog.

Best to start with.
Best to stay with.

Heath Company
Benton Harbor, MI 49022

COMMUNICATIONS

Now receive or leave messages with other local hams using the 16K Bulletin Board featured on the smallest TNC available - the Heath® HK-21 Pocket Packet.

The BBS operates under your call with simple commands like SEND or WRITE a message. Kill a message and read the File messages currently on the system. And the HK-21 Pocket Packet is fully TNC-2 compatible.

Hookup is easy. Plug in supplied cables instantly to most computers via RS-232 and you're ready to call a fast-growing number of packet hams.

The HK-21 Pocket Packet requires only a single 12 VDC®/40mA power source or as little as 29mA from an optional HKA-21-T internally mounted 4.8 volt, 120 mA, NICAD battery.

The Heath® HK-21 Pocket Packet - $219.95 (Atmosfer net price)

To order, call 1-800-253-0570

For information on Heath's complete line of amateur radio products call 1-800-444-HEATH for your FREE Heathkit® catalog.

Best to start with.
Best to stay with.

Heath Company
Benton Harbor, MI 49022

R-7000 Widespan Panadaptor

Panadaptor especially designed for the R-7000 receiver. For use with a standard scope. Variable span width from 1 to 10 MHz. Uncover unknown elusive signals. Complete with all cables. 90 day warranty. $349.95 Shipped. Pa. res. add 6%.

GTI Electronics

RD 1 BOX 272
Lehightown, Pa. 18235
717-386-4032

JAMES M MILLEN MANUFACTURERS

PO. BOX 4215, ANDOVER, MA 01810-4215 USA (508) 475-7831

TRANSMITTING CONDENSERS

16000 Series

Another member of the "Designed for application" series of transmitting variable air capacitors is the 16000 series with voltage ratings from 3KV to 13KV in single or dual sections. Rigid, heavy channelled aluminum end frame and thick, round edge polished plates. Ceramic supporting structure and insulator, brass nickle plated hardware. Constant impedance, heavy current, multiple finger rotor contact. Prices range between $50 and $80 each. Other styles and capacitances are also available.

YOUR INQUIRIES ON OTHER JAMES MILLEN PRODUCTS ARE WELCOMED
A SENSITIVE RF VOLTMETER

Read RF levels down into the microvolts

By John Pivinchny, N2DCH, 3824 Pembrooke Lane, Vestal, New York 13850

If you like experimenting with receivers, you need a way to measure low-level RF signals. This weekend project is a voltmeter with microvolt sensitivity. It covers a range of 20 \(\mu \text{V} \) to 200 mV, or an 80-dB range. You can use it to measure the output of RF and IF amplifiers, oscillators, crystal filters, and measuring bridges. An external attenuator lets you read transmitter signal sources, like multiplier stages, mixers, and amplifiers.

The bandwidth is designed to cover from 0.5 MHz to over 30 MHz. It's also useful for comparison readings up to 100 MHz. Overall, I find it a very useful instrument to have on my construction bench.

Internal batteries supply the 20-mA current required at 15 volts DC, and provide isolation from AC line noise. The batteries also allow portable operation.

Circuit description

The schematic in Figure 1 shows a peak-reading diode voltmeter driven by two stages of amplification. I used a germanium diode 1N34A in the voltmeter circuit because it has a lower threshold voltage than the popular 1N914 silicon "glass diode" in many RF probe circuits. Those RF probes are intended for higher voltages than the undistorted \(\pm 1 \text{ volt} \) or so available from the MC1350P amplifier output.

A 100-\(\mu \text{F} \) capacitor provides a fairly large time constant. This results in satisfactory meter damping. The limited differential output voltage coupled with an overdamped meter prevents a lot of hard "needle pinning" when you select an incorrect range position, or make other errors. An SPST toggle switch selects additional series resistance. This X2 function gives some more overlap of the sensitivity ranges. The resistance values shown are correct for the 100-\(\mu \text{A} \) meter I chose (1500-ohm internal resistance).

Amplifier

I selected the MC1350P amplifier circuit because it's inexpensive and available from many sources. You can also use another, newer version — the MC1590. Although the schematic is identical, the MC1590 has a different set of pin assignments, so take care if you make a substitution.

The MC1350P is an RF/IF amplifier with a typical power gain of 40 dB, and a 60-dB AGC range. It has differential input and output. I used two stages in cascade. The first is driven as a single-ended input by bypassing the negative input to ground. The second stage is operated in true differential fashion. In the differential mode, there is an additional 6-dB gain and the available undistorted output swing is doubled.

Coupling capacitors of 4700 \(\mu \text{F} \) limit the low-frequency response below 500 kHz. I selected this value intentionally to keep out audio frequencies, including 60-Hz noise.

A popular voltage regulator keeps the supply at exactly 12 volts as the batteries wear down. It also provides a fixed voltage for the gain (AGC) control voltage dividers.

Voltage ranges

The MC1350P amplifier gain is controlled by applying a positive potential between 5 and 7 volts to pin no. 5. As the potential increases, the gain is reduced. When two stages are cascaded, it's important to decrease the gain of the first stage further. This prevents the first stage from overdriving the input of the second one. The application note recommends series resistors of 5.1 k for the first stage and 10 k for the second one.

Actual full-scale voltage ranges are set by carefully selecting resistor values for the voltage dividers which feed these series resistors. I chose ranges of 100 mV, 10 mV, 1 mV, and 100 \(\mu \text{V} \). The resistor values I used are shown on the schematic. These may vary somewhat based on the actual MC1350P parts used, as well as the meter internal resis-
Schematic of the RF voltmeter.

A hole location diagram and component placement sketch are shown in Figures 2 and 3.

Next, mount the circuit board on the bottom of a metal case. Use two 4-40 sheet metal nuts as spacers on each of the mounting screws. This sandwiches the interconnection wires effectively between two ground planes, preventing coupling between wires which are about 1/4" apart. It also shields the components from the interconnection wires. As a result of the efforts I put into shielding and the care I took with the input impedance, I have never observed any instability or oscillation — even on the most sensitive range.

There is room inside the case for the battery holder. Hold it in place by clamping it to the bottom with a 3-1/8" length of 1/2" aluminum angle stock and two screws. Mount the meter and switches on the front panel. Add a BNC coax connector to the rear panel directly over the input connection to the circuit board. Use dry transfer lettering covered with clear acrylic to mark the switch positions. See Photo A for details.

Calibration

I used the bootstrap procedure for calibration described by Hayward. But I used a 200-ohm system; that is, I sol-
Component mounting and actual size hole pattern guides.

Component location diagram.

Parts List

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 LM340T-12</td>
<td>12-volt positive regulator — JimPak</td>
<td>3 10-µF Electrolytic, 50 volts</td>
</tr>
<tr>
<td>1 JG-6</td>
<td>Cabinet 2-3/8" x 6-3/16" x 5-7/8" — Ten-Tec</td>
<td>2 2.2-µF Electrolytic, 50 volts</td>
</tr>
<tr>
<td>1 BH-107</td>
<td>Battery holder for ten AA size — Caltronics</td>
<td>1 100-µF Electrolytic, 20 volts</td>
</tr>
<tr>
<td>1 20-1111</td>
<td>0 to 100 microampere meter — GC Electronics</td>
<td>2 220 ohm 1/4 watt</td>
</tr>
<tr>
<td>1</td>
<td>SPST miniature toggle switch</td>
<td>4 470 ohm 1/4 watt</td>
</tr>
<tr>
<td>1</td>
<td>Rotary switch 2 pole, 6 position</td>
<td>2 1000 ohm 1/2 watt</td>
</tr>
<tr>
<td>1</td>
<td>Panel mount BNC connector</td>
<td>3 2.2 k 1/4 watt</td>
</tr>
<tr>
<td>10</td>
<td>Batteries — AA size</td>
<td>2 4.7 k 1/4 watt</td>
</tr>
<tr>
<td>1</td>
<td>2" x 4" single-sided circuit board</td>
<td>1 5.1 k 1/4 watt</td>
</tr>
<tr>
<td>2 MC1350P</td>
<td>IF amplifier</td>
<td>1 10 k 1/4 watt</td>
</tr>
<tr>
<td>1 N34A</td>
<td>Diode — Radio Shack 276-1123</td>
<td>Dry transfer letters — Datak Corp K59B</td>
</tr>
<tr>
<td>5 4700-pF</td>
<td>Disc ceramic</td>
<td>Spray lacquer — Sherwin Williams 14-0969</td>
</tr>
</tbody>
</table>

Ham Radio/July 1989
WHAT'S THE BIGGEST ISSUE IN HAM TV TODAY?

THE NEXT ISSUE OF AMATEUR TELEVISION QUARTERLY

- ACCURATE reporting
- TECHNICAL information
- VALUABLE content
- QUALITY production

SUBSCRIPTIONS:
1 Year $15 U.S., $20 Canada, $25 Elsewhere

1545 Lee Street, Suite 73
Des Plaines, Illinois 60018
(312) 298-2269

W6SAI BOOKS
published by Bill Orr, W6SAI and Stu Cowan, W2LX

BEAM ANTENNA HANDBOOK

ALL ABOUT VERTICAL ANTENNAS

RADIO HANDBOOK 23rd Edition
Here are some of the highlights of this exciting new edition: New easy-to-use charts for Chebyshev and elliptic filter configurations, new data on power MOS-FETS, how to use state-of-the-art OP-AMPS, and home computer RTTY to name just a few examples. New projects include: GaAsFET preamps for 902 and 1296 MHz, easy-to-build audio GW filter, Economy two 3-5602, 160 meter amplifier, multiband amp using two 3CX800AT’s, and a deluxe amplifier with the 3CX1200AT tube. New antenna projects include: Efficient Marconi design for 160 and 80 meters, computer generated dimensions for HF-Yagis, and a 2 meter slot beam. Get your copy today, 23rd edition © 1986

THE RADIO AMATEUR ANTENNA HANDBOOK
A wealth of projects that covers verticals, long wires, beams as well as plenty of other interesting designs. It includes an honest judgement of gain figures, how to site your antenna for the best performance, a look at the Yagi-Quad controversy, baluns, slopers, and delta loops. Practical antenna projects that work! 190 pages. © 1978. 1st edition.

THE ROTATOR!
OR-2300 (Prototype shown)
Introducing a new generation in rotators! Orion's intense research and development has produced a rotator for today and into the Twenty First Century.

HIGH PERFORMANCE FEATURES
- Proven Worm Gear Drive
- Compact—Fits Popular Towers
- Flex-Mount
- Built-In Thrust Bearing
- Massive Mast Clamps
- Standard Hole Pattern
- Self-Centering Guide
- Stainless Steel Hardware
- Made In U.S.A.
- 1 Year Warranty
- 35 Square Feet
- Easy Reading Control Box
- AND MORE!

For More Details Contact Your Local Dealer Or Orion
(Available Mid Summer)

ORION BUSINESS INTERNATIONAL, INC.
P.O. Box 9577 Canoga Park, CA 91309 U.S.A.
Tel: (818) 888-4927 Fax: (818) 888-5112 Telex: 697-4899

HAM RADIO BOOKSTORE
GREENVILLE, NH 03048
(603) 878-1441
New Kenwood TS440

ALL ITEMS ARE GUARANTEED OR SALES PRICE REFUNDED

CSI
Alpha Della
Vnrel
Ailleco
L;irscn
Arneco
83
Arf-.la
MICA
Rc4dm
R~rd
82
S~iry,l~rs
lJGl76
Dout~ple
Tmorisantls
STLJPH
Sanlec
Rrrrlvtnq
ANRt-1
75
RF
AII
USED EQUIPMENT
Kenwood
NPW
Throat
FV~CP
POLICIES
M~nlmtjrr,ortler
nl
IKIIICE
Blrd
lory
..
ISP
vol
61
IKIIICE
Blrd
lory
..
30x
221
lory
..

1,000 75 Mhz Converter. $184.95
20m CW, 15w Transceiver (H.R. 6/87). $159.95
50W 75M SSB SCVR. $199.95

1500 + WATT TRANSMATCH KIT $169.95

BASIC KIT — INDIVIDUAL ITEMS
1 - rotary inductor 26uh. $59.00 ea.
2 - 61 ball drives. $9.00 ea.
1 - 0-100 turns counter. $65.75
1 - turns counter, economy (Groth). $19.95
2 - variable capacitors
25-254 pf 4500 v. $44.00 ea.

OPTIONS—
enclosure (pictured in Sept. 86 CO). $64.00
4:1 balun kit. $22.50

OTHER KITS
G3RUH, PSK Pack Modem, Satellite and Terrestrial. $111.00
G3RUH, OSCAR 13 Telemetry Demodulator. $144.95
QRP 20, 5w, 20 meter Transceiver (HR 1/89). $124.95
W1FB 160/80 Pre Amp (QST 8/88). $19.95
K9CW Memory Contest Keyer. $109.00
Yaesu FRG-9600, 1 to 60 Mhz Converter. $344.95
20m CW, 15w Transceiver (H.R. 6/87). $159.95
50W 75M SSB SCVR. $199.95

Factory Wired
Amp Supply/Ameritron/TenTec Products. CALL
B&W PT-2500A Amp. $1,670.00
B&W VS 1500A Tuner. $388.00
Tel-Tec Complete Product Line. CALL

RADIO KIT • P.O. Box 973
Pelham, NH 03076 • (603) 635-2235
Shipping Extra
Catalog $1.00

Tell 'em you saw it in HAM RADIO!
Calibration circuit schematic.

Circuit board details.

Considered a 240-ohm resistor in parallel with the 1-k input resistor. Using the simple circuit in Figure 4, I found that a 0.36-volt DC signal (step attenuator in the 12-dB position) read 30 mA on the meter. Then I injected RF from my 8-MHz oscillator into the same circuit, and read 36 mA with the attenuator in the 0-dB position.

\[v_{\text{peak}} = \frac{36}{30} \times 0.36V = 0.432V \]

The signal is 432/4 = 108 mV in the 12-dB position. I used this signal to calibrate the 100-mV scale. That is, I increased the resistor values for R1 until the meter read 108 mV. Then I connected a number of fixed resistors in series, and soldered them in place.

Next, I increased the signal level by adjusting the voltage on my oscillator circuit until it read 100 mV with the attenuator in the 20-dB position. I switched the attenuator to the 40-dB position and the voltmeter to the 10-mV range. I selected resistors for R2 for a full-scale reading on this range. I performed this procedure two more times until all ranges were calibrated, but with error accumulation at each step.

Other uses

This meter has many uses around the shack besides reading low-level RF signals. Is that new oscillator circuit oscillating? Just connect a few turns of wire at the end of a coax, and connect the other end to the meter. Hold the loop near the oscillator circuit for a quick check for RF. Can't hear that crystal calibrator? Is it working? Hook its output to the RF voltmeter and see. What's the signal level on your TV cable? Mine reads 600 \(\mu \)V with a 200-ohm load before it's split two ways going to my two television receivers. A paper clip inserted in the BNC jack is enough of an antenna to pick up the signal from my grid-dip meter when it's several inches away.

Next to my frequency counter, this is the most useful homebrew project I've ever built. Try one for your next weekend project.

dB Chart

Many Amateurs have difficulty converting from millivolts to dBm power figures. Remember that dBm is usually meant to represent a power of 1 mW into a 50-ohm load. See the chart below for rapid conversion from one set of units to the other (for 50-ohm systems).

The numbers below show the approximate ranges of this meter and the (more accurate and linear) one described by G4COL.

<table>
<thead>
<tr>
<th>Power</th>
<th>Milliwatts</th>
<th>RMS</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>G4COL's meter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>100</td>
<td>2240</td>
<td>3170</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>707</td>
<td>1000</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>224</td>
<td>317</td>
</tr>
<tr>
<td>-10</td>
<td>0.1</td>
<td>70.7</td>
<td>100</td>
</tr>
<tr>
<td>N2DCH's meter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-10</td>
<td>0.1</td>
<td>70.7</td>
<td>100</td>
</tr>
<tr>
<td>-20</td>
<td>0.01</td>
<td>22.4</td>
<td>31.7</td>
</tr>
<tr>
<td>-30</td>
<td>0.001</td>
<td>7.07</td>
<td>10</td>
</tr>
<tr>
<td>-40</td>
<td>0.0001</td>
<td>2.24</td>
<td>3.17</td>
</tr>
<tr>
<td>-50</td>
<td>0.00001</td>
<td>0.707</td>
<td>1.0</td>
</tr>
<tr>
<td>-60</td>
<td>0.000001</td>
<td>0.224</td>
<td>0.317</td>
</tr>
<tr>
<td>-70</td>
<td>0.0000001</td>
<td>0.071</td>
<td>0.100</td>
</tr>
<tr>
<td>-80</td>
<td>0.00000001</td>
<td>0.022</td>
<td>0.032</td>
</tr>
<tr>
<td>-90</td>
<td>0.000000001</td>
<td>0.007</td>
<td>0.010</td>
</tr>
</tbody>
</table>

REFERENCES
A HIGH- PERFORMANCE
2-METER TRANSVERTER

Modular approach
makes construction
and modification easy

By Bob Lombardi, WB4EHS, 1874 Palmer Drive,
Melbourne, Florida 32935

It seems that many VHF/UHF enthusiasts say they became interested in this part of the spectrum after having worked just about all of the DX available on HF. This wasn't the case for me. The possibilities of 2-meter operation appealed to me on their own merits. There is OSCAR, moonbounce, meteor scatter, SSB, CW, and a host of propagation modes to explore.

My interest in these modes of communication led me to review their requirements. I realized that commercial rigs available at the time didn't have the two main features I was looking for — a low noise figure and a selectable CW filter. Like many before me, I decided to build a transverter for my HF rig. These were my design goals:

- low noise figure, in keeping with the state of the art;
- output power in the range of 5 watts, with excellent linearity (third-order IMD at least 30 dB down);
- good rejection of a nearby NOAA weather radio relay (at least 40 dB down);
- moderate gain (enough to overcome the front end noise of the HF rig);
- good dynamic range.

I adopted a modular design approach advocated by Joe Reisert, WIJR, and others. Like this design because it gives me the ability to get sections working and tied together quickly. This, in turn, makes the project seem less like a constant uphill battle. Also, the modular method with its replaceable sections is a great benefit when you come up with a better design. The block diagram of the transverter appears in Figure 1.

Receive strip

The receive side input (Figure 2) is a GaAsFET low-noise amplifier (LNA) that uses a circuit similar to Reisert's1 and to those in general FET applications notes. The device is a single gate MGF-1402 made by Mitsubishi; it's available from several sources. The 10-k resistor on the input bleeds off static buildup. Any value around 10 k will work, as long as you use a carbon composition resistor. (I had a persistent and elusive oscillation; it was caused by the metal film resistor I was using!) I used diodes around the regulator to protect against regulator latch-up or inductive spikes from the IF relay. The amplifier had a noise figure of under 0.75 dB and a gain of 23 dB, as measured on an Ailtech noise figure meter and HP network analyzer.

The filter (shown in Figure 3) was described in an earlier article.2 I wanted the filter to be narrowband enough to pass all 4 MHz of the band, and still provide over 40 dB of rejection at 162.55 MHz. It provides nearly 55 dB, at a cost of about 5 dB of insertion loss. At this point, however, there was gain to burn to meet the design goals of about 10 dB of gain in the complete transverter.

A 116-MHz overtone crystal oscillator provides the LO function for both sides of the transverter (Figure 4). The oscillator is a common base design, largely based on Reisert.3 The output was measured at +13 dBm, allowing the use of a two-way power splitter to provide LO to both mixers.

The receive mixer is a Mini-Circuits SRA-1000 (see Figure 5). It is essentially the same as their SRA-1 in this application. The IF output goes into a diplexer and 24 to 34-MHz bandpass filter. In band, the diplexer (the parallel-resonant circuit and 51-ohm resistor) presents an open circuit, and no signal flows in the resistor. As the frequency changes the reactive components tend to short out the tank circuit, allowing signal to flow into the termination and to ground. The mixer sees the 51-ohm resistor at these frequencies.

The receiver input stage is largely responsible for determining the system noise figure, and the noise figure is degraded by any losses in front of it. If you're new to the field of low-noise design, this explains what must seem like the unconventional design of the transverter; i.e., the amplifier ahead of the filter. (This is a common design technique in microwave receiver

*See parts sources at the end of the article. Ed.
design, like TVROs.) To minimize the effects of losses in front of the amp, I used foam-flex (hardline) coax as the feedline, with short flexible jumpers of RG-214/U where required.

Other hams have told me on the air that my low noise figure is unnecessary in 2-meter SSB because ground noise predominates. While this maybe true, my idea all along was that receiver noise shouldn't be a limiting factor if I wanted to swing my antennas up for OSCAR — or anything else I might try. When you add that to the high intercept point of the GaAs-FET front end, and the resulting improvement in dynamic

FIGURE 1

Block diagram of the complete transverter.

FIGURE 2

Schematic of the receive input RF amplifier.
Details of the BP (bandpass) filter on the receive line.

FIGURE 3

ALL COILS COILCRAFT T-113 1 1/2 TURNS 68 nH WITHOUT SLUGS
* RESONATING CAPS 2.5-10 pF VARIABLES IN PARALLEL WITH 10 pF CERAMIC
** COUPLING CAPS 0.25 - 2.5 pF TEFON TRIMMERS

Local oscillator using a 116-MHz overtone crystal.

FIGURE 4

Parts list

CAPACITORS

Electrolytic or tantalum
- 1.5 μF/15 volts 1 each
- 2.2 μF/15 volts 1 Radio Shack 272-1435
- 4.7 μF/15 volts 3 272-1024
- 10 μF/35 volts 1 272-1025
- 33 μF/16 volts 1 272-1030 (470 μF)

Ceramic, monolithic dipped, 50 volts (Z5U or X7R)
- 68 pF 2
- 470 pF 1
- 0.001 μF 20
- 0.01 μF 10
- 0.1 μF 1

Ceramic, monolithic dipped, 50 volts (COG or NPO)
- 3.9 pF 4
- 4.7 pF 1
- 10 pF 8
- 27 pF 1
- 39 pF 1
- 47 pF 2
- 270 pF 2

Trimmers—all values in pF
- 0.25-2.5 Teflon 4 BP filters
- 0.5-5 glass/air 1 GaAsFET amp
- 1-5 μF ceramic 5
- 2-20 μF ceramic 5

RESISTORS

1/4-watt carbon composition, 5 percent
- 51 ohm 1
- 100 ohm 1
- 200 ohm 2
- 1 k 2
- 1.5 k 1
- 4.7 k 1
- 5.6 k 1
- 10 k 4
- 100 k 1

1/2-watt carbon composition, 5 percent
- 100 ohm 2
- 750 ohm 1

1-watt carbon composition, 5 percent
- 62 ohm 2
- 68 ohm 1

Most of these came from my junkbox, the result of years of hamfest buying. Try Communications Concepts, Inc., and other sources. Some of these could be made into more parts of one value.
Receive and transmit mixer schematic.

2-watt carbon composition
- Any value over 100 k (used as coil form)
- 1/8-watt carbon composition, 5 percent
 - 18 ohm 2
 - 300 ohm 4
 - 68 ohm 1
 - 100 ohm 2

SEMI Conductors

<table>
<thead>
<tr>
<th>Diodes</th>
<th>Transistors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1N4148 general purpose</td>
<td>2N2222 NPN</td>
</tr>
<tr>
<td>1N4004 rectifier</td>
<td>2N3553 NPN</td>
</tr>
<tr>
<td>1N757 9-volt zener</td>
<td>2N5109 NPN</td>
</tr>
<tr>
<td>1N751 5-volt zener</td>
<td>2N5179 NPN</td>
</tr>
<tr>
<td>2N3904 GaAsFET</td>
<td>MGF-1402 GaAsFET</td>
</tr>
<tr>
<td>MRF-134 powerFET</td>
<td>MR1310 powerFET</td>
</tr>
<tr>
<td>MWA-130 amplifier modules</td>
<td>1N751 5-volt zener</td>
</tr>
<tr>
<td>7BL05 5-volt regulator</td>
<td>2N2222 NPN</td>
</tr>
<tr>
<td>7BL06 or 7BM08 8-volt regulator</td>
<td>2N3553 NPN</td>
</tr>
<tr>
<td>LM-311 comparator</td>
<td>1N4148 general purpose</td>
</tr>
</tbody>
</table>

Miscellaneous parts

<table>
<thead>
<tr>
<th>Ferrites</th>
<th>Ferrites</th>
</tr>
</thead>
<tbody>
<tr>
<td>FT-23-63</td>
<td>FT-23-63</td>
</tr>
<tr>
<td>Beads, Ferroxcube type 4A6</td>
<td>Beads, Ferroxcube type 4A6</td>
</tr>
<tr>
<td>Two-hole balun (for RFC on driver assembly)</td>
<td>Two-hole balun (for RFC on driver assembly)</td>
</tr>
<tr>
<td>BLN 43-2402</td>
<td>BLN 43-2402</td>
</tr>
<tr>
<td>Ferroxcube VK200-19/4B</td>
<td>Ferroxcube VK200-19/4B</td>
</tr>
</tbody>
</table>

Toroids

<table>
<thead>
<tr>
<th>Toroids</th>
<th>Toroids</th>
</tr>
</thead>
<tbody>
<tr>
<td>T44-6</td>
<td>T44-6</td>
</tr>
<tr>
<td>2-Midion</td>
<td>2-Midion</td>
</tr>
<tr>
<td>T20-10</td>
<td>T20-10</td>
</tr>
<tr>
<td>2-Midion</td>
<td>2-Midion</td>
</tr>
</tbody>
</table>

Note: The exact ferrite bead used in most cases isn't critical. It should present several microhenries of inductance at the operating frequency.

Other parts

<table>
<thead>
<tr>
<th>Other Parts</th>
<th>Other Parts</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBL-1 mixer</td>
<td>1 Mini-Circuits, others</td>
</tr>
<tr>
<td>SRA-1</td>
<td>1 Mini-Circuits, others</td>
</tr>
<tr>
<td>TSC-2-1 power splitter</td>
<td>1 ICM</td>
</tr>
<tr>
<td>116-MHz fifth overtone crystal</td>
<td>1 Radio Shack</td>
</tr>
<tr>
<td>5-k multiturn pot</td>
<td>1 Radio Shack</td>
</tr>
<tr>
<td>TR power switch relay 12 volt</td>
<td>1 Communications Concepts</td>
</tr>
<tr>
<td>TR coaxial relay 12 volt</td>
<td>15 SMA female (as required)</td>
</tr>
<tr>
<td>RF coaxial connectors</td>
<td>(as required)</td>
</tr>
<tr>
<td>Coaxial jumpers</td>
<td>Boxes</td>
</tr>
<tr>
<td>(as required)</td>
<td>(as required)</td>
</tr>
<tr>
<td>Feedthrough capacitors</td>
<td>(as required. 1 per box)</td>
</tr>
<tr>
<td>0.001 fF 50 volts</td>
<td>10H molded chokes</td>
</tr>
</tbody>
</table>

2 communications Concepts
Transmit predriver schematic.

Driver chain schematic. RFC 1-4 = 4 turns of no. 20 wire through a two-hole ferrite balun. Amidon no. BLN 43-2402.

range, the GaAsFET still seems the most logical choice.

My initial test of the receive side yielded good results. While conducting tests with WA4GHK (15 miles south), it was easy to copy K4DZP in Miami (over 160 miles south) — despite my makeshift indoor antenna!

Transmit chain

The transmit portion of the transverter presents its own problems; the biggest is linearity. A rule of thumb for diode ring mixers (like the SBL-1 used here) is to have the input signal at least 10 dB below the LO for best linearity (see Figure 5). Because one of my design goals was to achieve very good linearity from the transmitter, the first thing I did was pad the input drive (+3 dBm) from my HF rig. The resulting level was about -7 dBm, 14 dB lower than the LO drive. Since all the pads were made with the closest value resistors, and the mixer itself contributes loss, I measured the conversion loss of the transmit mixer. It was 17.7 dB.

The pre-driver stage in Figure 6 is supposed to recover all of the signal lost in the conversion, provide enough filtering to remove significant power on the image frequency, and reduce LO feedthrough. I used MWA-130 amplifiers, modular 50-ohm in-and-out devices in TO-5 cans, because they are easy to use and were available on a surplus board that I scavenged. The power out at this point is 4 mW (+6 dBm).

The actual drivers are two transistors, a 2N5109 and a 2N3553 (see Figure 7). The first device is a well-known VHF linear transistor; the second is a 28-volt, TO-5 can device capable of 2 watts if run class C. This was originally to have been a three-transistor strip with 1 watt out from a third 2N3553, but I was never able to get them to more than 500 mW and still remain linear with a 12-volt supply. I tried many variations of bias circuits, matching networks, and pc layouts. The two-device strip I settled on produces 18 dB of gain, or about 250 mW out.

The final amp is a Motorola MRF-134 TMOS powerFET that delivers just over 4 watts out and a clean, linear signal (third-order intermod down just over 30 dB). See Figure 8 for details.
New from ARRL

Following the hard-cover style of Transmission Line Transformers, and Yagi Antenna Design, Antenna Impedance Matching is written with the advanced amateur, antenna design engineer and technician in mind, but even if you don't have any special expertise you'll be able to develop very sophisticated systems. This is probably the most comprehensive book ever written on the use of Smith Charts™ in solving impedance matching problems. This 224-page book is of importance to those who want to maximize antenna effectiveness. A properly matched antenna as the termination for a line minimizes feedline losses, and power can be fed to such a line without the need for a matching network at the line input. Antenna Impedance Matching is a “must” for the antenna designer and serious amateur. The price is $15, please add $3.50 for shipping and handling.
2 METER AMPLIFIERS • ATV CONVERSIONS

<table>
<thead>
<tr>
<th>Device Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>DGFET</td>
<td>$29.95</td>
</tr>
<tr>
<td>GaAsFET</td>
<td>$79.95</td>
</tr>
<tr>
<td>Bipolar</td>
<td>$49.95</td>
</tr>
<tr>
<td>GaAsFET</td>
<td>$79.95</td>
</tr>
</tbody>
</table>

Every preamplifier is precision aligned on ARRL’s Hewlett Packard HP6970A/HP346A state-of-the-art noise figure meter. RX only preamplifiers are for receive applications only. Inline preamplifiers are rf switched (for use with transceivers) and handle 25 watts transmitter power. Mount inline preamplifiers between transceiver and power amplifier for high power applications. Other amateur, commercial and special preamplifiers available in the 1-1000 MHz range. Please include $2 shipping in U.S. and Canada. Connecticut residents add 7.75% sales tax. C.O.D. orders add 2%. Air mail to foreign countries add 10%. Order your ARR Rx only or inline preamplifier today and start hearing like never before!

Advanced Receiver Research
Box 1242 • Burlington, CT 06013 • 203 582-9409

antennex®

"The Magazine For Antenna Experimenters" IF YOU -

- Have a lousy mobile signal on all bands?
- Need an inexpensive beam for 10 meters?
- Unsure about using vert vs horiz antenna?
- Need a low noise antenna for 160 meters?
- Want to design an antenna just for you?
- Need a program for design and plotting?
- Need to solve a unique problem?
- Know the best antenna for ham radio etc.?
- Need a disguised mobile antenna?
- Want a cheap automatic coupler system?
- Just want to learn more about antennas?

THEN SUBSCRIBE TO - antennex®
- 12 MONTHLY ISSUES is only $11.97 for USA and possessions. $17.00 foreign.

antennex®
P.O. Box 8995 Dept. 19
Corpus Christi, TX 78412

Electronic Repair Center

Servicing Amateur Commercial Radio

The most complete repair facility on the East Coast. Large parts inventory and factory authorized warranty service for Kenwood, Icom, Yaesu.

SEND US YOUR PROBLEMS
Servicing “Hams” for 30 years, no rig too old or new for us.

HAMTRONICS, INC.
4033 Brownsville Road
Trevose, Pa. 19037
215-357-1400

CATALOGS

HAM
- Transceivers
- HF-VHF-UHF
- Antennas
- RTTY-Packet
- Receivers
- Books & Accs.
- Only $1 Postpaid

SWL
- Receivers
- Antennas
- Tuners
- Headphones
- RTTY-FAX
- Books & Accs.
- Only $1 Postpaid

Universal Radio
1280 Alda Drive Dept. HR
Reynoldsburg, OH 43068
Final amplifier using an MRF-134.

All design decisions are tradeoffs. For example, using the MRF-134 created the need for a small 24-volt supply — but I gained advantages in other areas. First, the FET is guaranteed to deliver rated power into a 30:1 VSWR at any phase angle (no delicate device here!); second, it's capable of more gain in one package than a bipolar; and last, it worked the first time I tried it — a very enjoyable experience after my trials and tribulations with the '3553s.

The circuit is taken largely from the Motorola RF Data Book applications note. Component changes are based on availability and personal preferences. In any RF power amplifier it's essential to keep the ground leads of the device as close as possible to ground on the board. I connected top and bottom foil with a strip of copper shim stock at the point where the source leads leave the device package. The FET itself is on an extremely overrated heat sink; after extended key down periods everything remains at ambient temperature.

The output filter in Figure 9 is an elliptical low-pass design. The two parallel resonant circuits are tuned to 313 and 487 MHz with a grid-dip meter; the other caps are adjusted for minimum insertion loss while you watch output power on a wattmeter. My version had a measured insertion loss of under 0.2 dB.

I used a simple comparator on the PTT line from the HF rig to do the T/R switching (see Figure 10). The relay is DPDT. It switches 12 and 24 volts to the transmit amplifiers and 12 volts to the antenna relay (a Dow-Key relay I picked up at a local hamfest). The relay provides over 40 dB of isolation during transmit; the GaAsFET sees ~4 dBm, well within its capabilities. (I leave it powered on continuously.) This relay should be adequate at power levels of up to 100 watts.

Construction and alignment

This is a sophisticated project and you'll need building experience. If you've had experience with other RF circuitry, you'll find it presents few special challenges. I used pc boards for the GaAsFET RF amplifier, filters, and all transmit stages. The LO, mixers, and the T/R switching boards are built "dead bug" style; they function quite well that way. If you are an experienced builder who uses point-to-point techniques at these frequencies, you may want to use that method. I used SMA connectors on small-diameter coax (RG-188) for signal interconnects. You may prefer to use BNCs. Likewise, I used pc board material for housing circuits — you may prefer commercially made enclosures.

I've already mentioned the need to keep grounds short on the final amplifier; the same holds true for the driver stages. This is the strongest argument for using pc boards for these stages. The emitters of the driver transistors are grounded immediately, with minimal lead length.

There are no "peculiarities" of alignment. Align the filters separately, tuning them as desired. It's best to align the transmit stages with a spectrum analyzer. Tune the drivers for best output while observing third-order intermod. This will not occur at maximum power out. The same applies to the final amplifier.

Ideally, the GaAsFET should be aligned with noise figure instrumentation. If that isn't available, tune for maximum noise level by ear, and then detune slightly. The optimum noise fig-
DOWN EAST MICROWAVE
Bill Olson, W9HT
Box 2310, RR 1, Troy, ME 04987
(207) 946-3741

NEW! No Tune Microwave Linear Converters
Board level RX/VTX transverter modules and
local oscillator: kit or assembled/tested.
Linear operation allows all modes, ATV,
SSB, Digital, Packet, FM.
Available: SHF 900, 1269, 1296, 2304, 3456 MHz

- Complete Kits
 - SHF 900 K with integral LO for 902 MHz $110
 - SHF 1240 K for 1240-1300 MHz - specify 1269 or 1296 base $135
 - SHF 2304 K for 2300-2450 MHz - MODE S downlink package available $185
 - SHF 3456 K for 3456 MHz $185
 - SHF LO Kit only, with XTL, 540-580 MHz, +10 -14 dBm $60

Call or write for details on complete transverters and options.

SHF Systems
P.O. Box 866
Naubuc, NY 11766
(609) 678-1573
John Matzner, W7 מלט

“ONLINE” U.S. CALL DIRECTORY
Hamcall service gives you all ham's via
your computer & modem. Updated each
month! Only $29.95 per year. Unlimited
use - you pay for phone call.

BUCKMASTER PUBLISHING
Route 3, Box 56
Mineral, Virginia 23117
703/894-5777
visa/mc $800/200-5628

Tell 'em you saw it in HAM RADIO!
T/R switch schematic.

ure match isn't far from max gain, but that's about as quanti-ative as I can get.

Performance

On-the-air results have been good. I actually used the trans-verter for quite a while at the 250-mW level, and surprised myself by working most of peninsular Florida. I made some of my best contacts with an indoor antenna and the pieces of my project spread across my desk. Moving up to 4 watts put me within 3 dB of the mainstream of off-the-shelf 2-meter SSB rigs (that's about half of one S-unit), and to a level that could be used with commercial amplifiers. It also netted me contacts with five southeastern states using a small antenna at rooftop height.

I'd like to thank Jim Hagan, WA4GHK, for his part in the con-ceptual design of this circuit and for helping me with on-the-air tests.
I've dealt with methods for generating sawtooth waveforms, and discussed them in this column on several occasions. I became interested in this topic quite a while ago — right after I built the Science Workshop's "Poor Man's Spectrum Analyzer." The project uses a sawtooth waveform to sweep the DC tuning control voltage of a varactor-tuned TV front end. In an article reviewing the analyzer, I mentioned that it was possible to build a digitally generated sawtooth waveform that was quite a bit better than the op amp version used in the original project. The response was staggering; I'm still receiving requests for the circuit. I've already published one version of the circuit in this column. This month I'm going to take a look at an updated version that allows control over sweep width, and superimposes the sawtooth on top of a DC level that sets the center frequency of the spectrum analyzer.

I'll also discuss an even newer version of the circuit that allows several options including negative-going sawtooth, positive-going sawtooth, and a triangle wave. In all three cases, the waveform is generated by applying the output of a binary counter to the input of a digital-to-analog converter (DAC).

The circuit for the original digitally synthesized sawtooth generator is shown in Figure 1. The heart of this circuit is IC1, a DAC0806 eight-bit DAC. This converter is an inexpensive IC, based on the MC-1408 family of DACs. I selected the DAC0806 because it's appropriate to the application and easily available through mail-order sources like Jameco Electronics, or in blister packs through Jameco's local distributor — Jim-Paks.

A "multiplying" DAC like the DAC0806 produces an output current that is proportional to: a) the reference voltage or current, and b) the binary word applied to the digital inputs. The controlling function for the DAC selected for this article is:

\[I_o = I_{ref} \times \frac{A}{256} \]

Where:
- \(I_o \) is the output current from pin no. 4
- \(I_{ref} \) is the reference current applied to pin no. 14
- \(A \) is the decimal value of the binary word applied to the eight binary inputs (pins 5 through 12)

The reference current is found from Ohm's law: It is the quotient of the reference voltage and the series resistor at pin no. 14. In data acquisition systems, where the DAC is most used, the reference voltage is a precision, regulated potential. But in this case you don't need the precision, so use the V+ power supply as the reference voltage. This means the reference current is +12 volts DC/R1. With the value of R1 shown (6800 ohms), \(I_{ref} \) is 0.0018 A, or 1.8 mA. Values from 500 \(\mu \)A to 2 mA are permissible with this device. If you elect to change the reference current, be sure to keep R1 equal to R2.

The reference current sets the maximum value of output current \(I_o \). When a full-scale binary word (11111111) is applied to the binary inputs, output current \(I_o \) is:

\[I_o = (1.8 \, mA) \times \frac{255}{256} \]

\[I_o = 1.78 \, mA \]

Because the DAC0806 is a current output DAC, you must use an op amp current-to-voltage converter to make a sawtooth voltage function. Such a circuit is an ordinary inverting follower without an input resistor. The output voltage (\(V_o \)) will rise to a value of \(I_o \times R5 \).

The actual output waveform from the circuit of Figure 1 is "staircased" in binary steps equal to the least significant bit (LSB) current of IC1 (or the LSB voltage of \(V_o \)). The LSB voltage is the smallest step change in output potential caused by flipping the least significant bit (B1) either from 0 to 1, or 1 to 0. The reason you don't see the steps in Photo A is that the frequency response of the 741 operational amplifier used for the current-to-voltage converter acts as a low-pass filter to smooth the waveform. If you use a higher frequency op amp, a capacitor shunting R3 will serve to low pass filter the waveform. A ~3 dB frequency (F) of 1 or 2 kHz will suffice to smooth the waveform. The value of the capacitor is calculated from:

\[C_{uf} = \frac{1,000,000}{6.28 \times R3 \times F} \]

Where:
- \(C_{uf} \) is the capacitance in microfarads
- F is the ~3 dB cut-off frequency in hertz (Hz)
- R3 is expressed in ohms

This circuit is synchronized by a clock oscillator consisting of a single 555 IC timer. Although not a TTL device, the 555 is TTL-compatible when the V+ potential applied to pins 4 and 8 is limited to +5 volts DC. The 555 is connected in the astable multivibrator configuration, causing it to output a chain of pulses with a +4 volt amplitude. The operating frequency is set by three resistors (R3, R4, and an external potentiometer) and a capacitor selected by the user. The actual clock frequency is:

\[F = \frac{1.44}{((R3 + R12) + 2R4) \times C} \]

Where:
- F is the frequency in hertz (Hz)
- C is in farads
The "normal" output of the sawtooth generator.

R3, R4, and R12 are in ohms

Select a clock frequency that's 256 times the desired sawtooth fundamental frequency. For example, if you want to sweep the spectrum analyzer at 30 Hz, select a clock frequency of 30 \times 256, or 7680 Hz.

I selected two outputs for this project. Point "C" is a fixed positive-going output of about 1.5 volts. For purposes of the spectrum analyzer, this output drives the horizontal input of the oscilloscope used with the project. The signal present at this output is shown in Photo A.

You'll see a positive-going sawtooth riding on top of a DC level at point "H." The DC control voltage that sets the center frequency of the spectrum analyzer is applied to point "F," which is also the noninverting input of the operational amplifier. Because the noninverting input sees a gain of 2, the voltage applied to point "F" should be one-half the maximum fixed tuning voltage. The op amp used for the output stage is an RCA/GE CA-3140 device chosen because it can tolerate a power supply differential between V+ and V− of 44 volts DC. However, in this circuit the supply voltage for the output stage is limited to about 35 volts DC, which is the maximum tuning voltage required of the spectrum analyzer.

After building a version of the circuit shown in Figure 1 for use with my spectrum analyzer, I decided that it would be nice to have a sawtooth generator on the workbench. My interest was heightened by the fact that I'm working on an RF sweep generator for the HF Amateur bands and need to do some additional development work. Photo B shows the finished project. It has both positive and...
BLACK DACRON® POLYESTER ANTENNA ROPE

- UV-PROTECTED
- HIGH ABRASION RESISTANCE
- REQUIRES NO EXPENSIVE POTTING HEADS
- EASY TO CUT WITH OUR HOT KNIFE
- SIZES: 3/32" 3/16" 5/16"
- SATISFIED CUSTOMERS DECLARE EXCELLENCE THROUGHOUT U.S.A.

LET US INTRODUCE OUR DACRON® ROPE TO YOU! SEND YOUR NAME AND ADDRESS AND WE'LL SEND YOU FREE SAMPLES OF EACH SIZE AND COMPLETE ORDERING INFORMATION.

Dealer inquiries invited.

THE K1FO 12 ELEMENT 144 MHz YAGI

Model K1FO-12-144

MECHANICAL SPECIFICATIONS
Length: 16' 4"
Height: 75"
Boom: 5/8" NPS
Feedpoint: 1/4" FR-4 frequency range: 120-240 MHz Window dimensions: 53" x 33"

$124.95

ALSO AVAILABLE

POWER DIVIDERS
STACKING FRAMES

RUTLAND ARRAYS
103 Warren Street • New Cumberland PA 17070
(717) 714-5076 • 717-755-6821

ANTENNA ANALYSIS

The new MN program will analyze almost any antenna made of wire or tubing. Compute forward gain, F/B, beamwidth, sidelobes, current, impedance, SWR, nearfields, and far-fields, in free space or over realistically-modeled earth. Plot antenna radiation patterns on your graphics screen. MN can compute the interaction among several nearby antennas. The 5'-1/4" MN disk contains over 100 files, including libraries of antenna and plot files, a file editor, and extensive documentation. MN is an enhanced, easy-to-use version of MININEC for IBM-PC. $75 ($80 CA & foreign).

YAGI OPTIMIZER

The remarkable new YO program automatically adjusts Yagi element lengths and spacings to maximize forward gain, optimize pattern, and minimize SWR. Radiation patterns at band center and edges are updated on your screen during optimization. YO is extremely fast, computing several trial Yagi designs per second with 8087. YO is a complete Yagi design package for IBM-PC, containing models for gamma and hairpin matches, element tapering, mounting plates, and frequency scaling. A library of Yagi files and extensive documentation are included. $90 ($95 CA & foreign).

To order, send a check to:
Brian Beesly, KG6TI, 207/2 Taylor, Vista, CA 92084
Sawtooth/triangle generator

Because of several letters I've received, and the requirements of the "bandsweeper" signal generator that I'm building, I designed and built a new generator circuit. This circuit (shown in Figure 2) is made to output one of the following waveforms: a) positive-going sawtooth, b) negative-going sawtooth, and c) triangle wave. Once again, the heart of the circuit is a DAC0806 digital-to-analog converter chip (IC1). This part of the circuit, including the operational amplifier (IC4) current-to-voltage converter stage, is the same as the previous designs. The difference lies in the binary counter stages.

The circuit in Figure 1 used a pair of 7493 base-16 counters in cascade to drive the DAC binary inputs. The outputs of these counters increment from 00000000 to 11111111, and return to 00000000 on the next step. Thus, the DAC output is a positive-going sawtooth. However in this circuit, the counters are CMOS 40298 devices. The 40298 is an updown, binary/decade synchronous counter. Pin 9 is the BIN/DEC control. When pin 9 is low, the 4029B is a decade (base-10) counter. But because you need a binary counter, pin 9 is tied high. Pin 10 on the 4029B is the direction control. When pin 10 is high, the 4029B acts as an ordinary up counter and increments "forward" from 00000000 to 11111111, and then goes back to 00000000 on the next count. When pin 10 is low, the 4029B becomes a down counter. In this mode it decrements from 11111111 backwards to 00000000, and recycles to 11111111 on the next count. The key to the operation of the circuit in Figure 2 lies in the control of the direction of counting:

- **Positive-going sawtooth:** Use the 4029B as an up counter (pin 10 high).
- **Negative-going sawtooth:** Use the 4029B as a down counter (pin 10 low).
- **Triangle waveform:** Use the 4029B both as an up and down counter, controlling direction with external logic.

An SP3T switch (S1) does the switching between the output waveforms. The switch's wiper drives the up/down control line. In position 1, the up/down line is connected to ground, producing a negative-going "inverted" sawtooth waveform from the DAC. In position 2, it's connected to +5 volts DC, producing a regular positive-going sawtooth. In position 3, the switch up/down line is connected to the output of the direction control logic — a single CMOS 4013 chip.
RAMSEY ELECTRONICS
Quality Test Gear & Electronic Kits for Professionals and Hobbyists

COM-3

THE COMMUNICATIONS SERVICE MONITOR THAT WORKS HARDER FOR LESS.

Introducing COM-3, the new service monitor designed by service technicians for service technicians. It works harder for less, giving you advanced safety capabilities at a very affordable price.

FEATURES
- Direct entry keypad
- 100% programmable memory
- Audio & transmitter frequency counter
- LED bar graph frequency display on 0.1 to 1000 Hz output levels
- High sensitivity: less than 50 mV
- 100 kHz to 99999.9 Hz
- Continuous frequency coverage
- Transmitter protection, up to 100 watts
- CTS tone encoder, 1 kHz and external modulation

PR-2 COUNTER PREAMP

- 10 kHz to 10 MHz frequency range
- 10 Hz sensitivity
- LED display

PS-2 AUDIO MULTIPLIER

- 10 kHz to 10 MHz frequency range
- LED display

PS-108 1.5 GHz PRESCALER

- 1.5 GHz input
- LED display

FREQUENCY COUNTERS

- 5 MHz to 100 MHz
- 100 Hz to 99999.9 Hz
- Continuous frequency coverage

ACCESSORIES FOR COUNTERS

- Handheld case
- Headphones
- Power supply

MINI KITS—EASY TO ASSEMBLE—FUN TO USE

TIME RECORDER

- Complete
- $5.95

COLOR-O-GRADE

- Complete
- $6.95

FM RECEIVER

- For 10 kHz to 100 MHz, 10 MHz sensitivity
- FM display
- LED display

BROADBAND PREAMP

- 10 kHz to 100 MHz sensitivity
- 1.5 GHz display

SPEAKER

- 10 kHz to 100 MHz sensitivity
- LED display

HIGH POWER FM WIRELESS MICROPHONE

- Complete
- $9.95

NEW

2 MTR & 220 BOOSTER AMP

- Highest power output is 210 mW
- Battery life: 12 hours
- Fully assembled and tested

PHONE ORDERS CALL

716-586-3950
Fax 716-586-4745

RAMSEY ELECTRONICS, INC.

2575 Baird Rd., Penfield, NY 14526

ALL NEW PRICES

SPEEDY

$89.95 **RADAR**

New low-cost microwave doppler radar kit. UG-1606A kit contains high-speed, high-performance chip to provide high-resolution radar data. Kit includes 10 MHz clock, 10 MHz reference clock, and 10 MHz crystal oscillator. Complete kit includes 10 MHz reference clock, 10 MHz crystal oscillator, and 10 MHz clock. Kit includes both a 10 MHz crystal oscillator and a 10 MHz clock. Kit includes both a 10 MHz crystal oscillator and a 10 MHz clock. Kit includes both a 10 MHz crystal oscillator and a 10 MHz clock.

RADIOS

40 & 80 Meters HAM RECEIVERS

- Complete kit
- $24.95

QRP TRANSMITTER KITS, 40 & 80 METERS

- COMPLETE KIT
- $24.95

AIRCRAFT RECEIVER KIT

- Complete kit
- $24.95

SHORTWAVE RECEIVER KIT

- Complete kit
- $24.95

PACKET RADIO

- Complete kit
- $29.95

FM COMMUNICATIONS/2 METER RECEIVER

- Complete kit
- $29.95

NEW MINIKITS—NEW MINIKITS

2 MTR & 220 BOOSTER AMP

- Complete kit
- $29.95

TELEPHONE TRANSMITTER

- Fully assembled
- $14.95

TERMS: Satisfaction guaranteed. Return within 10 days for a full refund. No sales tax or shipping and handling. Make checks payable to Ramsey Electronics. Order by phone or mail. No CODs. Visa, Mastercard, American Express, Discover, and Diners Club accepted. For non-U.S. orders, add $10.00 for the first kit and $3.00 for each additional kit. P.O. Box 916, Penfield, NY 14526.

PHONES: 716-586-3950

FAX: 716-586-4745
Positive going sawtooth waveform.

The 4013B is a dual type D flip-flop (only one used). The 4013B has two modes, clocked and direct (use the clocked mode). In the clocked mode, the reset (pin 4) and set (pin 6) inputs are grounded to hold them low. The rule of operation for a clocked type D flip-flop is simple. When the clock (pin 3) is high, whatever logic state appears on the D input (pin 5) is transferred to the Q output (pin 1), and its complement appears on Q-NOT (pin 2). Cross-coupling INVERT and D provides binary division (the mode needed), so strap pins 2 and 5 together.

The out terminal (pin 7) on the 4029B counter has a very interesting action. The counter goes low momentarily on count 1111, so it's normally used for cascading stages of 4029B devices. It's used in this way to cascade IC3 to IC2. The out terminal of IC2 goes low momentarily when the total eight-bit count is 11111111, so it's used to drive the clock input on the 4013. When the out terminal of the 4029 toggles, it causes the 4013 output to change state. Because the 4013 output is used to drive the up/down input on the 4029B devices, this action forces the counter direction to reverse. Thus, in this mode, the 4029B cascaded counters increment 00000000 to 11111111, and then decrement 11111110, 11111101, and so forth, back to 00000000 — where still another reversal takes place.

The output waveforms of the circuit in Figure 2 are shown in Photos C, D, and E. These oscilloscope photos were taken with a clock frequency of approximately 100 kHz, and represent sawtooth frequencies of just under 400 Hz. The positive-going sawtooth waveform is shown in Photo C, while the negative-going waveform is shown in Photo D. The sawtooth output is shown in Photo E. This waveform has a frequency of one-half the sawtooth frequency, taken with exactly the same clock frequency. Note that the photos were not taken with the same oscilloscope timebase setting. Thus, the sawtooth waveform is $f_{\text{clk}}/256$, while the triangle waveform is $f_{\text{clk}}/512$.

Conclusion

Digitally generated sawtooth and triangle waveforms are simple and easy. I suppose the next trick is to generate square waves, variable width pulses, and sine waves without using read-only memory chips. Anyone have any ideas? If so, my QTH address is below.

I can be reached at POB 1099, Falls Church, Virginia 22041; I'd like to have your comments and suggestions for this column.
Some time ago, I succumbed to the lure of satellite operation and proceeded to acquire equipment. I selected the Yaesu FT-726R as my base station and cobbled up antenna rotators out of cheap, readily available components. I found the Cushcraft Oscar pair 416-TB and A144-20T to my liking (the price was right), and mounted them on my homebrew rotator combo. I also bought the Kenwood SW-200 SWR and Power Meter, plus its three sensors.

I set up the antenna system, but was unhappy with its bandwidth performance. It occured to me that a VHF/UHF antenna tuner would be a worthwhile addition to the overall system. When I was unable to locate any that I liked in my magazines, I resigned myself to spotty satellite operations. But I continued to research the literature for suitable devices.

I finally found my answer in a Ham Radio article by Joe Reisert, W1JR, called "Impedance Matching Techniques." I have been a fan of Joe's for years and always look forward to his coverage of the spectrum above the humdrum HF bands.

Pages 33 and 34 of his article contain a description and outline of tunable antenna matchers suitable for my 2-meter and 70-cm Cushcrafts. They were easy and inexpensive to build, which was a key consideration for me. My out-of-pocket expenses for the trimmer capacitors for each unit were less than $2. The rest of the parts came out of my junkbox.

Photo A shows the two units. Dimensions of the RG-8X coaxial cable elements and boxes are indicated in Table 1. They are based on Reisert's suggested 3/16 wavelength multiplied by the 0.65 velocity factor of the coax. I used this cable because it was on hand. RG-58 would work as well. In fact, you can use RG-8 if you can bend it into shape and clamp it in position. More details are shown in Photo B (side-by-side views of the two units). Figure 1 is the schematic of the matchers from W1JR's article.
THE MOST AFFORDABLE REPEATER

ALSO HAS THE MOST IMPRESSIVE PERFORMANCE FEATURES (AND GIVES THEM TO YOU AS STANDARD EQUIPMENT!)

<table>
<thead>
<tr>
<th>KIT, ONLY $675</th>
<th>$735</th>
</tr>
</thead>
<tbody>
<tr>
<td>VHF OR UHF</td>
<td></td>
</tr>
</tbody>
</table>

FEATURES:
- **SENSITIVITY SECOND TO NONE!** GaAsFET front end on vhf models gives 12dB SINAD of 0.12uV (vhf), 0.15uV (uhf). UHF model 0.25uV (uhf) with optional helical resonator preamp.
- **SELECTIVITY THAT CAN'T BE BEAT!** Both 8-pole Xtal filter & ceramic filter for >100dB at 12kHz. Helical resonator front end to combat desense & intermod.
- **CLEAN, STABLE TRANSMITTER, up to 18W output standard; 50W with accessory power amplifier.**
- **FCC TYPE ACCEPTED** for commercial high band and uhf.
- **Courtesy beep, field-programmable CWID, flutter-proof squelch, automatic frequency control to compensate for off-frequency transmitters** (all standard features).
- **Full range of options** available, such as autopatch, phone line or radio remote control, sub-audible tones, duplexers.

HIGH PERFORMANCE TRANSMITTERS & RECEIVERS FOR REPEATERS, AUDIO & DIGITAL LINKS, TELEMETRY, ETC.

FM EXCITERS:
- Kits $99, W/ $179. 2W continuous duty. TCMX, 2 & Xtal oven options available.
- **TASL** for 18M, 6M, 2M, 156-174, 220 MHz.
- **TA451** for uhf. FCC type accepted for commercial bands.
- **Call for latest information on 900 MHz transmitters.**
- **VHF & UHF AMPLIFIERS.** For FM, SSB, ATV. Output from 10 to 50 Watts. Several models, kits starting at $79.

R144/R220 FM RECEIVERS for 2M, 156-174, or 220 MHz. GaAs FET front end, 0.12uV sensitivity! Both crystal & ceramic filters plus helical resonator front end for exceptional selectivity: >100dB at 12kHz (best available anywhere)! Flutter-proof squelch. AFC tracks drifting transmitters.
- Kit $149, W/ $229.
- **R451 UHF FM RCVR**. Similar to above. Tuned line front end, 0.25uV sens. (0.1uV with optional hel. res. preamp). Kit $149, W/ $229.
- **R961 FM RCVR FOR 900 MHZ**. Triple-conversion, GaAs FET front end, 0.2uV sens. Kit $169, W/ $259.
- **R76 ECONOMY VHF FM RCVR** for 18M, 6M, 2M, 220. Without hel. res or afc. Kits only $129.

FCC TYPE-ACCEPTED TRANSMITTERS & RECEIVERS AVAILABLE FOR HIGH-BAND AND UHF. CALL FOR DETAILS.

NEW COR-4
- Complete COR and CWD all on one board for easy construction. CMOS logic for low power consumption. Many new features. EPR4 programmed; specify call letters. $99

NEW TD-3 SUBAUDIBLE TONE DECODER/ENCODER.
- $39

RECEIVING CONVERTERS
- **Antenna Receiver Input Range Output**
 - 28-30 144-148
 - 28-30 148-154
 - 28-30 154-160
 - 28-30 160-166

HAMTRANICS, INC.
- 65-H MOUL ROAD • HILTON NY 14468-9535
- Phone: 716-392-9430 HAMTRANICS* is a registered trademark

GaaS FET PREAMPS

LNG -(*)
- GaAs FET PREAMP
- **ONLY $59! Wired/tested**
- **FEATURES:**
 - **Very Low Noise:** 0.7dB VHF, 0.8dB UHF
 - **High Gain:** 13-20dB, depending on frequency
 - **Wide Dynamic Range:** to resist overload
 - **Stable:** new-type dual-gate GaAs FET
 - Specy tuning range desired 26-30, 46-56, 137-150, 150-172, 210-230, 400-470, or 800-960 MHz.

LNW -(*)
- MINIATURE GaAs FET PREAMP
- **ONLY $24/kit.**
- **$39 Wired/tested**
- GaAs FET Preamp similar to LNG, except designed for low cost & small size. Only 5/8"W x 1-5/8"L x 3/4"H.
 - Easily mounts in many radios.
 - Specy tuning range desired 25-35, 35-55, 55-90, 90-120, 120-150, 150-200, 200-270, or 400-500 MHz.

LNS -(*)
- **IN-LINE PREAMP**
- **ONLY $199/kit.**
- **$99 Wired/tested**
- GaAs FET Preamp with features similar to LNG series, except automatically switches out of line during transmit. Use with base or mobile transceivers up to 25W.
 - Specy tuning range desired 120-175, 200-240, or 400-500 MHz.

HELICAL RESONATOR PREAMPS
- **LOW-NOISE PREAMPS** with helical resonators reduce intermod & cross-band interference in critical applications.
 - **MODEL H4A** *, $149 vhf, $84 uhf.
 - Specy tuning range desired 142-150, 150-165, 165-174, 213-233, 410-454, or 454-475.

ACCESSORIES

COR-3 REPEATER CONTROLLER kit. Features adjustable tail & time-out timers, solid-state relay, courtesy beep, and local speaker amplifier. $49

CWD kit. Diode programmed, adjustable tone, speed, and timer, to go with COR-3. $39

NEW COR-4 kit. Complete COR and CWD all on one board for easy construction. CMOS logic for low power consumption. Many new features. EPR4 programmed; specify call letters. $99

NEW TD-3 SUBAUDIBLE TONE DECODER/ENCODER kit. $24

TD-2 DTMF DECODER/CONTROLLER kit. Full 16 digits, with talk-cancel transmitter. Can turn 5 functions on/off. Great for selective calling, tool. $79

AP-3 AUTOPATCH kit. Use with above for repeater autopatch. Reverse patch and phone line. Remote control board. $79

AP-2 SIMPLEX AUTOPATCH
- $39

MO-202 FSK DATA MODULATOR
- Kit. Run up to 1200 baud digital signals through any fm transmitter with full handshakes, Radiolink computers, telemetry gear, etc. $39

DE-202 FSK DEMODULATOR
- Kit. For receive end of link. ... $39

9600 BAUD DIGITAL RF LINKS. Low-cost packet networking system, consisting of new MO-96. Modern and special versions of our 220 or 450 MHz FM Transmitters and Receivers. Interface directly with most TNC’s. Fast, diode-switched PA’s output 15 or 50W. Use for radio on the right system for your application!

RECEIVING CONVERTERS
- **Antenna Receiver Input Range Output**
 - 28-30 144-148
 - 28-30 148-154
 - 28-30 154-160
 - 28-30 160-166

Send $1 for 36 page catalog by return mail.
- (Send $2.00 or 4 IRCs for overseas mailing)

Order by phone or mail
- Min $3 & H per order

Use Visa, Mastercard, Check, or UPS COD.
Examples of coaxial-type antenna tuners: (A) half-wavelength adjustable transformer; (B) three-eighths wavelength adjustable transformer; (C) three-eighths wavelength adjustable transformer using coaxial cable.

TABLE 1

<table>
<thead>
<tr>
<th>Dimensions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Box</td>
<td>5.75” x 4.5” x 1”</td>
</tr>
<tr>
<td>Coax</td>
<td>15.275”</td>
</tr>
<tr>
<td>Trimmers</td>
<td>6 to 60 pF</td>
</tr>
</tbody>
</table>
ICF-2010 RECEIVER
Air: 116-136 MHz
FM: 76-108 MHz
AM: 150 kHz-30 MHz
$344.95
Cash or Check Price

SONY
ICF-2010
RECEIVER
Air: 116-136 MHz
FM: 76-108 MHz
AM: 150 kHz-30 MHz
$344.95
Cash or Check Price

T.E.L.-C.O.M
Electronic Communications
NEW ENGLAND’S FACTORY-AUTHORIZED SALES & SERVICE
FOR
KENWOOD
Also displaying the popular accessories needed to complete a HAM STATION...
ARRL PUBLICATIONS • AEA PRODUCTS • AMPHENOL
• ALPHA DELTA • ASTRON • AUSTIN ANTENNAS • AVANTI
• BELDEN • BENCHER • B & W • DAIWA • ALINCO
• HUSTLER • KLM • LARSEN • MIRAGE • ROHN
• TELEX/HY-GAIN • TOKYO HY-POWER LABS
• TRAC KEYERS • VIBRopleX • WELZ • ETC.
OPEN SIX DAYS A WEEK WELCOMED
Telephone 508/486-3400, 3040
675 Great Rd., (Rte. 119) Littleton, MA 01460
1¼ miles from Rte. 495 (Exit 31) toward Groton, Mass.

N6KW QSL Cards
The finest QSL Cards at reasonable prices. Basic Cards, map cards, cartoon cards, photo cards and more. Your idea converted to ink or use standard designs. 747 ink colors, any card stock. Photos b/w or beautiful color. Have cards that fit your style. FREE SAMPLES - postage appreciated.

KW Litho - Dept. HR PO. Box 17390
(817) 332-3658 Ft. Worth, TX 76102

Quick Interconnect
- Foil-Printed - Fast - Ganderfree - Color-coded - XA Silver - Reliable -
Switch from mobile to shack in seconds. Interchange power supplies and rigs in moments. Interconnect battery charger, controller, solar panel, generator backup / conventional power instantly in any combination. Create custom multi-pole connectors in seconds w/ lego-like stacking Easy clip/flip/lock assembly. No special tools required.

“NEW” SUPER LINEAR ANTENNA SYSTEM

MODEL	FREQUENCY	GAIN	POWER	LENGTH	USE	PRICE
CA-2x4z	146 MHz	8.2dB	200 W	15’4” Base	$192.85	
446 MHz	11.5dB					
CA-1243E	446 MHz	8.5dB	100 W	4’8” Base	$85.95	
1.2GHz	10.1dB					
CA-901 | 146/446/1.26GHz | 3/6/8.4dB | 150 W | 3’5” Base | $91.55
CFC-771 | 900-930MHz | 7.14dB | 50 W | 4’5” Base | $97.40
CA-1221S | 1260/1300 | 15.5dB | 100 W | 7’8” Base | $151.90
CA-2422S | 2400/2450 | 15.3dB | 100 W | 4’8” Base | $173.55

NEW! SWR Power Minimeters

CM 200 | 144 - 150 MHz | $62.50
CM 300 | 200 - 230 MHz | $62.50
CM 400 | 420 - 460 MHz | $62.50
CM 900 | 900 - 930 MHz | $93.50
CM 1200 | 1200 - 1300 MHz | $93.50

DUAL & TRI BAND MOBILE ANTENNA’S DUXPLEXERS - TRIPLEXERS
Dealer inquiries welcomes.

Specifications and prices subject to change without notice or obligation.

(714) 630-4541
1275 N. Grove St., Anaheim, CA 92806
HAM RADIO BOOKSTORE
NEW BOOK PAGE

1989 EDITIONS

1989 RADIO AMATEUR CALLBOOKS

NORTH AMERICAN EDITION
Fully updated and edited to include all the latest FCC and foreign amateur callsigns and addresses for hams in North America. Includes plenty of handy operating aids such as time charts, QSL bureau addresses, census information and much more. Calls from Northern Canada to tropical Panama. Now is the time to buy a new callbook when you get the most use out of your investment. @1988 1672 pages
CB-US99 Softbound $25.95

INTERNATIONAL EDITION
QSL's are a very important part of our hobby. All sorts of awards, including the coveted DXCC, require confirmation of contact before the award can be issued. Of special interest, addresses are being added daily for hams in the USSR and other countries. While in no means complete, it is a start and will be of tremendous help in getting QSLs. Handy operating aids round out this superb book value. @1988 1672 pages
CB-F99 Softbound $28.95

BUY EM BOTH SPECIAL
Reg. $54.90 Only $49.95 SAVE $4.00

THE 1989 ARRL HANDBOOK
Revised and updated with the latest in Amateur technology, now is the time to order your very own copy of the world famous ARRL HANDBOOK. In addition to being the definitive reference volume for your shack, there are plenty of projects for every one of America's hams - from antennas for every application to the latest state-of-the-art projects - you'll find it all in the 1989 HANDBOOK. Over 1100 pages @1988
AR-1989 Hardcover $20.95

ANTENNAS by John Kraus, WA3XJ
Kraus's classic antenna book has been extensively revised and updated to reflect the latest state-of-the-art designs and more than 1,000 illustrations and nearly 600 worked examples and problem solutions. Chapters cover basic concepts, point sources and point source arrays, modes, broadband and frequency independent antennas, special applications and tons more of information. Also includes 5 Appendices: Reference Tables, Computer programs, books and videos, answers to problems and a problem supplement. College level text for the Amateur 2nd edition 917 pages @1988 MN-3442
HARDBOUND $39.95

ALL ABOUT VHF AMATEUR RADIO
by Bill Orr, NWSAI
Are you ready for exciting 6 meter DXing during the next Sunspot peak? Tried of 20 meters and looking for a new operating challenge? Well look no further for the bands above 30 MHz! Bill Orr's new book is full of helpful information, tips and ideas to get you the most out of VHF/UHF operation. Propagation, antennas, repeaters, Moonbounce, OC-SAR plus much more are all fully covered in Orr's famous easy-to-read style. Also includes helpful section on TVI and how to suppress it @1988, 1st Edition.
RP-VHF Softbound $11.95

1989 WORLD RADIO TV HANDBOOK
Every SWL or radio enthusiast should have a copy of this book by their operating position - it is loaded with all the latest callsigns, frequencies and other important information for radio and TV broadcasting around the world. Covers LF, MF, shortwave and TV services. Also has equipment reviews and other special features. @1988, 43 Edition
GL-WMTV89 Softbound $19.95

 PACKET USER'S NOTEBOOK
by Buck Rogers, K4AAB
This new book has been put together by CO D. Packet editor and packet pioneer, Buck Rogers, K4AAB. Written with the beginner in mind, the Packet Notebook is full of handy tips, hints and suggestions on how to get the most out of your packet system. Includes a brief history, a how to get started section, standards, flow control information, information on obtaining your call, how to set up a network, and more. Good book to have on every packeter's desk @1989 1st Edition, 132 pages
CD-PKT Softbound $9.95

1989 ANTENNA BUYER'S GUIDE
edited by Peter D. Dhill, W2CD, CD Magazine
Looking for the latest in antennas? It's all here in the CD Antenna Buyer's Guide. Glimpsed full of articles, product information and who's who section listing all of the antenna manufacturers and importers. Get your now and get to work on your 1989 antenna projects - before winter comes! @1989
CD-ANTI Softbound $3.95

GOLDEN CLASSICS OF YESTERYEAR
A Collection of Radio and TV History by Dave Ingram, K4TWJ
Ingram's new book helps you recapture the fun and excitement of Amateur Radio's past in this special collection of tales, rigs and circuits. Push-pull TWT transmitters, one tube Hartleys, and antennas that blink with your CW are part of this fun-to-read book. Beginners will find this book fascinating reading - old timers will relive their past and get back to the roots of Amateur Radio @1989 60 pages, 1st Edition
MF-1989 Softbound $9.95

OSCAR -- Satellite Review
by Dave Ingram, K4TWJ
This anthology of articles on OSCAR is full of important to-have OSCAR information. Also includes up-to-date additions and late breaking news from the satellite world. Written in Ingram's straight-forward, easy-to-read style, this book will get you up and running with the minimum of hassle. Includes OSCAR quick start, help designed to get you on OSCAR today 1989 1st edition. 44 pages
MF-1989 Softbound $7.95

GRAY LINE DX ADVANTAGE (MS-DO5 Computers)
Great computerized tool for predicting Gray Line openings. Displays the overhead position of the sun as it passes over a detailed map of Earth's surface. Displays UTC time in any 24 0H. Includes high speed mode to change time and date. This handy operating aid will help you tremendously as you work towards DXCC Honor roll.
MF-DOR Softbound $29.95

AMATEUR RADIO STUDY GUIDES
by Bob Lanz, N4SL
Studying for Amateur exams sure has changed in the last twenty years! Using your computer and VQR you can get classroom instruction right in your own house! Latest FCC exam syllabus split for easy study. Software Tape
Novice BL-NS $14.95 BL-NT $19.95
Technician BL-TS $14.95 BL-TT $19.95
General BL-GS $14.95 BL-GT $19.95
Advanced BL-AS $19.95 BL-AT $24.95
Extra BL-ES $19.95 BL-ET $24.95

THE ARRL ELECTRONICS Data Book
by Doug Devore, W1YBF
Have you ever found yourself searching for the conversion factor between meters and feet, the diameter of 30 AWG wire at any other obscure fact? If you drive much! The ARRL's new DATA BOOK was written with the ham in mind. Noted Author D. Devore gives you the benefits of his years of experience in this handy reference manual. Fully updated check full of the latest information and keeps you informed at all times. Helpful for all amateurs, RT engineers, technicians and experimenters.
1989 2nd Edition
ARRL Softbound $11.95

UHF COMPLEMENT Part III and IV
Edited by D. Weinor, DJSHO
This is one of the most exciting aids at ballot in Amateur Radio. It covers two years of work and current theory - it's chock full of practical, tested designs from some of Europe's most noted hams. Subjects covered include: transceiver antennas and IF, pre-drivers, IF transformers, lowpass and receive converters, power amplifiers and much more. This book is guaranteed to be a best seller. Order yours today. (This book is important and supplies will vary due to shipping delays) @1989 1st Edition
KW-UHF3 Softbound $79.95

1989-1990 ARRL REPEATER DIRECTORY
Includes all the latest repeater listings available. Lists 13,000 repeaters, 2,200 duplexers, and 475 beacon stations from 14 MHz to 24 GHz. Get your copy of this new book today @1989
AR-RE Softbound $4.95

ARRL CODE TAPES
Four new sets of code practice tapes from the ARRL. Each set consists of two 90 minutes cassettes and gives you almost 3 full hours of practice. Great way to study when you can't get on the air.
AR-1 5-10 WPM $9.95
AR-2 10-15 WPM $9.95
AR-3 15-22 WPM $9.95
AR-4 13-14 WPM $9.95

THE FABULOUS RADIO NBY
by Randy Westworth, K8UJ
Here is the story of one of WW I's most important radio stations. Written from the first hand stories and actual experiences of the man who operated NBY includes technical descriptions of the equipment and antennas. Great history reading.
1984 1st Edition 34 pages
BH-NBY Softbound $4.95

NEWNES Radio Amateur and Listener's Pocket Book
by Steven Money, G3FXZ
Unique collection of useful information for the Radio Amateur and his listener. Full of handy to-find information includes codes, symbols, formulae, frequencies, in addition to AMTOR, packet and SSTV. Handy pocket book size @1987 1st edition. 160 pages.
CRC-RA Softbound $19.95

WIRELESS ANTENNA HISTORY
A Vertical design primer
by Frank Ameros, W8RZ
Starts with a well written history of radio's beginnings, nine chapters cover radio from the first pioneers through the beginnings of radio astronomy. The vertical prime is a complete section on how to design and optimize a vertical antenna. Full of explanations and handy hints not found elsewhere. @1986 1st Edition. 140 pages.
GL-OIF Softbound $16.95

HIANTS and KINKS for the Radio Amateur
edited by KE8C & K7TM
This is the twelfth collection of ideas taken from QST's most popular columns. Hints and Kinks. Other's hands on experience can save you hours with suggestions on how to build a better hamstation. Includes ideas on station accessories, operating, computers, antennas, small secrets and much more! Great new edition @1989 12th edition. 300 pages
AR-HK Softbound $19.95

RADIO AMATEUR CALLBOOK SUPPLEMENT
by NA-9X and DX Listings
Includes all the latest calls and address changes for hams around the world. Invaluable and to getting covered QST's from rare DX stations. This is the only way to be fully up to date. Over 300 pages @1989
CB-SUP89 Softbound $5.95

NFRJ'S SECOND OP MANUAL Version
Available in 80 line mode format for most computerized rigs. Fully updated with all the latest挤出, cope, 172, wide screen and other information. TRY YOUR S TONDA 2nd edition. @1989
CB-ZOR $9.95

Please enclose $3.75 for shipping and handling

GREENVILLE, N. H. 03048
(603) 878-1441

88 Ham Radio / July 1989
Before mounting the coax, prepare each end by stripping off 0.5” of the insulation and 0.25” of the shield. Take 1” of no. 20 bare wire, wrap part of it around the exposed shield, and solder it carefully in place. Too much heat here will melt the insulation. This should leave about 0.5” of free end for attaching the assembly to the chassis. Solder a 0.5” piece of the same type wire to the center conductor. Perform this cable preparation at each end of the four pieces of coax you’ve cut to length.

Your next step is to construct the combination chassis/box for the tuners. I gave up on the prefabricated metal boxes offered for construction projects years ago, in favor of using double-sided circuit board. These boards are widely available from electronics catalogs, as well as “surplus” electronics stores. They’re inexpensive, tough, and easy to work. They also let you make enclosures which fit your exact requirements. I cut the circuit board with a carbide saw blade in my scroll saw. A word of caution here: the fiber glass core of the circuit board is murder on conventional steel saw blades, but the carbide ones seem to last forever. Once they are cut to size, it’s a simple matter to solder the overlapping sections together. I also soldered 6/32 brass nuts in the corners so I could use a removable lid.

Cut the large holes for the SO 239 sockets prior to assembly. Be sure to keep the coax off the chassis at a height equal to the SO 239 center pin. In my first configuration, the coax was almost flush with the chassis and arcing occurred whenever the power level got over about 5 watts. You must mount the trimmers with due regard for short leads and stiffness, since you will be pushing against them when they are being tuned. They should also be positioned directly under the holes cut in the lid to permit accurate insertion of the tuning tool.

Connect the tuners to the antenna on one side and the SWR/Power Meter on the other. Hook the rig into the SWR/Power Meter on the opposite side. Set the rig in its tune or CW position, reduce the drive to a very low level, and fire it up. I started with the trimmers in their minimum capacity position, and proceeded to adjust them progressively from the antenna side for minimum SWR. Once the SWR is at a tolerable level, increase the drive to max slowly, tweaking the trimmers as necessary. Don’t panic if you seem to run out of adjustment room with the trimmers in either maximum or minimum position. Bend the coax gently up or down towards the chassis and you’ll find a spot where the trimmers have sufficient range to permit a deep null in the SWR as read off the meter. Balancing all of the adjustments is particularly sensitive on 70 cm. Keep the relative fragility of the trimmers in mind, and don’t use too much muscle.

I found that my setup stays at about 1.2:1 from 144 to 148 MHz on 2 meters. I acheived comparable results in the 435-MHz band. "

REFERENCE

*For power levels greater than ~ 10 watts, I recommend using the following trimmers from Fair Radio Sales Co., P.O. Box 1105, 1016 E. Eureka St., Lima, Ohio 45802: 3D9025V99 (3.2 - 25 pF) and 3D9100V (10 - 100 pF)."
New Products

Nady EasyTalk™ Two-Way Radios

Nady Systems’ line of VHF portable radios brings high-quality transceivers to all two-way radio users. The full-featured portables all list for under $300.

The VHF-40 is a 5-watt/six-channel transceiver with a 5 to 7-mile range, priced at $249. It uses a diode matrix to synthesize the signal from one crystal, and then programs it to function on up to six different frequencies. It can be programmed using the silicon diodes and the instructions included. The transceiver is powered by a battery pack that uses either rechargeable NiCd or standard AA batteries.

The VHF-30 is a miniature 5-watt/four-channel radio that transmits at a 5 to 7-mile range. It sells for $299. The unit weighs just 15 ounces and has a rugged, impact-resistant case which resists weather and contaminants.

Nady’s VHF-20 is a 2-watt/two-channel model listing for $249. The pocket-sized unit has a high/low switch that changes the signal from 2 to 0.5 watts, conserving the battery pack when maximum range isn’t needed.

Nady VHF radios come with a “rubber duck” antenna with a BNC connector, an AC/DC wall charger, a stainless steel belt clip, a holster-style carrying case, and a NiCd rechargeable battery pack. Nady also offers customizing options for the transceivers, including a Continuous Tone Coded Squelch System (CTCSS), a remote microphone/speaker, a high-speed desk charger, and a heavyweight leather carrying case.

For more information contact Nady Systems, Inc., 1145 65th Street, Oakland, California 94608. Phone: (415)652-2411.

Circle #307 on Reader Service Card.

New catalog from Contact East

A complete source book of products for testing, repairing, and assembling electronic equipment is now available from Contact East at no charge. The new, 132-page 1989 General Catalog contains products for engineers, managers, and technicians. All products are guaranteed. Contact East’s “same-day shipment” policy assures fast delivery; orders received by 3 p.m. are shipped by 5 p.m. For your free copy and one year of technical supplements, write to Contact East, PO Box 786, 335 Willow Street, North Andover, Massachusetts 01845.

Circle #308 on Reader Service Card.

MFJ-850 AC Line Voltage Monitor

The new MFJ-850 provides protection from low-voltage “brown-out” conditions that can damage your electrical equipment. Just plug it in; it tells you at a glance when your line voltage is at a low brown-out level. The expanded scale reads from 95 to 135 volts; color coding makes across-the-room reading easy. Leave it plugged in permanently for constant monitoring. It comes with MFJ’s one-year unconditional guarantee.

The monitor’s compact size (2-1/4 x 2-1/4 x 1-1/2 inches) allows for at-home or mobile use. Use it to check computer/telephone or video setups, portable generators, and temporary electrical setups.

For more information contact MFJ Enterprises, Inc., PO Box 494, Mississippi State, Mississippi 39762. Phone: (601)323-5869. To order call toll free at (800)667-1800.

Circle #309 on Reader Service Card.

New Surge Protection from Kalglo

Kalglo Electronics Company, Inc. announces the new TeleSpike™ series surge suppressor power line filters with integral protection for RJ45/RJ11 modular telephone jacks. They are specially engineered to meet the protection needs of FAX machines, modems, electronic telephones, and other devices using modular jacks.

The “Mini-T” is a compact, two-outlet plug-in system complete with modular extension cord. Using Kalgo’s Premium Protection™ circuitry, the Mini-T has full series/parallel load-bearing filtering for maximum EMI/RFI protection. The Mini-T is rated at 140 volts clamping, with a total of 436 joules energy absorption. The suggested list price is $85.95.

For more information contact Kalgo Electronics Company, Inc., Dept. Mini-T, 6584 Ruch Road, East Allen Township, Bethlehem, Pennsylvania 18017-9359. Phone: (215)837-0700.

Circle #310 on Reader Service Card.

ICOM’s new wideband SSB filter for the IC-781

ICOM announces the FL-103 wideband SSB filter for the IC-781 HF transceiver. The 2.8-kHz SSB filter fits in the 9-MHz IF of the IC-781 and provides improved SSB audio fidelity.

The FL-103 is currently available for $72.50. Contact ICOM America Inc., 2380 116th Avenue N.E., PO Box C-90329, Bellevue, Washington 98009-9029.

Circle #311 on Reader Service Card.
The VHF MOSFET power amplifier pioneer, has some new products; Antennas for special needs.

HERE NOW

The "Armchair Antenna", improves the range of hand helds, or scanners, using "rubber duckies" or 1/4 wavelength whips.

Adjustable for any frequency from 144 to over 500 MHz, this dipole needs no ground plane, is used horizontally or vertically and, at 1/2 wavelength, is more efficient than short antennas. A balun reduces pattern distortion for "boresight" aiming.

COMING SOON

For the RV'er, a tilt-up telescoping HF vertical that adjusts to any frequency from 3 to 30 MHz.

The fiberglass mast extends to full height for all frequencies. The antenna length is varied inside the mast with a 12 Volt motor, also inside the mast, and can be controlled from inside the RV.

Two versions are coming: one for small RV's and vans and the second for large RV's.

For Information On Our Complete Line See Your Local Dealer Or Call Factory Direct
P.O. Box 8979 • Newport Beach, CA 92658 • (714) 760-3622

INTRODUCING...

THE NEW AZIMUTH QSL LIBRARY

New Handsome Custom Albums To Collect, Protect & Organize Your Hard-Earned QSL Cards...Plus Special Albums for DXCC, WAS/WAC, & WAZ Radio Awards

FREE BONUS WITH TWO OR MORE ALBUMS!

Get The New Azimuth AwardsBase Tracking Software for the IBM-PC ($24.95 value)
Free! Exclusive new program helps you stay on top of contacts by band, cards sent and received and much, much more to monitor your radio award progress.

Azimuth QSL Library—Each just $19.95 plus $2.50 shipping & handling
Specify 1) DXCC 2) WAZ 3) WAS/WAC 4) Standard Album Extra 20 Page Paks Just $12.95 ($2.50 S&H)
Enclose check or money order (Cal. Res. add 6.5% tax.)
VISA or MasterCard (Foreign orders triple S&H)

Credit Card Orders Call Today Toll Free
Nationwide 1-800-882-7388

Call or Send For Your Azimuth QSL Award Library Today!

SEND TO: Azimuth Awards Library, Dept. Q1
11845 W. Olympic Blvd., Suite 1100, Los Angeles, CA 90064
1-213-743-1332 for Information

Reader Service CHECK—OFF Page 98
Ham Mart's guide to help you find your local Amateur Radio Dealer

CALIFORNIA
ATECH ELECTRONICS
1033 Hollywood Way
Burbank, CA 91505
(818) 845-9203
New Ham Store and Ready to Make a Deal!

JUN'S ELECTRONICS
3919 Sepulveda Blvd.
Culver City, CA 90230
(213) 390-8003
(800) 882-1343 Trades Habla Espanol

COLORADO
ALLIED APPLIANCE & RADIO
4253 South Broadway
Englewood, CO 80110
(303) 761-7305
1 (800) 321-7305 (Orders only)
Rocky Mts Amateur Shortwave Specialists, Ten-Tec, Yaesu, JRC-NRD, Sony, MFJ, KLM, and other fine gear New and used. Visa/MC. Antennas, books, discount prices too!

COLORADO COMM CENTER
525 East 70th Ave.
Suite One West
Denver, CO 80229
(303) 288-7373
(800) 227-7373
Stocking all major lines Kenwood Yaesu. Encomm, ICOM

CONNECTICUT
HARTY ELECTRONICS
500 Ledyard St. (South)
Hartford, CT 06114
(203) 527-1881
Call today. Friendly one-stop shopping at prices you can afford.

DELAWARE
AMATEUR & ADVANCED COMMUNICATIONS
3208 Concord Pike
Wilmington, DE 19803
(302) 478-2757
Delaware's Friendliest Ham Store.

DELAWARE AMATEUR SUPPLY
71 Meadow Road
New Castle, DE 19720
(302) 328-7728
(800) 441-7008
Icom, Ten-Tec, Microlog, Yaesu, Kenwood, Santec, KDK, and more. One mile off i-95, no sales tax.

FLORIDA
AMATEUR ELECTRONIC SUPPLY
1898 Drew Street
Clearwater, FL 33757
(813) 461-4267
Clearwater Branch
West Coast's only full service Amateur Radio Store.
Hours Mon.-Fri. 9-5:30, Sat. 9-3

AMATEUR ELECTRONIC SUPPLY
621 Commonwealth Ave.
Orlando, FL 32803
(305) 894-3238
Fla. Wats: 1 (800) 432-9424
Outside Fla: 1 (800) 327-1917
Hours Mon.-Fri. 9-5:30, Sat. 9-3

HAWAII
HONOLULU ELECTRONICS
819 Keeaumoku Street
Honolulu, HI 96814
(808) 949-5564
Kenwood, ICOM, Yaesu, Hy-Gain, Cushcraft AEA, KLM, Tri-Ex Towers, Fluke, Belden, Astron, etc.

IDAHO
ROSS DISTRIBUTING COMPANY
78 South State Street
PO. Box 234
Preston, ID 83263
(208) 852-0830
Mon. 9-2; Tues.-Fri. 9-6; Sat. 9-2
Stock All Major Brands Over 7000 Ham Related Items on Hand

ILLINOIS
ERICKSON COMMUNICATIONS, INC.
5456 N. Milwaukee Avenue
Chicago, IL 60630
(312) 631-5181
Hours: Mon. - Fri. 9-5:30, Sat. 9-3

INDIANA
THE HAM STATION
220 N. Fulton Avenue
Evansville, IN 47710
(800) 523-7731
(812) 422-0231
ICOM, Yaesu, Ten-Tec, Cushcraft, Hy-Gain, AEA & others.

MARYLAND
MARYLAND RADIO CENTER
8576 Laureldale Drive
Laurel, MD 20707
(301) 725-1212
Kenwood, Ten-Tec, Kantronics. Full service dealer.
Mon.-Fri. 10-7, Sat. 9-5

MASSACHUSETTS
TEL-COM, INC.
675 Great Road, Rte. 119
Littleton, MA 01460
(508) 486-3400
(508) 486-3040
The Ham Store of New England You Can Reiy On.

MISSOURI
MISSOURI RADIO CENTER
102 NW Business Park Lane
Kansas City, MO 64150
(800) 821-7323
Missouri, (816) 741-8118
ICOM, Kenwood, Yaesu
Same day service, low prices.

NEVADA
AMATEUR ELECTRONIC SUPPLY
1072 N. Rancho Drive
Las Vegas, NV 89106
(702) 647-3114
Dale Porray "Squeak." AD7K
Outside Nev: 1 (800) 634-6227
Hours M-F 9-5:30, Sat. 9-3

NEW HAMPSHIRE
RIVENDELL ELECTRONICS
8 Londonderry Road
Derry, N. H. 03038
(603) 434-5371
Hours Mon.-Sat. 10-5; Thurs. 10-7
Closed Sun/Holidays

NEW JERSEY
ABARIS SYSTEMS
276 Oriental Place
Lyndhurst, NJ 07071
(201) 939-0015
Don WB2GPU
ARRL, Astatic, Astron, B&W, Belden, Bencher, Hustler, Kenwood, Larson, RF Concepts, Tonna and much, much more!
Tues.-Fri. 10AM-7:30PM
Thurs. 10AM-9:00PM
Sat. 10AM-4:00PM
VISA/MC

KJI ELECTRONICS
66 Skytop Road
Cedar Grove, NJ 07009
(201) 239-4389
Gene K2KLJ
Maryann K2RVH
NEW YORK
BARRY ELECTRONICS
512 Broadway
New York, NY 10012
(212) 925-7000
New York City's Largest Full Service Ham
and Commercial Radio Store.
VHF COMMUNICATIONS
280 Tiffany Avenue
Jamestown, NY 14701
(716) 664-6345
Open 8:00 AM till 5:30 PM
Evenings, Saturday and Sunday by appoint-
ment. Western New York's finest Amateur

OHIO
AMATEUR ELECTRONIC SUPPLY
28940 Euclid Avenue
Wickliffe, OH 44092 (Cleveland Area)
(216) 585-7388
Ohio Wats: 1 (800) 362-0290
Outside Ohio 1 (800) 321-3954
Hours Mon-Fri. 9:30-6. Sat. 9-3

DEBCO ELECTRONICS, INC.
3931 Edwards Road
Cincinnati, OHIO 45209
(513) 531-4499
Mon.-Sat. 10AM-9PM, Sun. 12Noon-6PM
We buy and sell all types of electronic parts.

TEKTRONIX SCOPE
AV/USM-281C (mil-TEK
7603N115) Oscilloscope with
8x10 cm display and two AM
5195 (7615N11) single trace and
one TD-1085 (7615N11) dual
time base plug-ins. Performs to
56 MHz but 100 MHz mainframe
accepts standard 7000-series
plug-ins for full versatility. De-
flection 5mv to 10V/div in 11 steps. Sweep 0.05 us to 5
S/div in 25 steps; delay to 0.5 s/div. 11.5x9.7x25.2. 52
lbs sh. Used-checked w/book $495
WRITE or CALL for probe and adapter availability!
Prices F.O.B. Lima, O. - VISA, MASTERCARD Accepted.
Allow for Shipping - Write for latest Catalog
Address Dept. HR - Phone 419/227-6573

FAIR RADIO SALES
1016 E EURKA • Box 1103 • LIMA, OHIO • 45802

UNIVERSAL AMATEUR RADIO, INC.
1280 Aida Drive
Reynoldsburg (Columbus), OH
43068
(614) 866-4267
Featuring Kenwood, Yaesu, Icom,
and other fine gear. Factory autho-
ized sales and service. Shortwave
specialists. Near I-270 and airport.

PENNSYLVANIA
HAMTRONICS,
Div. of Trevose Electronics
4033 Brownsville Road
Trevose, PA 19047
(215) 357-1400
Same Location for over 30 Years

TEXAS
K COMM dba THE HAM STORE
5707A Mobud
San Antonio, TX 78238
(512) 680-6110
(800) 344-3144
Stocking all major lines. San Antonio’s Ham
Store. Great Prices — Great Service. Factory
authorized sales and service.
Hours: Mon. Fri. 10-6; Sat. 9-3

MADISON ELECTRONICS SUPPLY
3621 Fannin
Houston, TX 77004
(713) 520-7300
Christmas?? Now??

MISSION COMMUNICATIONS
11903 Aleef Clodine
Suite 500 (Corner Harwin & Kirkwood)
Houston, Texas 77082
(713) 879-7764
Now in Southwest Houston—full line of
equipment. All the essentials and extras for
the “ham.”

WISCONSIN
AMATEUR ELECTRONIC SUPPLY
4828 W. Fond du Lac Avenue
Milwaukee, WI 53216
(414) 442-4200
Wisc. Wats: 1 (800) 242-5195
Outside Wisc: 1 (800) 558-0411
Mon.-Fri. 9:30-6, Sat. 9-3

Dealers:
YOU SHOULD BE HERE TOO!
Contact Ham Radio now for
complete details.

Factory-less,
Jumper-less,
ROM-less programming.

With the new S-COM 5K Repeater
Controller, you'll be able to configure
your repeater remotely—using DTMF
commands. Only the 5K offers this
capability for just $195, wired and tested.

"The Big Signal Dandy
Dipole™ Antenna Kit"
Dandy Dipole™ Kit w/Insulator includes:
- 1-Dandy Dipole™ book of instructions
- 1-pair endstuds
- 135° #14-7 strand copper wire
- 1-W2AU center insulator
TOTAL COST: $25.00 PLUS $3.50 for UPS

Dandy Dipole™ Kit w/W2AU 1:1 Balun includes:
- 1-Dandy Dipole book of instructions
- 1-pair endstuds
- 135° #14-7 strand copper wire
- 1-W2AU 1:1 balun
TOTAL COST: $30.00 PLUS $3.50 for UPS
Master/VISA, or Money Order, No C.O.D. please!!
AT YOUR LOCAL DEALER SOON!!
IN A HURRY, ORDER DIRECT FOR
IMMEDIATE DELIVERY
Call: (508) 475-7831 or write

S-COM Industries
P.O. Box 1718
Loveland, CO 80539
(303) 663-6000

UNADILLA ANTENNA MANUFACTURING CO.
P.O Box 4215 BV • Andover • MA • 01810
COMING EVENTS

ACTIVITIES — "Places to go . . ."

SPECIAL REQUEST TO ALL AMATEUR RADIO PUBLICITY COORDINATORS: PLEASE INDICATE IN YOUR ANNOUNCEMENTS WHETHER OR NOT YOUR HAMFEST LOCATION, CLASSES, EXAMS, MEETINGS, FLEA MARKETS, ETC., ARE WHEELCHAIR ACCESSIBLE. THIS INFORMATION WILL BE APPRECIATED BY OUR BROTHER/SISTER HAMS WITH LIMITED PHYSICAL ABILITY.

July 7: Colorado: Hamfest sponsored by the Western Colorado ARC, Colorado National Guard Armory, Grand Junction. 8 AM to 3 PM. For information contact Randy Marnes, 1409 21/2 S, Grand Junction, CO 81503. (303) 245-4205.

July 8-9: British Columbia: Maple Ridge Hamfest sponsored by the Maple Ridge ARC, 22282 128 Ave., Maple Ridge. 8 AM to 4 PM. For information contact Bob Houghton, VE2BHZ, 229 Maple Ridge, BC V2X 7G2.

July 9: Illinois: The DuPage ARC's 17th annual Hamfest/Concert, American Legion Post 91, 4000 Saratoga, Downers Grove. Gates open 8 AM. For tickets or reservations, contact SASE to Hamfest, W9DOP, PO Box 71, Clarendon Hills, IL 60514 or call (312) 985-0557 evenings or weekends.

July 9: New York: 9th annual Batavia Hamfest sponsored by the Batavia ARC, 145 Alexander Ave., Batavia. 8 AM to 4 PM. For information contact Gary A. Martin, PO Box 572, Batavia, NY 14020.

July 15-17: North Carolina: 17th annual Mid-Summer Swapfest sponsored by the Cary ARC, VFW Building, Reedy Creek Rd., Cary. 9 AM to 3 PM. For information contact Cary ARC, PO Box 54, Cary, NC 27511.

July 15: Maine: Union Hamfest, Union Fairgrounds, Union. Starts 8 AM. Sponsored by the Maine Ham Radio Association, c/o KAI1RF, PO Box 84, East Vassalboro, ME 04945.

July 16: New Jersey: SCARC sponsored by the Sussex County ARC, Sussex County Fairgrounds, Flaxton Road, frt Rt 206, Augusta. Doors open 6 AM. For information contact Dan Stock, K2OOL, Post Road, RD 4, Lake Hopatcong, NJ 07849. (201) 663-0677.

July 22-23: Colorado: Mountain Amateur Radio Club is sponsoring a hamfest, Red Rocks Campground in Pine National Recreation Area. Advance admission tickets must be purchased in advance. Ticket information: reservations write MARC, Box 1012, Woodland Park, CO 80866 or phone Joe Tufyia, N0CJM (719) 678-3641.

July 23: Illinois: The Amateur Cross Link Repeater's annual Hamfest, "The Hull," 1536 S. Halsted Avenue, Berwyn. 8 AM to 1 PM. For information contact SASE to Mrs. Mary Ann Bowman, 34825 West Street, IL 60404 or call (312) 712-5100.

July 28-30: Illinois: The Central States VHF Society's 23rd conference in Rolling Meadows. For information contact Chuck Clark, AF2Z, 4300 Walworth Dr., Wheeling, IL 60090. For caming information/reservations write MARC, Box 1012, Woodland Park, CO 80866 or phone Joe Tufyia, N0CJM (719) 678-3641.

July 28-30: Oklahoma: Ham Holiday sponsored by the Central Oklahoma Radio Amateurs, Lincoln Plaza Hotel Conference Center, Lincoln Plaza Hotel, Oklahoma City. Information contact John C. Bond, KG5G, OKC 632-4995. For caming information/reservations write MARC, Box 1012, Woodland Park, CO 80866. (312) 582-9776.

August 5-6: Florida: The 16th annual Greater Jacksonville Amateur Radio and Computer Show, Primrose Shopping Center, 9 AM to 5 PM Saturday and 9 AM to 5 PM Sunday. For information contact Greeter Jacksonville Hamfest Association, PO Box 10623, Jacksonville, FL 32207. Phone (904) 350-9193.

August 6: Virginia: The 39th annual Winchester Hamfest sponsored by the Shenandoah Valley ARC, Clarke County Fairgrounds, RFD 2, 7 miles west of Berryville, 7 AM to 3 PM. For information contact Joanne Blaker, WB2CMV at (703) 899-4788 or write SVARC, PO Box 139, Winchester, VA 22601.

October 1: North Carolina: JARS Fest '89, Benson American Legion Building, 301 N. Benson NC 27504. 8 AM to 4 PM. For ticket information contact Johnston Amateur Radio Society, PO Box 1154, Smithfield, NC 27577. (919) 994-0486, 984-5479.

OPERATING EVENTS

"Things to do . . ."

July 7-8: Special event station VE4HIF will operate from the International Hamfest, International Peace Garden on the border between the U.S. and Canada. QSL cards will be sent to those who work VE4X and VE4XN, Dave Smyd, 25 Queens Crescent, Brandon, Manitoba Canada R7B 1G1.

July 8: Hobbs, New Mexico. KD5SR will operate the 1st annual National Special Event (NRE), 0100 UTC. Sponsored by the New Mexico Dist. Royal Rangers, a Christian Scouting Organization. For certificate send QSL and large SASE to KD5SR, 1420 N. Tasker, Hobbs, NM 88240.

July 15: Governor John McKernan has signed a proclamation designating July 15 as Amateur Radio Day in the State of Maine. Special event station W1TC will operate from the Unum Hamfest to commemorate Amateur Radio Day.

July 15-22: Fort Amherst Historic Park, on P.E.I. The Boys Scouts of Canada are hosting Jamboree '89 and will operate from the Jamboree site all modes including packet and satellite. For certificate send QSL and small SASE to KD6FZ, 1420 N. Tasker, Hobbs, NM 88240.

July 19: Fishers Island Sound, NY. Tri-City ARC will operate from the fishing boat, "Lady Bishop", from 9 AM until 9 PM on July 19th at the 30th anniversary of Neil Armstrong's walk on the moon. Operators will be from the Neil Armstrong Air & Space Museum in Wapack National Fish & Wildlife Refuge. For certificate send QSL and $1 to JOE McKay, K1005, 105 Linden Ave., St. Mary's, OH 45885-1327.

July 23-27: The REACT ARC will operate a special event station in conjunction with the 2nd annual meeting of REACT and the 14th annual convention of the International Lower 40, 20, 10 and 15m Novice. For certificate send QSL, small SASE to REACT, c/o WB3QFY, POB 1033, Lancaster, PA 17603.

July 19-24: Fairbanks, Alaska. The Arctic ARC will operate special event station K4LKC, starting at 2000 UTC Thursday, July 19th and continuing until 2000 UTC Sunday, July 22nd in celebration of the 100th anniversary of the Alaska Stampede. For QSL card send to Arctic ARC, PO Box 3189, Fairbanks, AK 99701.

July 29-Aug 7: Eugene, Oregon. The Valley ARC will operate W7PXL, 0100 UTC to 0200 UTC July 29 and then from 0100 UTC to 0200 UTC August 7 to communicate with the world's Veteran's Track and Field Championships. For QSL card send to SASE to Valley ARC, PO Box 70314, Eugene, OR 97401.

LAUREL ARC (except December) Amateur expositions for all classes of license. Free pre-registration is required. Call (312) 705-1212, Madison Radio Center, 8576 Lauderdale Drive, Laurel, MD 20707.

August 19-21: North Coast ARC 1989 License Exams. 12:30 PM, Saturday and Sunday. The hotel is the Holiday Inn, 300 W. 106th St., in Chicago. For information contact the North Coast ARC, Box 9, Spearfishing, IL 60517.

THE MIT UHF REPEATER ASSOCIATION and the MIT Radio Society offer monthly Ham EXAMS. All classes Novice thru Extra. Email contact: MIT UHF Repeater Association, 719 PARK, MIT ROOM 1.150, 77 Mass Ave, Cambridge, MA. For information call (617) 253-2000. For advance contact: Ron Hoffman at (617) 484-2098. Exam fee $4.50. A copy of your current license (if any), two forms of picture id and a completed form 610 available from the FCC in Quincy, MA (617) 770-4023.

QUARTZ CRYSTALS/OCCILITORS FOR ELECTRICAL / INDUSTRIAL

- Microprocessor Control
- Computers/Modems
- Test/Measurement
- Medical

COMMUNICATIONS — RELAY

- Mobile/walky-talky Links
- Paging
- Marine
- Aircraft
- Railway
- Monorail/Amusement

AMATEURS

- CB
- Ham Radio
- Experiment

EQUIPMENT COST EFFECTIVE MODIFYING EASY DELIVERY

The Pulse of Dependable Communications

CRYSTAL CRYSTAL CORPORATION

DIVISION OF WHITELAW CORPORATION

2515/2713 Crystal Dr. H. Myers, 31917 P.O. Box 1051 515/613-6151 TOLL FREE 1-800-237-3061 (813) 936-2109 — TXW 510-515-7448

Custom Made Crystal Catalog

Replacement Crystal Catalog

CR-310-11
KNOW SPORADIC-E SKIP

As patches of Sporadic-E (Eₜ) ionization cross the United States — from southeast to northwest, for example — it's possible for short-skip and multiple propagation modes to exist on 6 meters. Surprisingly, they can be found occasionally on the 2-meter band. Openings appear quickly; they may stay in for just a few minutes, or remain open for hours. Sometimes in June or July DX signals may be heard around the clock. Signals can be received from distances of 500 to 1200 miles, and may at times be heard from distances as far away as 2500 miles on multiple hop paths.

How do you recognize such Eₜ openings? Suppose you're monitoring a beacon frequency and the band is quiet. Suddenly, you hear a build-up of "received noise." Almost instantly there are DX stations all over the band. Signal levels fluctuate rapidly as the session opens and as it declines. When the signal is there it usually pegs your S-meter, but it's also subject to rapid fades on the order of 60 dB or more that may chop it into a garbled mess.

George Jacobs, W3ASK, discussed one way to recognize the probable opening of Eₜ on 6 meters in the June 1962 issue of *CQ*. When you're on a lower frequency band, say 15 or 10 meters, listen to the stations being worked. If the minimum skip distance is decreasing, the skywave geometry is such that the maximum usable frequency (MUF) will be increasing by reflection from an Eₜ cloud (more dense than F2 and lower in height). W3ASK's rule of thumb states that when stations are heard less than 500 miles away on 10 meters, or less than 350 miles on 15 meters, the chances are good that 6 meters will open in that same direction.

A directional (not too narrow beam width) rotatable antenna with a low take-off angle is a definite advantage in finding and using the Eₜ short-skip propagation mode.

Last-minute forecast

The lower frequency bands (mainly nighttime DXing), will be best the first two weeks of July. Expected lower MUFs from a lower solar flux in those two weeks will raise signal strengths in the evenings to help overcome thunderstorm noise during those hours. The best low-band conditions will occur in the early morning hours. The higher band DXers will have to wait until the last two weeks of the month when long-skip openings with higher MUFs are expected. Geomagnetic disturbances are expected near the 6th and 16th, and on the 24th when they will be the most intense. Look for DX from unusual places on the disturbed days.

A full moon occurs on the 18th; perigee is on the 23rd. The Aquarids meteor shower begins on July 18th, peaks on the 28th, and lasts until August 7th. (All dates are approximate, but should be close.) The radio-echo rate at maximum is about 34 per hour.

Band-by-band summary

Six-meter paths will open for half an hour to a couple of hours on some days around local noon. Sporadic-E propagation will make this short-skip path possible out to nearly 1200 miles per hop.

Ten, 15, 17, 20, and 30 meters will support DX propagation to most areas of the world during the daylight hours and into the evening, with long skip out to 2000 miles per hop. Sporadic-E short skip will also be available on many days for several hours around local noon. The direction of propagation will follow the track of the sun across the sky: east in the morning, south at midday, and west in the evening. The longer period of daylight provides many hours of good DXing. Solar flux is high this year, so daytime absorption gives lower signal strengths than usual on these bands during this month.

Thirty, 40, 80, and 160 meters are the nighttime DXer's bands. On many nights, 30 and 40 meters will be the only usable bands because of thunderstorm QRN. Try the pre-dawn hours for best DX. The direction of propagation follows the darkness path across the sky: to the east in the evening, south around midnight, and toward the west in the pre-dawn hours. Skip distances will decrease to 1000 miles. Sporadic-E openings will be observed most frequently around sunrise and sunset. These may be the only signals getting through the noise in the evening.
GET READY!

Nashville ’89
Is Almost Here!

Plan to attend
the world’s largest
and most exciting
Satellite
TV Trade Show!

● Hundreds of exhibits!
● Current topic seminars!
● Entertainment!

SBCA/STTI
Present
NASHVILLE
SHOW ’89!
Opryland Hotel
Nashville, Tennessee
August 3-4-5, 1989

For Details, Call
National Satellite Shows
1-800-654-9276
(OR)
702-367-1471

ADVERTISER’S INDEX AND READER SERVICE NUMBERS

Listed below are the page and reader service number for each advertiser in this issue. For more information on their products, select the appropriate reader service number and make a check mark in the space provided. Mail this form to ham radio Reader Service, I.C.A., P.O. Box 2558, Woburn, MA 01801.

Name: ___________________________ Call: ___________________________

Address:___

City __________________________________ State __________ Zip __________________

* Please contact this advertiser directly.

Please use before August 31, 1989.

<table>
<thead>
<tr>
<th>READER SERVICE #</th>
<th>PAGE #</th>
<th>READER SERVICE #</th>
<th>PAGE #</th>
</tr>
</thead>
<tbody>
<tr>
<td>164</td>
<td>13</td>
<td>157</td>
<td>100</td>
</tr>
<tr>
<td>129</td>
<td>34</td>
<td>141</td>
<td>61</td>
</tr>
<tr>
<td>167</td>
<td>23</td>
<td>165</td>
<td>36</td>
</tr>
<tr>
<td>134</td>
<td>73</td>
<td>173</td>
<td>29</td>
</tr>
<tr>
<td>146</td>
<td>12</td>
<td>176</td>
<td>25</td>
</tr>
<tr>
<td>148</td>
<td>84</td>
<td>179</td>
<td>26</td>
</tr>
<tr>
<td>135</td>
<td>66</td>
<td>181</td>
<td>22</td>
</tr>
<tr>
<td>180</td>
<td>23</td>
<td>137</td>
<td>65</td>
</tr>
<tr>
<td>138</td>
<td>81</td>
<td>134</td>
<td>73</td>
</tr>
<tr>
<td>158</td>
<td>44</td>
<td>151</td>
<td>49</td>
</tr>
<tr>
<td>132</td>
<td>74</td>
<td>102</td>
<td>99</td>
</tr>
<tr>
<td>143</td>
<td>59</td>
<td>179</td>
<td>26</td>
</tr>
<tr>
<td>128</td>
<td>77</td>
<td>156</td>
<td>46</td>
</tr>
<tr>
<td>150</td>
<td>50, 51</td>
<td>157</td>
<td>44</td>
</tr>
<tr>
<td>146</td>
<td>52</td>
<td>130</td>
<td>77</td>
</tr>
<tr>
<td>149</td>
<td>153</td>
<td>172</td>
<td>29</td>
</tr>
<tr>
<td>176</td>
<td>37</td>
<td>191</td>
<td>89</td>
</tr>
<tr>
<td>159</td>
<td>44</td>
<td>149</td>
<td>93</td>
</tr>
<tr>
<td>136</td>
<td>66</td>
<td>135</td>
<td>66</td>
</tr>
<tr>
<td>128</td>
<td>77</td>
<td>130</td>
<td>77</td>
</tr>
<tr>
<td>169</td>
<td>30</td>
<td>172</td>
<td>29</td>
</tr>
<tr>
<td>110</td>
<td>23</td>
<td>141</td>
<td>61</td>
</tr>
<tr>
<td>133</td>
<td>74</td>
<td>176</td>
<td>25</td>
</tr>
<tr>
<td>183</td>
<td>16</td>
<td>137</td>
<td>29</td>
</tr>
<tr>
<td>119</td>
<td>83</td>
<td>176</td>
<td>25</td>
</tr>
<tr>
<td>103</td>
<td>95</td>
<td>141</td>
<td>61</td>
</tr>
<tr>
<td>160</td>
<td>43</td>
<td>165</td>
<td>36</td>
</tr>
<tr>
<td>155</td>
<td>44</td>
<td>161</td>
<td>51</td>
</tr>
<tr>
<td>175</td>
<td>26</td>
<td>166</td>
<td>36</td>
</tr>
<tr>
<td>165</td>
<td>36</td>
<td>161</td>
<td>51</td>
</tr>
<tr>
<td>124</td>
<td>76</td>
<td>174</td>
<td>26</td>
</tr>
<tr>
<td>126</td>
<td>76</td>
<td>171</td>
<td>29</td>
</tr>
<tr>
<td>169</td>
<td>12</td>
<td>122</td>
<td>80</td>
</tr>
<tr>
<td>119</td>
<td>83</td>
<td>111</td>
<td>87</td>
</tr>
<tr>
<td>160</td>
<td>43</td>
<td>112</td>
<td>57</td>
</tr>
<tr>
<td>133</td>
<td>74</td>
<td>113</td>
<td>57</td>
</tr>
<tr>
<td>183</td>
<td>16</td>
<td>114</td>
<td>57</td>
</tr>
<tr>
<td>139</td>
<td>83</td>
<td>115</td>
<td>57</td>
</tr>
<tr>
<td>169</td>
<td>12</td>
<td>116</td>
<td>57</td>
</tr>
<tr>
<td>183</td>
<td>16</td>
<td>117</td>
<td>57</td>
</tr>
<tr>
<td>139</td>
<td>83</td>
<td>118</td>
<td>57</td>
</tr>
<tr>
<td>169</td>
<td>12</td>
<td>119</td>
<td>57</td>
</tr>
<tr>
<td>183</td>
<td>16</td>
<td>120</td>
<td>57</td>
</tr>
<tr>
<td>133</td>
<td>74</td>
<td>121</td>
<td>57</td>
</tr>
<tr>
<td>124</td>
<td>76</td>
<td>122</td>
<td>80</td>
</tr>
<tr>
<td>126</td>
<td>76</td>
<td>123</td>
<td>80</td>
</tr>
</tbody>
</table>

PRODUCT REVIEW/New Product

306	90	306	48
303	48	311	90
309	48	310	90
307	90	305	48
304	48	304	48

For more information on their products, select the appropriate reader service number and make a check mark in the space provided.
MISSOURI RADIO CENTER

KENWOOD
TS-940 "DX-CELLENCE"
- All Band, All Mode Transceiver
- Direct Keyboard Entry
- Engineered for the DX-Minded
- It's Got It All!

FT-767QX HF/VHF/UHF BASE STATION
- Add Optional 6m, 2m & 70cm Modules
- Dual VFO's
- Full CW Break-in
- Lots More Features

IC-660 NEW HF TRANSCEIVER
- Built-in Automatic Antenna Tuner and Power Supply
- 99 Memories • 100 W Output
- 160-10M General Coverage Receiver
- Band Stacking Registers

KAANTRONICS
TM-231A 2 METER FM MOBILE
- 50 Watts Output
- 20 Multi-Function Memories
- Selectable CTCSS Tone Built-in
- Operate 4 Mobile Rigs with Optional IF-20 Interface and RC-20 Controller

ALINCO
SUPER SALE
ALD-2AT 2m/70cm Dual Band Mobile
- Frequency Coverage: 141-163 MHz (Rx), 144-146 MHz (Tx)
- Front Panel DTMF Pad
- 5 Watts Output
- 14 Memories
- TH-45AT Available for 440 MHz

ICOM
IC-760 NEW ULTRA COMPACT HF TRANSCEIVER
- USB/LSB/CW, AM Receive
- Optional Module for AM Transmit and FM TXRX
- 160-10M Operation • 100 W Output
- 25 Watts PEP
- New FM Offsets & PL

ASTRON
CP-100 Complete Terminal Unit for Morse, Baudot, ASCII, AMTOR
NOW ½ PRICE CLOSEOUT SPECIAL
ONLY $169, DELIVERED
Software Available
Call Now—Don’t Delay

KENWOOD
IC-32AT SUPER DUAL BAND FM HANDHELD
- 5 Watts on Both Bands
- Receive 138-174 MHz 440-450 MHz
- Stores Standard and Odd Offsets

KANTRONICS
SALE
LARGEST STOCK OF ALL YOUR MFJ FAVORITE ACCESSORIES CALL TODAY FOR BEST PRICE
Extra Savings on the MFJ-1278 Multi-Mode Data Controller

ALINCO
IC-32AT SUPER Dualband FM Handheld
- 5 Watts on Both Bands
- Receive 138-174 MHz 440-450 MHz
- Stores Standard and Odd Offsets

ICOM
IC-725 NEW ULTRA COMPACT HF TRANSCEIVER
- USB/LSB/CW, AM Receive
- Optional Module for AM Transmit and FM TXRX
- 160-10M Operation • 100 W Output
- 25 Watts PEP
- New FM Offsets & PL

MFJ SALE
LARGEST STOCK OF ALL YOUR MFJ FAVORITE ACCESSORIES CALL TODAY FOR BEST PRICE
Extra Savings on the MFJ-1278 Multi-Mode Data Controller

Call Toll Free—9am - 6pm Mon.-Fri. 9am - 2pm Sat.
In Missouri Call—816-741-8118

102 N.W. Business Park Lane Kansas City, MO 64150
Send SASE For Used List

MOST ORDERS SHIPPED SAME DAY

DAIWA • HUSTLER • KENWOOD • LARSEN • MFJ • MIRAGE/KLM • NYE VIKING • RF CONCEPTS • UNIDEN • YAESU

KYGIN • ICOM • KANTRONICS • KENWOOD • LARSEN • MFJ • MIRAGE/KLM • NYE VIKING • RF CONCEPTS • UNIDEN • YAESU
STOP LOOKING! THE FREQUENCY COUNTER
YOU NEED IS HERE NOW!

Take a good look at the model 2210 hand held that does it all. Frequency Range is from 10 Hz to over 2.2 GHz covering audio through microwave. Literally DC to daylight with extraordinary sensitivity and accuracy. The 2210 is now in demand by technicians, engineers, law enforcement officers, private investigators, two-way radio operators, scanner hobbyists, and amateur radio operators. Call us today to order yours.

$199

OPTOELECTRONICS INC.
5821 N.E. 14th Avenue
Fort Lauderdale, Florida 33334
FLA (305) 771-2050
FAX (305) 771-2052

Orders to U.S. and Canada add 5% to total ($2 min, $10 max)
Florida residents add 6% sales tax. COD fee $3.
Foreign orders add 15%
TWO OF AMERICA'S MOST POPULAR FM STATIONS.

No wonder Yaesu's FT-212R Series and FT-4700RH mobiles are so popular.

Not only are the features unique and plentiful. The operation hassle-free. And the mounting options flexible. But also, each radio now features a built-in PL board. Plus you choose the optional mic that best fits your operating and budget needs.

FT-212R SERIES. MOBILES THAT DOUBLE AS ANSWERING MACHINES.

FT-4700RH. DUAL-BAND PERFORMANCE, REMOTE HEAD DESIGN.

Want more information? Call (800) 999-2070 toll-free. Or ask your dealer about Yaesu's FT-212R Series and FT-4700RH mobiles today. Two of America's favorites.

YAESU USA 17210 Edwards Road, Cerritos, CA 90701
(213) 404-2700. REPAIR SERVICE: (213) 404-4884.
PARTS: (213) 404-4847.

Prices and specifications subject to change without notice. PL is a registered trademark of Motorola, Inc. Specifications guaranteed only within amateur bands.
Number One Rated Transceiver!

TS-940S - the standard of the field-proven performance and construction, no one has been able to match performance, value and ability. The TS-940S is "The Number One Rated HF Transceiver!"

- 100% duty cycle transmitter.
- Kenwood specifies transmit duty cycle time. The TS-940S is guaranteed to operate at full power output for periods exceeding one hour. (14.250 MHz, CW, 110 watts.) Perfect for RTTY, SSTV, and other long-duration modes.
- First with a full one-year limited warranty.
- Extremely stable phase locked loop (PLL) VFO. Reference frequency accuracy is measured in parts per million!

Optional accessories:
- AT-940 full range (160-10m) automatic antenna tuner
- SP-940 external speaker with audio filtering
- YG-45SC-1 (600 Hz), YG-455CN-1 (250 Hz), YK-88C-1 (500 Hz) CW filters
- YK-88A-1 (6 kHz) AM filter
- VS-1 voice synthesizer
- SO-1 temperature compensated crystal oscillator
- MC-43S UP/DOWN hand mic
- MC-60A, MC-80, MC-85 deluxe base station mics
- PC-1A phone patch
- TL-922A linear amplifier
- SM-220 station monitor
- BS-8 pan display
- SW-200A and SW-2000 SWR and power meters
- IF-232C/IF-10B computer interface

- Complete all band, all mode transceiver with general coverage receiver. Receiver covers 150 KHz-30 MHz. All modes built-in: AM, FM, CW, FSK, LSB, USB.
- Superb, human engineered front panel layout for the DX-minded or contesting ham. Large fluorescent tube main display with dimmer, direct keyboard input of frequency, flywheel type main tuning knob with optical encoder mechanism all combine to make the TS-940S a joy to operate.
- One-touch frequency check (T-F SET) during split operations.
- Unique LCD sub display indicates VFO, graphic indication of VBT and SSB Slop tuning, and time.
- Simple one step mode changing with CW announcement.
- Other vital operating functions. Selectable semi or full break-in CW (OSK), RIT/XIT, all mode squelch, RF attenuator, filter select switch, selectable AGC, CW variable pitch control, speech processor, and RF power output control, programmable band scan or 40 channel memory scan.

Kenwood U.S.A. Corporation

2201 E. Dominguez St., Long Beach, CA 90810
P.O. Box 22745, Long Beach, CA 90801-5745